Have a personal or library account? Click to login
Multilingual Analysis and Visualization of Bibliographic Metadata and Texts With the AVOBMAT Research Tool Cover

Multilingual Analysis and Visualization of Bibliographic Metadata and Texts With the AVOBMAT Research Tool

Open Access
|Mar 2024

References

  1. 1Blei, D. M., Ng, Y. A., & Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research, 3, 9931022.
  2. 2Covington, M. A., & McFall, J. D. (2010). Cutting the Gordian Knot: the Moving-Average Type-Token Ratio (MATTR). Journal of Quantitative Linguistics, 17(2), 94100. DOI: 10.1080/09296171003643098
  3. 3Jänicke, S., & Scheuermann, G. (2017). On the Visualization of Hierarchical Relations and Tree Structures with TagSpheres. In: Braz, J, et al. (Eds.), Computer Vision, Imaging and Computer Graphics Theory and Applications. Cham: Springer International Publishing. pp. 199219. DOI: 10.1007/978-3-319-64870-5_10
  4. 4Juršic, M, et al. (2010). Lemmagen: Multilingual Lemmatisation with Induced Ripple-down Rules. Journal of Universal Computer Science, 16(9), 11901214.
  5. 5Manning, C. D., Raghavan, P., & Schütze, H. (2009). An Introduction to Information Retrieval. Cambridge: Cambridge University Press. DOI: 10.1017/CBO9780511809071
  6. 6McCarthy, P. M., & Jarvis, S. (2010). MTLD, vocd-D, and HD-D: A Validation Study of Sophisticated Approaches to Lexical Diversity Assessment. Behaviour Research Methods, 42(2), 381392. DOI: 10.3758/BRM.42.2.381
  7. 7Péter, R., Szántó, Zs., Seres, J., Bilicki, V., & Berend, G. (2020). AVOBMAT: a digital toolkit for analysing and visualizing bibliographic metadata and texts. In: G. Berend, G. Gosztolya & V. Vincze (Eds.), XVI. Magyar Számítógépes Nyelvészeti Konferencia. Szeged: Szegedi Tudományegyetem, Informatikai Intézet, pp. 4355.
  8. 8Péter, R., Szántó, Zs., Seres, J., Bilicki, V., & Berend, G. (2022). Az AVOBMAT (Analysis and Visualization of Bibliographic Metadata and Texts) többnyelvű kutatási eszköz bemutatása. Digitális Bölcsészet, 4, 328. DOI: 10.31400/dh-hun.2021.4.3530
  9. 9Rudi, L. C., & Vitányi, P. M. B. (2007). The Google Similarity Distance. IEEE Transactions on Knowledge and Data Engineering, 19(3), 370383. https://arxiv.org/pdf/cs/0412098v3.pdf. DOI: 10.1109/TKDE.2007.48
  10. 10Significant text aggregation. Available at https://www.elastic.co/guide/en/elasticsearch/reference/8.0/search-aggregations-bucket-significanttext-aggregation.html [Last accessed 13 October 2023].
  11. 11SpaCy Models and Languages. Available at https://spacy.io/usage/models [Last accessed 13 October 2023].
  12. 12Torruella, J., & Capsada, R. (2013). Lexical Statistics and Tipological Structures: A Measure of Lexical Richness. Procedia: Social and Behavioral Sciences, 95, 447454. DOI: 10.1016/j.sbspro.2013.10.668
DOI: https://doi.org/10.5334/johd.175 | Journal eISSN: 2059-481X
Language: English
Submitted on: Oct 16, 2023
Accepted on: Dec 18, 2023
Published on: Mar 7, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Róbert Péter, Zsolt Szántó, Zoltán Biacsi, Gábor Berend, Vilmos Bilicki, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.