References
- 1Abgaz, Y., Rocha Souza, R., Methuku, J., Koch, G., & Dorn, A. (2021). A Methodology for Semantic Enrichment of Cultural Heritage Images Using Artificial Intelligence Technologies. Journal of Imaging, 7(8), 121. DOI: 10.3390/jimaging7080121
- 2Aissi, M. S. (2023).
Comment retrouver des photographies historiques similaires à une image requête? (Master’s project report, Sorbonne Université, Master Informatique). - 3Arnold, T., & Tilton, L. (2023).
Distant viewing . MIT Press. DOI: 10.7551/mitpress/14046.001.0001 - 4Aske, K., & Giardinetti, M. (2023). (Mis)matching metadata: Improving accessibility in digital visual archives through the EyCon Project. Journal on Computing and Cultural Heritage, 16(4), 1–20. DOI: 10.1145/3594726
- 5Dentler, J., Jaillant, L., Foliard, D., & Schuh, J. (2024). Sensitivity and access: Unlocking the colonial visual archive with machine learning. Loughborough University. Retrieved from
https://hdl.handle.net/2134/25549789.v1 - 6Ehrmann, M., Hamdi, A., Linhares Pontes, E., Romanello, M., & Doucet, A. (2023, September). Named entity recognition and classification on historical documents: A survey. ACM Computing Surveys, 56(214), Article 27, 1–47. DOI: 10.1145/3604931
- 7Ehrmann, M., Romanello, M., Najem-Meyer, S., Doucet, A., & Clematide, S. (2022, August 10). Extended overview of HIPE-2022: Named entity recognition and linking in multilingual historical documents. Conference and Labs of the Evaluation Forum (CLEF 2022). Bologna, Italy. DOI: 10.1007/978-3-031-13643-6_26
- 8Elo, K. (2020).
Big data, bad metadata: A methodological note on the importance of good metadata in the age of digital history . In M. Fridlund, M. Oiva & P. Paju (Eds.), Digital histories: Emergent approaches within the new digital history (pp. 103–111). Helsinki University Press. DOI: 10.33134/HUP-5-6 - 9Feng, S., Park, C. Y., Liu, Y., & Tsvetkov, Y. (2023). From pretraining data to language models to downstream tasks: Tracking the trails of political biases leading to unfair NLP models. Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Toronto, Canada. DOI: 10.18653/v1/2023.acl-long.656
- 10Foliard, D. (2020). Combattre, punir, photographier Empires coloniaux, 1890–1914. La Découverte. DOI: 10.3917/dec.folia.2020.01
- 11Foliard, D., Schuh, J., Giardinetti, M., Aissi, M. S., & Dentler, J. (2024). EyCon project photographs and metadata [Dataset]. Zenodo. DOI: 10.5281/zenodo.11449122
- 12Gutehrlé, N., & Atanassova, I. (2021). Logical layout analysis applied to historical newspapers. Proceedings of the Workshop on Natural Language Processing for Digital Humanities (NLP4DH). Silchar, India.
https://hal.archives-ouvertes.fr/hal-03468972 (accessed September 23, 2022). DOI: 10.46298/jdmdh.9093 - 13Lee, B. C. G., Mears, J., Jakeway, E., Ferriter, M., Adams, C., Yarasavage, N., Thomas, D., Zwaard, K., & Weld, D. S. (2020). The newspaper navigator dataset: Extracting headlines and visual content from 16 million historic newspaper pages in Chronicling America. Proceedings of the 29th ACM International Conference on Information & Knowledge Management.
https://dl.acm.org/doi/10.1145/3340531.3412767 . DOI: 10.1145/3340531.3412767 - 14Library of Congress. (n.d.). China and the Boxers: A short history of the Boxer outbreak, with two chapters on the sufferings of missionaries and a closing one on the outlook. Retrieved from
https://www.loc.gov/item/01030948/ (last accessed: 7 June 2024). - 15Männistö, A., Seker, M., Iosifidis, A., & Raitoharju, J. (2022). Automatic image content extraction: Operationalizing machine learning in humanistic photographic studies of large visual archives. arXiv. Retrieved from
https://arxiv.org/abs/2204.02830 (last accessed: 8 September 2022). - 16Manovich, L. (2020). Cultural analytics. MIT Press. DOI: 10.7551/mitpress/11214.001.0001
- 17Moretti, F. (2013). “Operationalizing”: Or, the function of measurement in modern literary theory. New Left Review, 84.
https://newleftreview.org/issues/ii84/articles/franco-moretti-operationalizing - 18Rameau. (n.d.). Boxers, révolte des (1899–1901). Retrieved from
https://data.bnf.fr/fr/12070712/chine_--_1899-1901__revolte_des_boxeurs_/#linked_rameau_broader (last accessed: 7 June 2024). - 19Schill, P. (2024).
The brutalised bodies of a colonial conquest before the court of global opinion: Photography, media uses, and emotions during the Italo-Turkish war in Tripolitania (1911–1912) . History of Photography. Routledge. (Accepted for publication). - 20Shen, Z., Zhang, R., Dell, M., Lee, B. C. G., Carlson, J., & Li, W. (2021). LayoutParser: A unified toolkit for deep learning based document image analysis. arXiv. Retrieved from
https://arxiv.org/abs/2103.15348 (last accessed: 20 June 2024). DOI: 10.1007/978-3-030-86549-8_9 - 21Wevers, M., & Smits, T. (2020). The visual digital turn: Using neural networks to study historical images. Digital Scholarship in the Humanities, 35(1), 194–207. DOI: 10.1093/llc/fqy085
- 22Zhang, Z., Li, J., Stork, D. G., Mansfield, E., Russell, J., Adams, C., & Wang, J. Z. (2022). Reducing bias in AI-based analysis of visual artworks. IEEE BITS The Information Theory Magazine, 2(1), 36–48. DOI: 10.1109/MBITS.2022.3197102
