References
- 1Boenig, M., Federbusch, M., Herrmann, E., Neudecker, C., & Würzner, K.-M. (2018). Ground Truth: Grundwahrheit oder Ad-Hoc-Lösung? Wo stehen die Digital Humanities? In G. Vogeler (Ed.), DHd 2018. Kritik der digitalen Vernunft Konferenzabstracts. Universität zu Köln 26. Februar bis 2. März 2018 (pp. 219–223). Retrieved from
http://dhd2018.uni-koeln.de/wp-content/uploads/boa-DHd2018-web-ISBN.pdf#page=221 - 2Chaqué, A., & Clérice, T. (2021). HTR-United. GitHub. Retrieved from
https://github.com/HTR-United/htr-united - 3Graves, A., & Schmidhuber, J. (2009).
Offline handwriting recognition with multidimensional recurrent neural networks . In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Advances in Neural Information Processing Systems 21 (pp. 545–552). Red Hook, NY: Curran Associates. Retrieved fromhttp://papers.nips.cc/paper/3449-offline-handwriting-recognition-with-multidimensional-recurrent-neural-networks.pdf - 4Heigl, E. (2020). “Testsamples – die unparteiische Alternative.” Rechtsetzung im Ostseeraum (blog), 10 March 2020. Retrieved from
https://rechtsprechung-im-ostseeraum.archiv.uni-greifswald.de/de/test-samples-the-impartial-alternative/ - 5Hodel, T. (2018). Konsequenzen automatischer Texterkennung – Ein Aufriss zur Texterkennung mit Machine Learning. In G. Vogeler (Ed.), DHd 2018. Kritik der digitalen Vernunft Konferenzabstracts. Universität zu Köln 26. Februar bis 2. März 2018 (pp. 249–251). Retrieved from
http://dhd2018.uni-koeln.de/wp-content/uploads/boa-DHd2018-web-ISBN.pdf#page=251 - 6Hodel, T. (2020). Best-practices zur Erkennung alter Drucke und Handschriften – Die Nutzung von Transkribus large- und small-scale. In C. Schöch (Ed.), DHd 2020. Spielräume Digital Humanities zwischen Modellierung und Interpretation. Abstracts zur 7. Tagung des Verbands Digital Humanities im deutschsprachigen Raum e.V. in Paderborn (pp. 84–87). DOI: 10.5281/zenodo.3666689.
- 7Hodel, T., & Schoch, D. (2021a). Handwritten Text Recognition Test Set: Minutes of the Swiss Federal Council (1848–1903) Data set Version 1.0. Zenodo. DOI: 10.5281/zenodo.4746342
- 8Hodel, T., & Schoch, D. (2021b). Recognition Results for the Handwritten Text Recognition Test Set: Minutes of the Swiss Federal Council (1848–1903) Data set Version 1.0. Zenodo. DOI: 10.5281/zenodo.4905561
- 9Leifert, G., Strauss, T., Grüning, T., Wustlich, W., & Labahn, R. (2016). Cells in multidimensional recurrent neural networks. Journal of Machine Learning Research, 17(97), 1–37. Retrieved from
http://jmlr.org/papers/v17/14-203.html - 10Library of Congress. (2016). ALTO: Technical Metadata for Layout and Text Objects. Retrieved from
https://www.loc.gov/standards/alto/ - 11Michael, J., Weidemann, M., & Labahn, R. (2018). HTR engine based on neural networks P3. Optimizing speed and performance – HTR+. Deliverable 7.9 submitted to the European Commission as part of the Recognition & Enrichment of Archival Documents (READ) project funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 674943. Retrieved from
https://read.transkribus.eu/wp-content/uploads/2018/12/Del_D7_9.pdf - 12Muehlberger, G., Seaward, L., Terras, M., Ares Oliveira, S., Bosch, V., Bryan, M., Colutto, S., Déjean, H., Diem, M., Fiel, S., Gatos, B., Greinoecker, A., Grüning, T., Hackl, G., Haukkovaara, V., Heyer, G., Hirvonen, L., Hodel, T., Jokinen, M., Kahle, P., Kallio, M., Kaplan, F., Kleber, F., Labahn, R., Lang, E-M., Laube, S., Leifert, G., Louloudis, G., McNicholl, R., Meunier, J.-L., Michael, J., Mühlbauer, E., Philipp, N., Pratikakis, I., Puigcerver Pérez, J., Putz, H., Retsinas, G., Romero, V., Sablatnig, R., Sánchez, J.-A., Schofield, P., Sfikas, G., Sieber, C., Stamatopoulos, N., Strauss, T., Terbul, T., Toselli, A.-H., Ulreich, B., Villegas, M., Vidal, E., Walcher, J., Weidemann, M., Wurster, H., Zagoris, K. (2019). Transforming scholarship in the archives through handwritten text recognition: Transkribus as a case study. Journal of Documentation, 75(5), 954–976. DOI: 10.1108/JD-07-2018-0114
- 13Muehlberger, G., Zelger, J., Sagmeister, D. (2014). User-driven correction of OCR errors: combining crowdsourcing and information retrieval technology. In Antonacopoulos, A. & Schulz, K. U. (Eds.), DATeCH’14: Proceedings of the First International Conference on Digital Access to Textual Cultural Heritage, Madrid, Spain,
19–20 May 2014 (pp. 53–56). New York, NY:Association for Computing Machinery . DOI: 10.1145/2595188.2595212 - 14National Institute for Research in Digital Science and Technology (INRIA). (2021). eScriptorium. GitLab. Retrieved from
https://gitlab.inria.fr/scripta/escriptorium - 15Neudecker, C., Schlarb, S., Neumann, D., & Dogan, M. (2012). IMPACT: Improving Access to Text: Final Report. Retrieved from
http://www.impact-project.eu/uploads/media/IMPACT_D-OC5.4_Final_Report.pdf - 16Pletschacher, S., & Antonacopoulos, A. (2010). The PAGE (Page Analysis and Ground-Truth Elements) Format Framework. In Proceedings of the 20th International Conference on Pattern Recognition, Istanbul, Turkey,
23–26 August 2010 (pp. 257–260). Los Alamitos, CA:IEEE Computer Society . DOI: 10.1109/ICPR.2010.72 - 17Puigcerver, J., & Mocholí, C. (2018). PyLaia. GitHub. Retrieved from:
https://github.com/jpuigcerver/PyLaia - 18Reiter, N., Willand, M., & Gius, E. (2019). A shared task for the digital humanities. Chapter 1: Introduction to annotation, narrative levels and shared tasks. Journal of Cultural Analytics, 2(1), 11192. DOI: 10.22148/16.048
- 19Rice, S. V., Kanai, J., & Nartker, T. A. (1993).
An evaluation of OCR accuracy . In Grover, K. O. & Goetz, J. P. (Eds.), Information Science Research Institute. 1993 Annual Research Report (pp. 9–33). Las Vegas, NV: University of Las Vegas. Retrieved fromhttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.80.7878&rep=rep1&type=pdf#page=9 - 20Sahle, P. (2013). Digitale Editionsformen. Zum Umgang mit der Überlieferung unter den Bedingungen des Medienwandels. Teil 3: Textbegriffe und Recodierung. PhD thesis, Universität zu Köln. Retrieved from
https://kups.ub.uni-koeln.de/5013/ - 21Stökl Ben Ezra, D. (2019). eScripta. Retrieved from
https://escripta.hypotheses.org/about - 22Wettlaufer, J. (2016). Neue Erkenntnisse durch digitalisierte Geschichtswissenschaft(en)? Zur hermeneutischen Reichweite aktueller digitaler Methoden in informationszentrierten Fächern. Zeitschrift Für Digitale Geisteswissenschaften, 1. DOI: 10.17175/2016_011
