References
- 1Adesam, Y., Dannélls, D., & Tahmasebi, N. (2019). Exploring the quality of the digital historical newspaper archive KubHist. In Proceedings of the 2019 DHN conference (pp. 9–17).
- 2Antoniak, M., & Mimno, D. (2018). Evaluating the stability of embedding-based word similarities. Transactions of the Association for Computational Linguistics, 6, 107–119. DOI: 10.1162/tacl_a_00008
- 3Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword information. Transactions of the Association for Computational Linguistics, 5, 135–146. DOI: 10.1162/tacl_a_00051
- 4Borin, L., Forsberg, M., Hammarstedt, M., Rosén, D., Schäfer, R., & Schumacher, A. (2016). Sparv: Språkbanken’s corpus annotation pipeline infrastructure. In The Sixth Swedish Language Technology Conference (SLTC), Umeå University (pp. 17–18).
- 5Borin, L., Forsberg, M., & Roxendal, J. (2012). Korp — the corpus infrastructure of Språkbanken. In Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC’12) (pp. 474–478). Istanbul, Turkey:
European Language Resources Association (ELRA) . URL:http://www.lrec-conf.org/proceedings/lrec2012/pdf/248_Paper.pdf - 6Budts, S. (2020). A connectionist approach to analogy. On the modal meaning of periphrastic do in Early Modern English. Corpus Linguistics and Linguistic Theory, 1(ahead-of-print). DOI: 10.1515/cllt-2019-0080
- 7Cook, P., & Stevenson, S. (2010). Automatically identifying changes in the semantic orientation of words. In N. C. C. Chair, K. Choukri, B. Maegaard, J. Mariani, J. Odijk, S. Piperidis, M. Rosner, & D. Tapias (Eds.), Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10). Valletta, Malta:
European Language Resources Association (ELRA) . - 8Dubossarsky, H., Hengchen, S., Tahmasebi, N., & Schlechtweg, D. (2019). Time-out: Temporal referencing for robust modeling of lexical semantic change. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (pp. 457–470). Florence, Italy:
Association for Computational Linguistics . DOI: 10.18653/v1/P19-1044 - 9Dubossarsky, H., Weinshall, D., & Grossman, E. (2017). Outta control: Laws of semantic change and inherent biases inword representation models. In Proceedings of the 2017 Conference onEmpirical Methods in Natural Language Processing (pp. 1136–1145). Copenhagen, Denmark:
Association for Computational Linguistics . DOI: 10.18653/v1/D17-1118 - 10Duong, Q., Hämäläinen, M., & Hengchen, S. (2020). An unsupervised method for OCR post-correction and spelling normalisation for Finnish. arXiv preprint arXiv:2011.03502.
- 11Hengchen, S., Ros, R., Marjanen, J., & Tolonen, M. (2021a). A data-driven approach to studying changing vocabularies in historical newspaper collections. Digital Scholarship in the Humanities.
- 12Hengchen, S., Tahmasebi, N., Schlechtweg, D., & Dubossarsky, H. (2021b).
Challenges for computational lexical semantic change . In N. Tahmasebi, L. Borin, A. Jatowt, Y. Xu, & S. Hengchen (Eds.), Computational Approaches to Semantic Change, Language Variation, chap. 11. Berlin: Language Science Press. - 13Hill, M. J., & Hengchen, S. (2019). Quantifying the impact of dirty OCR on historical text analysis: Eighteenth Century Collections Online as a case study. Digital Scholarship in the Humanities, 34(4), 825–843. DOI: 10.1093/llc/fqz024
- 14Hämäläinen, M., & Hengchen, S. (2019). From the paft to the fiiture: a fully automatic NMT and word embeddings method for OCR post-correction. In Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019) (pp. 431–436). DOI: 10.26615/978-954-452-056-4_051
- 15Kaiser, J., Schlechtweg, D., Papay, S., & Schulte im Walde, S. (2020). IMS at SemEval-2020 Task 1: How low can you go? Dimensionality in Lexical Semantic Change Detection. In Proceedings of the 14th International Workshop on Semantic Evaluation. Barcelona, Spain:
Association for Computational Linguistics . - 16Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., & Petrov, S. (2014). Temporal analysis of language through neural language models. In Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science (pp. 61–65). DOI: 10.3115/v1/W14-2517
- 17Kulkarni, V., Al-Rfou, R., Perozzi, B., & Skiena, S. (2015). Statistically significant detection of linguistic change. In Proceedings of the 24th International Conference on World Wide Web (pp. 625–635).
International World Wide Web Conferences Steering Committee . DOI: 10.1145/2736277.2741627 - 18Kutuzov, A., Øvrelid, L., Szymanski, T., & Velldal, E. (2018). Diachronic word embeddings and semantic shifts: a survey. In Proceedings of the 27th International Conference on Computational Linguistics (pp. 1384–1397).
- 19Marjanen, J., Kurunmäki, J., Pivovarova, L., & Zosa, E. (2020). The expansion of isms, 1820–1917: Data-driven analysis of political language in digitized newspaper collections. Journal of Data Mining and Digital Humanities.
- 20McGillivray, B., Alex, B., Ames, S., Armstrong, G., Beavan, D., Ciula, A., Colavizza, G., Cummings, J., De Roure, D., Farquhar, A., et al. (2020). The challenges and prospects of the intersection of humanities and data science: A white paper from The Alan Turing Institute.
- 21Michel, J.-B., Shen, Y. K., Aiden, A. P., Veres, A., Gray, M. K., Pickett, J. P., Hoiberg, D., Clancy, D., Norvig, P., Orwant, J., et al. (2011). Quantitative analysis of culture using millions of digitized books. Science, 331(6014), 176–182. DOI: 10.1126/science.1199644
- 22Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
- 23Oliphant, T. E. (2006). A guide to NumPy, vol. 1. USA: Trelgol Publishing.
- 24Řehůřek, R., & Sojka, P. (2010). Software Framework for Topic Modelling with Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks (pp. 45–50). Valletta, Malta:
ELRA .http://is.muni.cz/publication/884893/en - 25Rosenfeld, A., & Erk, K. (2018). Deep neural models of semantic shift. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 474–484). New Orleans, Louisiana. DOI: 10.18653/v1/N18-1044
- 26Schlechtweg, D., Hätty, A., del Tredici, M., & Schulte im Walde, S. (2019). A Wind of Change: Detecting and Evaluating Lexical Semantic Change across Times and Domains. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (pp. 732–746). Florence, Italy:
Association for Computational Linguistics . DOI: 10.18653/v1/P19-1072 - 27Schlechtweg, D., McGillivray, B., Hengchen, S., Dubossarsky, H., & Tahmasebi, N. (2020). SemEval-2020 task 1: Unsupervised Lexical Semantic Change Detection. In Proceedings of the 14th International Workshop on Semantic Evaluation. Barcelona, Spain:
Association for Computational Linguistics . - 28Schlechtweg, D., & Schulte im Walde, S. (2020). Simulating Lexical Semantic Change from Sense-Annotated Data. In A. Ravignani, C. Barbieri, M. Martins, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (EvoLang13). DOI: 10.17617/2.3190925
- 29Shoemark, P., Liza, F. F., Nguyen, D., Hale, S., & McGillivray, B. (2019). Room to Glo: A systematic comparison of semantic change detection approaches with word embeddings. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (pp. 66–76). Hong Kong, China:
Association for Computational Linguistics . DOI: 10.18653/v1/D19-1007 - 30Språkbanken. (2019). The Kubhist Corpus, v2. Department of Swedish, University of Gothenburg. URL:
https://spraakbanken.gu.se/korp/?mode=kubhist , version downloaded in 2019. - 31Tahmasebi, N., Borin, L., & Jatowt, A. (2018). Survey of computational approaches to lexical semantic change. arXiv preprint arXiv:1811.06278.
- 32Tripodi, R., Warglien, M., Levis Sullam, S., & Paci, D. (2019). Tracing antisemitic language through diachronic embedding projections: France 1789–1914. In Proceedings of the 1st International Workshop on Computational Approaches to Historical Language Change (pp. 115–125). Florence, Italy:
Association for Computational Linguistics . DOI: 10.18653/v1/W19-4715 - 33van Eijnatten, J., & Ros, R. (2019). The eurocentric fallacy. A digital approach to the rise of modernity, civilization and Europe. International Journal for History, Culture and Modernity, 7. DOI: 10.18352/hcm.580
- 34van Strien, D., Beelen, K., Ardanuy, M. C., Hosseini, K., McGillivray, B., & Colavizza, G. (2020). Assessing the impact of OCR quality on downstream NLP tasks. In ICAART, 1, 484–496. DOI: 10.5220/0009169004840496
