Have a personal or library account? Click to login
CuneiML: A Cuneiform Dataset for Machine Learning Cover

CuneiML: A Cuneiform Dataset for Machine Learning

Open Access
|Dec 2023

References

  1. 1Assael, Y., Sommerschield, T., Shillingford, B., Bordbar, M., Pavlopoulos, J., Chatzipanagiotou, M., … de Freitas, N. (2022). Restoring and attributing ancient texts using deep neural networks. Nature, 603, 280283. DOI: 10.1038/s41586-022-04448-z
  2. 2Bogacz, B., & Mara, H. (2020). Period Classification of 3D Cuneiform Tablets with Geometric Neural Networks. In 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) (pp. 246251). DOI: 10.1109/ICFHR2020.2020.00053
  3. 3Coquenet, D., Chatelain, C., & Paquet, T. (2023). Dan: a segmentation-free document attention network for handwritten document recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(7), 82278243. DOI: 10.1109/TPAMI.2023.3235826
  4. 4Englund, R. K., Damerow, P., Pagé-Perron, E., Dahl, J. L., Lafont, B., & Renn, J. (2023). Cuneiform Digital Library Initiative. Retrieved 2023-08-22, from https://cdli.mpiwg-berlin.mpg.de/
  5. 5Garí Soler, A., & Apidianaki, M. (2021). Let’s Play Mono-Poly: BERT Can Reveal Words’ Polysemy Level and Partitionability into Senses. Transactions of the Association for Computational Linguistics, 9, 825844. DOI: 10.1162/tacl_a_00400
  6. 6Gordin, S., Gutherz, G., Elazary, A., Romach, A., Jiménez, E., Berant, J., & Cohen, Y. (2020). Reading Akkadian cuneiform using natural language processing. PLOS ONE, 15(10), e0240511. DOI: 10.1371/journal.pone.0240511
  7. 7Gutherz, G., Gordin, S., Sáenz, L., Levy, O., & Berant, J. (2023). Translating Akkadian to English with neural machine translation. PNAS Nexus, 2(5), pgad096. DOI: 10.1093/pnasnexus/pgad096
  8. 8Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2017). Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 11251134). DOI: 10.1109/CVPR.2017.632
  9. 9Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., … Girshick, R. (2023). Segment anything. arXiv preprint arXiv:2304.02643. DOI: 10.48550/arXiv.2304.02643
  10. 10Lazar, K., Saret, B., Yehudai, A., Horowitz, W., Wasserman, N., & Stanovsky, G. (2021). Filling the Gaps in Ancient Akkadian Texts: A Masked Language Modelling Approach. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (pp. 46824691). Online and Punta Cana, Dominican Republic: Association for Computational Linguistics. DOI: 10.18653/v1/2021.emnlp-main.384
  11. 11Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022). High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 1068410695). DOI: 10.1109/CVPR52688.2022.01042
DOI: https://doi.org/10.5334/johd.151 | Journal eISSN: 2059-481X
Language: English
Submitted on: Sep 2, 2023
Accepted on: Oct 17, 2023
Published on: Dec 6, 2023
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Danlu Chen, Aditi Agarwal, Taylor Berg-Kirkpatrick, Jacobo Myerston, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.