Have a personal or library account? Click to login
Tracing Changes in Shape of Historical Artefacts Across Time Using 3D Scans: A New Computational Approach Cover

Tracing Changes in Shape of Historical Artefacts Across Time Using 3D Scans: A New Computational Approach

Open Access
|May 2022

References

  1. 1Algrain, I., & Tonglet, D. (2021). Studying the shapes of Greek vases: historiography and new methodologies. Archeologia e Calcolatori, 32(2), 6582.
  2. 2Beazley Archive, Classical Art Research Centre, University of Oxford. URL: https://www.beazley.ox.ac.uk.
  3. 3Beazley, J. D. (1925). Attische Vasenmaler Des rotfigurigen Stils. Tübingen: J.C.B. Mohr.
  4. 4Bloesch, H. (1940). Formen attischer Schalen von Exekias bis zum Ende des Strengen Stils. Bern: Benteli.
  5. 5Conkey, M., & Hastorf, A. (1990). The uses of style in archaeology. Cambridge: Cambridge University Press.
  6. 6Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of optimal transport. Advances in Neural Information Processing Systems, 26, 22922300.
  7. 7Díez, Y., Roure, F., Lladó, X., & Salvi, J. (2015). A qualitative review on 3D coarse registration methods. ACM Computing Surveys 47(3), 136. DOI: 10.1145/2692160
  8. 8Euwe, J. (1996). The potters of the Nolan amphorae in Sicily: Criteria for attributions. In G. Rizza (Ed.), I vasi attici ed altre ceramiche coeve in Sicilia. Atti del convegno internazionale (Catania, Camarina, Gela, Vittoria 1990) (Vol. II, pp. 6780). Catania: Centro di studio sull’archeologia greca.
  9. 9Focillon, H. (1934). Vie des formes. Paris: Ernest Leroux.
  10. 10Genevay, A., Chizat, L., Bach, F., Cuturi, M., & Peyré, G. (2019). Sample complexity of Sinkhorn divergences. Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), Naha, Okinawa, Japan, PMLR 89, 15741583.
  11. 11Kathariou, K. (2017). Moving Bloesch’s methodology one century forward: Challenges and perspectives. In L. Cappuccini, C. Leypold, & M. Mohr (Eds.), Fragmenta Mediterranea. Contatti, tradizioni e innovazioni in Grecia, Magna Grecia, Etruria e Roma. Studi in onore di Christoph Reusser (pp. 217230). Sesto Fiorentino: All’Insegna del Giglio.
  12. 12Kerschner, M., & Schlotzhauer, U. (2005). A new classification system for east Greek pottery. Ancient West & East, 4(1), 156. DOI: 10.1163/9789047416692_003
  13. 13Koutsoudis, A., & Chamzas, C. (2009). 3D pottery shape similarity matching based on digital signatures. Proceedings of the Computer Applications to Archaeology, 166171.
  14. 14Koutsoudis, A., & Chamzas, C. (2011). 3D pottery shape matching using depth map images. Journal of Cultural Heritage, 12, 128133. DOI: 10.1016/j.culher.2010.12.003
  15. 15Koutsoudis, A., Pavlidis, G., Liami, V., Tsiafakis, D., & Chamzas, C. (2010). 3D Pottery content-based retrieval based on pose normalisation and segmentation. Journal of Cultural Heritage, 11(3), 329338. DOI: 10.1016/j.culher.2010.02.002
  16. 16Kubler, G. (1962). The shape of time: Remarks on the history of things. New Haven: Yale University Press.
  17. 17Kun, J. (2018). ‘Earth Mover’s Distance’. Math ∩ Programming. URL: https://jeremykun.com/tag/wasserstein-metric/.
  18. 18Langner, M. (2013). Grundlagen der Chronologie spätrotfiguriger Vasen aus Athen. Bulletin Antieke Beschaving, 88, 127170.
  19. 19Martínez-Carrillo, A. (2008). Computer applications in archaeological pottery: A review and new perspectives. Proceedings of the 36th CAA Conference, Budapest, 2–6 April 2008, 394401.
  20. 20Point Cloud Utils (pcu). URL: https://github.com/fwilliams/point-cloud-utils.
  21. 21Richter, G., & Milne, M. (1935). Shapes and names of Athenian vessels. New York: Metropolitan Museum of Art.
  22. 22Riegl, A. (1985). Late Roman art industry (R. Winckes, Trans.). Rome: Giorgio Bretschneider. (Original book published 1901).
  23. 23Shi, J., & Wang, Y. (2020). Hyperbolic Wasserstein distance for shape indexing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(6), 13621376. DOI: 10.1109/TPAMI.2019.2898400
  24. 24Sketchfab. URL: https://sketchfab.com.
  25. 25Smith, N. G., Karasik, A., Narayanan, T., Olson, E., Smilansky, U., & Levy, T. E. (2014). The pottery informatics query database: A new method for mathematic and quantitative analyses of large regional ceramic datasets. Journal of Archaeological Method and Theory, 21, 212250. DOI: 10.1007/s10816-012-9148-1
  26. 26Su, Z., Wang, Y., Shi, R., Zeng, W., Sun, J., Luo, F., & Gu, X. (2015). Optimal mass transport for shape matching and comparison. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(11), 22462259. DOI: 10.1109/TPAMI.2015.2408346
  27. 27Villani, C. (2009). Optimal transport: Old and new. Berlin: Springer. DOI: 10.1007/978-3-540-71050-9
  28. 28Winckelmann, J. (2006). The history of the art of antiquity (H. F. Mallgrave, Trans.). Los Angeles: Getty Research Institute. (Original work published 1764).
  29. 29Wölfflin, H. (2015). Principles of art history: The problem of the development of style in early modern art. (J. Blower, Trans.). Los Angeles, CA: Getty Research Institute. (Original book published 1915).
DOI: https://doi.org/10.5334/johd.61 | Journal eISSN: 2059-481X
Language: English
Published on: May 20, 2022
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Giovanni Maria Pala, Lisandra S. Costiner, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.