Have a personal or library account? Click to login
ARTigo: Data from Social Tagging with Art-historical Images Cover

ARTigo: Data from Social Tagging with Art-historical Images

Open Access
|Dec 2024

References

  1. 1Levushkina, E. (2014). Computerlinguistische Methoden in Community-basierten Anwendungen. Hamburg: Dr. Kovač.
  2. 2Mao, H., Cheung, M., & She, J. (2017). DeepArt: Learning joint representations of visual arts. In Q. Liu, et al. (Eds.), Proceedings of the 2017 ACM on multimedia conference, MM 2017 (pp. 11831191). New York: ACM. 10.1145/3123266.3123405
  3. 3Moosburger, M. (2017). Colour labelling of art images using colour palette recognition (Bachelor’s Thesis, LMU Munich). Retrieved November 25, 2024, from https://www.en.pms.ifi.lmu.de/publications/projektarbeiten/Matthias.Moosburger/PA_Matthias.Moosburger-high-comp.pdf
  4. 4OpenAPI Initiative. (2017). OpenAPI. Retrieved November 25, 2024, from https://spec.openapis.org/oas/v3.0.0 (Version 3.0.0).
  5. 5Poetis, P., Radmacher, E., Smiatek, K., & Schneider, S. (2022). “Wertlose” Taggings und ihr Nutzen für die Kunstgeschichte. In M. Geierhos (Ed.), 8. Tagung des Verbands Digital Humanities im deutschsprachigen Raum, DHd 2022 (pp. 225229). 10.5281/zenodo.6304590
  6. 6Schneider, S., & Kohle, H. (2017). The computer as filter machine: A clustering approach to categorize artworks based on a social tagging network. Artl@s Bulletin, 6(3), 8189. 10.5282/ubm/epub.41319
  7. 7Schneider, S., Kristen, M., & Vollmer, R. (2023). Re: ARTigo: Neuentwurf eines Social-Tagging-Frameworks aus funktionalen Programmbausteinen. In A. Busch & P. Trilcke (Eds.), 9. Tagung des Verbands Digital Humanities im deutschsprachigen Raum, DHd 2023 (pp. 173178). 10.5281/zenodo.7688632
  8. 8Springstein, M., Schneider, S., Rahnama, J., Hüllermeier, E., Kohle, H., & Ewerth, R. (2021). iART: A search engine for art-historical images to support research in the humanities. In H. T. Shen, et al. (Eds.), Proceedings of the 2021 ACM on multimedia conference, MM 2021 (pp. 28012803). New York: ACM. 10.1145/3474085.3478564
  9. 9Surowiecki, J. (2004). The wisdom of crowds: Why the many are smarter than the few and how collective wisdom shapes business, economies, societies and nations. New York: Doubleday.
  10. 10Tänzel, T. (2017). Measuring similarity of artworks using multidimensional data (Master’s thesis, LMU Munich). Retrieved November 25, 2024, from https://www.en.pms.ifi.lmu.de/publications/diplomarbeiten/Tobias.Taenzel/MA_Tobias.Taenzel.pdf
  11. 11Wieser, C., Bry, F., Bérard, A., & Lagrange, R. (2013). Building an artwork search engine with games and higher-order latent semantic analysis. In Proceedings of the first AAAI conference on human computation and crowdsourcing (pp. 1520). Menlo Park, CA: AAAI Press. 10.1609/hcomp.v1i1.13060
DOI: https://doi.org/10.5334/johd.247 | Journal eISSN: 2059-481X
Language: English
Submitted on: Sep 30, 2024
Accepted on: Nov 20, 2024
Published on: Dec 10, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Stefanie Schneider, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.