References
- 1Akbik, A., Bergmann, T., Blythe, D., Rasul, K., Schweter, S., & Vollgraf, R. (2019). Flair: An easy-to-use framework for state-of-the-art nlp. In NAACL 2019, 2019 annual conference of the north american chapter of the association for computational linguistics (demonstrations) (pp. 54–59).
- 2Azarbonyad, H., Dehghani, M., Beelen, K., Arkut, A., Marx, M., & Kamps, J. (2017). Words are malleable: Computing semantic shifts in political and media discourse. In Proceedings of the 2017 acm on conference on information and knowledge management (pp. 1509–1518). DOI: 10.1145/3132847.3132878
- 3Beelen, K., Nanni, F., Coll Ardanuy, M., Hosseini, K., Tolfo, G., & McGillivray, B. (2021).
When time makes sense: A historically-aware approach to targeted sense disambiguation . In Findings of acl-ijcnlp. Bangkok, Thailand (Online): Association for Computational Linguistics. DOI: 10.18653/v1/2021.findings-acl.243 - 4Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching word vectors with subword information. arXiv preprint arXiv:1607.04606. DOI: 10.1162/tacl_a_00051
- 5Coll Ardanuy, M., Nanni, F., Beelen, K., Hosseini, K., Ahnert, R., Lawrence, J., …, & McGillivray, B. (2020, December). Living machines: A study of atypical animacy. In Proceedings of the 28th international conference on computational linguistics (pp. 4534–4545). Barcelona, Spain (Online):
International Committee on Computational Linguistics . Retrieved fromhttps://www.aclweb.org/anthology/2020.coling-main.400 . DOI: 10.18653/v1/2020.coling-main.400 - 6Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019, June). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 conference of the north American chapter of the association for computational linguistics: Human language technologies, volume 1 (long and short papers) (pp. 4171–4186). Minneapolis, Minnesota:
Association for Computational Linguistics . Retrieved fromhttps://www.aclweb.org/anthology/N19-1423 . DOI: 10.18653/v1/N19-1423 - 7Gonen, H., Jawahar, G., Seddah, D., & Goldberg, Y. (2020). Simple, interpretable and stable method for detecting words with usage change across corpora. In Proceedings of the 58th annual meeting of the association for computational linguistics (pp. 538–555). DOI: 10.18653/v1/2020.acl-main.51
- 8Hämäläinen, M., & Hengchen, S. (2019). From the paft to the fiiture: a fully automatic nmt and word embeddings method for ocr post-correction. arXiv preprint arXiv:1910.05535. DOI: 10.26615/978-954-452-056-4_051
- 9Hengchen, S., Ros, R., & Marjanen, J. (2019). A data-driven approach to the changing vocabulary of the nation in english, dutch, swedish and finnish newspapers, 1750–1950. In Proceedings of the digital humanities (dh) conference.
- 10Hengchen, S., & Tahmasebi, N. (2021). A collection of swedish diachronic word embedding models trained on historical newspaper data. Journal of Open Humanities Data, 7. DOI: 10.5334/johd.22
- 11Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. DOI: 10.1162/neco.1997.9.8.1735
- 12Honnibal, M., Montani, I., Van Landeghem, S., & Boyd, A. (2020). spaCy: Industrial-strength Natural Language Processing in Python. Zenodo. DOI: 10.5281/zenodo.1212303
- 13Hosseini, K., Nanni, F., & Coll Ardanuy, M. (2020, October). DeezyMatch: A flexible deep learning approach to fuzzy string matching. In Proceedings of the 2020 conference on empirical methods in natural language processing: System demonstrations (pp. 62–69). Online:
Association for Computational Linguistics . Retrieved fromhttps://aclanthology.org/2020.emnlp-demos.9 . DOI: 10.18653/v1/2020.emnlp-demos.9 - 14Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
- 15Kulkarni, V., Al-Rfou, R., Perozzi, B., & Skiena, S. (2015). Statistically significant detection of linguistic change. In Proceedings of the 24th international conference on world wide web (pp. 625–635). DOI: 10.1145/2736277.2741627
- 16Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. arXiv preprint. Retrieved 2019-11-20, from
http://arxiv.org/abs/1301.3781 - 17Pechenick, E. A., Danforth, C. M., & Dodds, P. S. (2015). Characterizing the google books corpus: Strong limits to inferences of socio-cultural and linguistic evolution. PloS one, 10(10),
e0137041 . DOI: 10.1371/journal.pone.0137041 - 18Rehurek, R., & Sojka, P. (2011). Gensim-python framework for vector space modelling. NLP Centre, Faculty of Informatics, Masaryk University, Brno, Czech Republic, 3(2).
- 19Smith, N. A. (2019). Contextual word representations: A contextual introduction. arXiv preprint arXiv:1902.06006.
- 20Tahmasebi, N., Borin, L., & Jatowt, A. (2018). Survey of computational approaches to lexical semantic change. arXiv preprint arXiv:1811.06278.
- 21van Strien, D., Beelen, K., Ardanuy, M. C., Hosseini, K., McGillivray, B., & Colavizza, G. (2020). Assessing the impact of ocr quality on downstream nlp tasks. In Icaart, 1, 484–496. DOI: 10.5220/0009169004840496
- 22Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., …, & Brew, J. (2019). HuggingFace’s Transformers: State-of-the-art Natural Language Processing. ArXiv, abs/1910.03771. DOI: 10.18653/v1/2020.emnlp-demos.6
