References
- 1Colavizza, G., & Romanello, M. (2017, November). Annotated References in the Historiography on Venice: 19th–21st centuries. Journal of Open Humanities Data, 3, 2. DOI: 10.5334/johd.9
- 2Colavizza, G., & Romanello, M. (2019). Citation Mining of Humanities Journals: The Progress to Date and the Challenges Ahead. Journal of European Periodical Studies, 4. DOI: 10.21825/jeps.v4i1.10120
- 3Ehrmann, M., Hamdi, A., Pontes, E. L., Romanello, M., & Doucet, A. (2023, June). Named Entity Recognition and Classification in Historical Documents: A Survey. ACM Computing Surveys. DOI: 10.1145/3604931
- 4Ehrmann, M., Romanello, M., Najem-Meyer, S., Doucet, A., & Clematide, S. (2022). Extended overview of HIPE-2022: Named Entity Recognition and Linking in Multilingual Historical Documents. In G. Faggioli, N. Ferro, A. Hanbury & M. Potthast (Eds.), Proceedings of the Working Notes of CLEF 2022 – Conference and Labs of the Evaluation Forum (Vol. 3180).
CEUR-WS . DOI: 10.1007/978-3-031-13643-6_26 - 5Hamacher, M., & Zesch, T. (2022, September). INCEpTALYTICS – An easy-to-use API for analyzing INCEpTION annotation projects. Retrieved from
https://github.com/catalpa-cl/inceptalytics . DOI: 10.5281/zenodo.5654690 - 6Klie, J.-C., Bugert, M., Boullosa, B., de Castilho, R. E., & Gurevych, I. (2018). The inception platform: Machine-assisted and knowledge-oriented interactive annotation. In Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations (pp. 5–9). Retrieved from
https://aclanthology.org/C18-2002 - 7Romanello, M., & Najem-Meyer, S. (2022, March). Guidelines for the annotation of named entities in the domain of classics [Documentation]. DOI: 10.5281/zenodo.6368101
- 8Romanello, M., Najem-Meyer, S., & Robertson, B. (2021, September).
Optical Character Recognition of 19th Century Classical Commentaries: The Current State of Affairs . In The 6th International Workshop on Historical Document Imaging and Processing (HIP ’21). Lausanne: Association for Computing Machinery. DOI: 10.1145/3476887.3476911 - 9Schweter, S., März, L., Schmid, K., & Çano, E. (2022, September). hmBERT: Historical Multilingual Language Models for Named Entity Recognition. In G. Faggioli, N. Ferro, A. Hanbury & M. Potthast (Eds.), Proceedings of the Working Notes of CLEF 2022 – Conference and Labs of the Evaluation Forum (Vol. 3180, pp. 1109–1129). Bologna, Italy:
CEUR . Retrieved fromhttps://ceur-ws.org/Vol-3180/paper-87.pdf
