References
- 1Alkemade, H., Claeyssens, S., Colavizza, G., Freire, N., Irollo, A., Lehmann, J., Neudecker, C., Osti, G., & van Strien, D. (2023). Datasheets for Digital Cultural Heritage Datasets. Version 1. (last accessed: October 4th, 2023). DOI: 10.5281/ZENODO.8375033
- 2Apte, P. (2017, September 27). The Data Scientist Putting Ethics Into AI. (last accessed: October 4th, 2023).
https://web.archive.org/web/20170930075045/http://www.ozy.com/rising-stars/rumman-chowdhury-the-human-centric-thinker/81044 - 3Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115. DOI: 10.1016/j.inffus.2019.12.012
- 4Beals, M., & Bell, E. (2020). The Atlas of Digitised Newspapers and Metadata: Reports from Oceanic Exchanges. (last accessed: October 4th, 2023). DOI: 10.6084/M9.FIGSHARE.11560059
- 5Beelen, K., Lawrence, J., Wilson, D. C. S., & Beavan, D. (2023). Bias and representativeness in digitized newspaper collections: Introducing the environmental scan. Digital Scholarship in the Humanities, 38(1), 1–22. DOI: 10.1093/llc/fqac037
- 6Brate, R., Nesterov, A., Vogelmann, V., van Ossenbruggen, J., Hollink, L., & van Erp, M. (2021). Capturing Contentiousness: Constructing the Contentious Terms in Context Corpus. Proceedings of the 11th on Knowledge Capture Conference, 17–24. DOI: 10.1145/3460210.3493553
- 7British Library, Morris, V., van Strien, D., Tolfo, G., Afric, L., Robertson, S., Tiney, P., Dogterom, A., & Wollner, I. (2021). 19th Century Books—Metadata with additional crowdsourced annotations. (last accessed: October 4th, 2023). DOI: 10.23636/BKHQ-0312
- 8Candela, G., Gabriëls, N., Chambers, S., Pham, T.-A., Ames, S., Fitzgerald, N., Hofmann, K., Harbo, V., Potter, A., Ferriter, M., Manchester, E., Irollo, A., Van Keer, E., Mahey, M., Holownia, O., & Dobreva, M. (2023). A Checklist to Publish Collections as Data in GLAM Institutions. (last accessed: October 4th, 2023). DOI: 10.48550/ARXIV.2304.02603
- 9Conway, P. (2015). Digital transformations and the archival nature of surrogates. Archival Science, 15(1), 51–69. DOI: 10.1007/s10502-014-9219-z
- 10Corrado, E. M., & Moulaison Sandy, H. L. (2017). Digital preservation for libraries, archives, and museums (Second Edition). Rowman & Littlefield.
- 11Devaraju, A., Huber, R., Mokrane, M., Herterich, P., Cepinskas, L., de Vries, J., L’Hours, H., Davidson, J., & White, A. (2020). FAIRsFAIR Data Object Assessment Metrics. (last accessed: October 4th, 2023). DOI: 10.5281/ZENODO.4081213
- 12Edmond, J., & Lehmann, J. (2021). Digital humanities, knowledge complexity, and the five ‘aporias’ of digital research. Digital Scholarship in the Humanities, 36(Supplement_2), ii95–ii108. DOI: 10.1093/llc/fqab031
- 13Fiorucci, M., Khoroshiltseva, M., Pontil, M., Traviglia, A., Del Bue, A., & James, S. (2020). Machine Learning for Cultural Heritage: A Survey. Pattern Recognition Letters, 133, 102–108. DOI: 10.1016/j.patrec.2020.02.017
- 14Gebru, T., Morgenstern, J., Vecchione, B., Vaughan, J. W., Wallach, H., Daumé III, H., & Crawford, K. (2021). Datasheets for Datasets. Communications of the ACM, 64(12), 86–92. DOI: 10.1145/3458723
- 15Holstein, K., Wortman Vaughan, J., Daumé, H., Dudik, M., & Wallach, H. (2019). Improving Fairness in Machine Learning Systems: What Do Industry Practitioners Need? Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 1–16. DOI: 10.1145/3290605.3300830
- 16Hubbard, D. W. (2010). How to measure anything: Finding the value of ‘intangibles’ in business (Second Edition). Hoboken, NJ: Wiley. DOI: 10.1002/9781118983836
- 17Jo, E. S., & Gebru, T. (2020). Lessons from archives: Strategies for collecting sociocultural data in machine learning. Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, 306–316. DOI: 10.1145/3351095.3372829
- 18Kapoor, S., & Narayanan, A. (2022). Leakage and the Reproducibility Crisis in ML-based Science. (arXiv:2207.07048). (last accessed: October 4th, 2023). DOI: 10.48550/ARXIV.2207.07048; 10.1016/j.patter.2023.100804
- 19Kirk, H. R., Birhane, A., Vidgen, B., & Derczynski, L. (2022). Handling and Presenting Harmful Text in NLP Research. (arXiv:2204.14256). (last accessed: October 4th, 2023). DOI: 10.48550/ARXIV.2204.14256; 10.18653/v1/2022.findings-emnlp.35
- 20Lee, B. C. G. (2023). The “Collections as ML Data” Checklist for Machine Learning & Cultural Heritage. Journal of the Association for Information Science and Technology, 1–22. DOI: 10.1002/asi.24765
- 21Library of Congress. (2019, December). Encoded Archival Description Tag Library Version EAD3 1.1.1. (last accessed: October 4th, 2023).
https://www.loc.gov/ead/EAD3taglib/EAD3.html - 22Luthra, M., Todorov, K., Jeurgens, C., & Colavizza, G. (2022a). Unsilencing Colonial Archives via Automated Entity Recognition (arXiv:2210.02194). (last accessed: October 4th, 2023). DOI: 10.48550/ARXIV.2210.02194
- 23Luthra, M., Todorov, K., Wissen, L. van, Jeurgens, C., & Colavizza, G. (2022b). Unsilencing Colonial Archives via Automated Entity Recognition. (last accessed: October 4th, 2023). DOI: 10.5281/zenodo.7129316; 10.1108/JD-02-2022-0038
- 24O’Neil, L. (2023, August 12). These Women Tried to Warn Us About AI. Rolling Stone. (last accessed: October 4th, 2023). Retrieved from
https://www.rollingstone.com/culture/culture-features/women-warnings-ai-danger-risk-before-chatgpt-1234804367/ - 25Padilla, T. (2019). Responsible Operations: Data Science, Machine Learning, and AI in Libraries. Dublin, OH: OCLC Research. DOI: 10.25333/XK7Z-9G97
- 26Padilla, T., Allen, L., Frost, H., Potvin, S., Roke, E., & Varner, S. (2022). Always Already Computational: Collections as Data. (last accessed: October 4th, 2023). DOI: 10.17605/OSF.IO/MX6UK; 10.1108/JD-02-2022-0038
- 27Porter, T. M. (1996). Trust in Numbers. The Pursuit of Objectivity in Science and Public Life. Princeton: Princeton University Press. DOI: 10.1515/9780691210544
- 28Pushkarna, M., Zaldivar, A., & Kjartansson, O. (2022). Data Cards: Purposeful and Transparent Dataset Documentation for Responsible AI. 2022 ACM Conference on Fairness, Accountability, and Transparency, 1776–1826. DOI: 10.1145/3531146.3533231
- 29Rakova, B., Yang, J., Cramer, H., & Chowdhury, R. (2021). Where Responsible AI meets Reality: Practitioner Perspectives on Enablers for Shifting Organizational Practices. Proceedings of the ACM on Human-Computer Interaction, 5(CSCW1), 7: 1–7. 23. DOI: 10.1145/3449081
- 30Reshetnikov, A., Marinescu, M.-C., & Lopez, J. M. (2022). DEArt: Dataset of European Art (arXiv:2211.01226). (last accessed: October 4th, 2023). DOI: 10.48550/arXiv.2211.01226
- 31Scheuerman, M. K., Hanna, A., & Denton, E. (2021). Do Datasets Have Politics? Disciplinary Values in Computer Vision Dataset Development. Proceedings of the ACM on Human-Computer Interaction, 5(CSCW2), 1–37. DOI: 10.1145/3476058
- 32Singh, A. (2019). Beyond the Archive Gap: The Kiplings and the Famines of British Colonial India. South Asian Review, 40(3), 237–251. DOI: 10.1080/02759527.2019.1599562
- 33UNESCO. (2003, March). UNESCO Charter on the Preservation of the Digital Heritage—UNESCO Digital Library. (last accessed: October 4th, 2023). Retrieved from
https://unesdoc.unesco.org/ark:/48223/pf0000229034.locale=en . DOI: 10.1007/978-3-031-25056-9_15 - 34Urton, G. (1997). The Social Life of Numbers. A Quechua Ontology of Numbers and Philosophy of Arithmetic (First Edition). Austin: University of Texas Press.
- 35Van Erp, J. A. A., Langen, C. D., Boon, A., & Van Bochove, K. (2018). Testing the FAIR metrics on data catalogs. PeerJ Preprints, 6,
e27151v2 . DOI: 10.7287/peerj.preprints.27151v2 - 36Wevers, M. (2022). Fotopersbureau De Boer Training Set on Scene Detection (0.2). (last accessed: October 4th, 2023). DOI: 10.5281/zenodo.7118409
- 37Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., Da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., … Mons, B. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3(1), 160018. DOI: 10.1038/sdata.2016.18
- 38Wilkinson, M. D., Sansone, S.-A., Schultes, E., Doorn, P., Bonino Da Silva Santos, L. O., & Dumontier, M. (2018). A design framework and exemplar metrics for FAIRness. Scientific Data, 5(1), 180118. DOI: 10.1038/sdata.2018.118
