References
- Abrahamse, E., Braem, S., Notebaert, W., & Verguts, T. (2016). Grounding cognitive control in associative learning. Psychological Bulletin, 142, 693–728. DOI: 10.1037/bul0000047
- Akçay, C., & Hazeltine, E. (2007). Conflict monitoring and feature overlap: Two sources of sequential modulations. Psychonomic Bulletin & Review, 14, 742–748. DOI: 10.3758/BF03196831
- Allport, A., Styles, E. A., & Hsieh, S. L. (1994).
Shifting intentional set: Exploring the dynamic control of tasks . In C. Umiltà & M. Moscovitch (Eds.), Attention and Performance XV (15th ed., pp. 421–452). Cambridge, MA: MIT Press. - Allport, A., & Wylie, G. (2000).
“Task-switching,” stimulus-response bindings, and negative priming . In S. Monsell & J. Driver (Eds.), Control of Cognitive Processes: Attention and Performance XVIII (pp. 35–70). Cambridge, MA: MIT Press. - Altmann, E. M. (2004). The preparation effect in task switching: Carryover of SOA. Memory and Cognition, 32, 153–163. DOI: 10.3758/BF03195828
- Altmann, E. M. (2005). Repetition priming in task switching: Do the benefits dissipate? Psychonomic Bulletin & Review, 12, 535–540. DOI: 10.3758/BF03193801
- Altmann, E. M. (2011). Testing probability matching and episodic retrieval accounts of response repetition effects in task switching. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 935–951. DOI: 10.1037/a0022931
- Altmann, E. M., & Gray, W. D. (2008). An integrated model of cognitive control in task switching. Psychological Review, 115, 602–639. DOI: 10.1037/0033-295X.115.3.602
- Anderson, J. R. (2007). How can the human mind occur in the physical universe? New York, NY: Oxford University Press. DOI: 10.1093/acprof:oso/9780195324259.001.0001
- Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. L. (2004). An integrated theory of the mind. Psychological Review, 111, 1036–1060. DOI: 10.1037/0033-295X.111.4.1036
- Arrington, C. M., & Logan, G. D. (2004a). Episodic and semantic components of the compound-stimulus strategy in the explicit task-cuing procedure. Memory & Cognition, 32, 965–978. DOI: 10.3758/BF03196874
- Arrington, C. M., & Logan, G. D. (2004b). The cost of a voluntary task switch. Psychological Science, 15, 610–615. DOI: 10.1111/j.0956-7976.2004.00728.x
- Arrington, C. M., & Logan, G. D. (2005). Voluntary task switching: Chasing the elusive homunculus. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 683–702. DOI: 10.1037/0278-7393.31.4.683
- Arrington, C. M., Logan, G. D., & Schneider, D. W. (2007). Separating cue encoding from target processing in the explicit task-cuing procedure: Are there “true” task switch effects? Journal of Experimental Psychology: Learning, Memory, and Cognition, 33, 484–502. DOI: 10.1037/0278-7393.33.3.484
- Arrington, C. M., Reiman, K. M., & Weaver, S. M. (2015).
Voluntary Task Switching . In J. A. Grange & G. Houghton (Eds.), Task Switching and Cognitive Control (pp. 117–136). New York, NY: Oxford University Press. DOI: 10.1093/acprof:osobl/9780199921959.003.0006 - Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652. DOI: 10.1037/0033-295X.108.3.624
- Braem, S., & Egner, T. (2018). Getting a Grip on Cognitive Flexibility. Current Directions in Psychological Science, 27, 470–476. DOI: 10.1177/0963721418787475
- Brass, M., Liefooghe, B., Braem, S., & De Houwer, J. (2017). Following new task instructions: Evidence for a dissociation between knowing and doing. Neuroscience & Behavioral Reviews, 81, 16–28. DOI: 10.1016/j.neubiorev.2017.02.012
- Brown, G. D. A., Neath, I., & Chater, N. (2007). A temporal ratio model of memory. Psychological Review, 114, 539–576. DOI: 10.1037/0033-295X.114.3.539
- Brown, J. W., Reynolds, J. R., & Braver, T. S. (2007). A computational model of fractionated conflict-control mechanisms in task-switching. Cognitive Psychology, 55, 37–85. DOI: 10.1016/j.cogpsych.2006.09.005
- Cohen-Kdoshay, O., & Meiran, N. (2019). The representation of instructions operates like a prepared reflex: Flanker compatibility effects found in first trial following S-R instructions. Experimental Psychology, 56, 128–133. DOI: 10.1027/1618-3169.56.2.128
- Colzato, L. S., Raffone, A., & Hommel, B. (2006). What do we learn from binding features? Evidence for multilevel feature integration. Journal of Experimental Psychology: Human Perception and Performance, 32, 705–716. DOI: 10.1037/0096-1523.32.3.705
- Dalrymple-Alford, E. C., & Budayr, B. (1966). Examination of some aspects of the Stroop color-word test. Perceptual and Motor Skills, 23, 1211–1214. DOI: 10.2466/pms.1966.23.3f.1211
- Demanet, J., Liefooghe, B., Hartstra, E., Wenke, D., De Houwer, J., & Brass, M. (2016). There is more into “doing” than “knowing”: The function of the right inferior frontal sulcus is specific for implementing versus memorising verbal instructions. Neuroimage, 141, 350–356. DOI: 10.1016/j.neuroimage.2016.07.059
- Driskell, J. E., Copper, C., & Moran, A. (1994). Does mental practice enhance performance? Journal of Applied Psychology, 79, 481–492. DOI: 10.1037/0021-9010.79.4.481
- Druey, M. D. (2014). Stimulus-category and response-repetition effects in task switching: An evaluation of four explanations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40, 125–146. DOI: 10.1037/a0033868
- Druey, M. D., & Hübner, R. (2008). Response inhibition under task switching: Its strength depends on the amount of task-irrelevant response activation. Psychological Research, 72, 515–527. DOI: 10.1007/s00426-007-0127-1
- Egner, T. (2008). Multiple conflict-driven control mechanisms in the human brain. Trends in Cognitive Sciences, 12, 374–380. DOI: 10.1016/j.tics.2008.07.001
- Elchlepp, H., Lavric, A., & Monsell, S. (2015). A change of task prolongs early processes: Evidence from ERPs in lexical tasks. Journal of Experimental Psychology: General, 144, 299–325. DOI: 10.1037/a0038740
- Forrest, C. L. D., Monsell, S., & McLaren, I. P. L. (2014). Is performance in task-cuing experiments mediated by task set selection or associative compound retrieval? Journal of Experimental Psychology: Learning, Memory, and Cognition, 40, 1002–1024. DOI: 10.1037/a0035981
- Forstmann, B. U., Brass, M., & Koch, I. (2007). Methodological and empirical issues when dissociating cue-related from task-related processes in the explicit task-cuing procedure. Psychological Research, 71, 393–400. DOI: 10.1007/s00426-005-0040-4
- Frings, C. (2011). On the decay of distractor-response episodes. Experimental Psychology, 58, 125–131. DOI: 10.1027/1618-3169/a000077
- Frings, C., Koch, I., & Moeller, B. (2017). How the mind shapes action: Offline contexts modulate involuntary episodic retrieval. Attention, Perception, and Psychophysics, 79, 2249–2459. DOI: 10.3758/s13414-017-1406-6
- Frings, C., Rothermund, K., & Wentura, D. (2007). Distractor repetitions retrieve previous responses to targets. Quarterly Journal of Experimental Psychology, 60, 1367–1377. DOI: 10.1080/17470210600955645
- Gerstner, W., & Kistler, W. M. (2002). Mathematical formulations of Hebbian learning. Biological Cybernetics, 87, 404–415. DOI: 10.1007/s00422-002-0353-y
- Giesen, C., & Rothermund, K. (2014). Distractor repetitions retrieve previous responses and previous targets: Experimental dissociations of distractor-response and distractor-target bindings. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40, 645–659. DOI: 10.1037/a0035278
- Gilbert, S. J., & Shallice, T. (2002). Task switching: A PDP model. Cognitive Psychology, 44, 297–337. DOI: 10.1006/cogp.2001.0770
- Goschke, T. (2000).
Intentional reconfiguration and involuntary persistence in task set switching . In S. Monsell & J. Driver (Eds.), Control of Cognitive Processes: Attention and Performance XVIII (pp. 331–355). Cambridge, MA: MIT Press. - Grange, J. A., Kowalczyk, A. W., & O’Loughlin, R. (2017). The effect of episodic retrieval on inhibition in task switching. Journal of Experimental Psychology: Human Perception and Performance, 43, 1568–1583. DOI: 10.1037/xhp0000411
- Haazebroek, P., Raffone, A., & Hommel, B. (2017). HiTEC: A connectionist model of the interaction between perception and action planning. Psychological Research, 81, 1085–1109. DOI: 10.1007/s00426-016-0803-0
- Haazebroek, P., van Dantzig, S., & Hommel, B. (2011). A computational model of perception and action for cognitive robotics. Cognitive Processing, 12, 355–365. DOI: 10.1007/s10339-011-0408-x
- Hazeltine, E., & Mordkoff, J. T. (2014). Resolved but not forgotten: Stroop conflict dredges up the past. Frontiers in Psychology, 5,
Article 1327 . DOI: 10.3389/fpsyg.2014.01327 - Heathcote, A., Brown, S., & Mewhort, D. J. K. (2000). The power law repealed: The case for an exponential law of practice. Psychonomic Bulletin & Review, 7, 185–207. DOI: 10.3758/BF03212979
- Hintzman, D. L. (1984). Minerva 2: A simulation model of human memory. Behavior Research Methods Instruments & Computers, 16, 96–101. DOI: 10.3758/BF03202365
- Hintzman, D. L. (1986). “Schema abstraction” in a multiple-trace memory model. Psychological Review, 93, 411–428. DOI: 10.1037/0033-295X.93.4.411
- Hintzman, D. L. (1988). Judgments of frequency and recognition memory in a multiple-trace memory model. Psychological Review, 95, 528–551. DOI: 10.1037/0033-295X.95.4.528
- Hommel, B. (1998). Event files: Evidence for automatic integration of stimulus-response episodes. Visual Cognition, 5, 183–216. DOI: 10.1080/713756773
- Hommel, B., & Eglau, B. (2002). Control of stimulus-response translation in dual-task performance. Psychological Research, 66, 260–273. DOI: 10.1007/s00426-002-0100-y
- Hommel, B., Proctor, R. W., & Vu, K. P. L. (2004). A feature-integration account of sequential effects in the Simon task. Psychological Research, 68, 1–17. DOI: 10.1007/s00426-003-0132-y
- Honey, R. C., & Ward-Robinson, J. (2002). Acquired equivalence and distinctiveness of cues: I. Exploring a neural network approach. Journal of Experimental Psychology: Animal Behavior Processes, 28, 378–387. DOI: 10.1037/0097-7403.28.4.378
- Horner, A. J., & Henson, R. N. (2011). Stimulus-response bindings code both abstract and specific representations of stimuli: Evidence from a classification priming design that reverses multiple levels of response representation. Memory & Cognition, 39, 1457–1471. DOI: 10.3758/s13421-011-0118-8
- Horoufchin, H., Philipp, A. M., & Koch, I. (2011a). Temporal distinctiveness and repetition benefits in task switching: Disentangling stimulus-related and response-related contributions. Quarterly Journal of Experimental Psychology, 64, 434–446. DOI: 10.1080/17470218.2010.496857
- Horoufchin, H., Philipp, A. M., & Koch, I. (2011b). The dissipating task-repetition benefit in cued task switching: Task-set decay or temporal distinctiveness? Journal of Experimental Psychology: Human Perception and Performance, 37, 455–472. DOI: 10.1037/a0020557
- Hübner, R., & Druey, M. D. (2006). Response execution, selection, or activation: What is sufficient for response-related repetition effects under task shifting? Psychological Research, 70, 245–261. DOI: 10.1007/s00426-005-0219-8
- Hübner, R., & Druey, M. D. (2008). Multiple response codes play specific roles in response selection and inhibition under task switching. Psychological Research, 72, 415–424. DOI: 10.1007/s00426-007-0118-2
- Hughes, S., De Houwer, J., & Perugini, M. (2016). Expanding the boundaries of evaluative learning research: How intersecting regularities shape our likes and dislikes. Journal of Experimental Psychology: General, 145, 731–754. DOI: 10.1037/xge0000100
- Jeannerod, M. (2001). Neural simulation of action: A unifying mechanism for motor cognition. Neuroimage, 14, S103–S109. DOI: 10.1006/nimg.2001.0832
- Jeannerod, M., & Frak, V. (1999). Mental imaging of motor activity in humans. Current Opinion in Neurobiology, 9, 735–739. DOI: 10.1016/S0959-4388(99)00038-0
- Jersild, A. T. (1927). Mental set and shift. Archives of Psychology, 14, 81.
- Jost, K., De Baene, W., Koch, I., & Brass, M. (2013). A review of the role of cue processing in task switching. Zeitschrift Für Psychologie, 221, 5–14. DOI: 10.1027/2151-2604/a000125
- Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M., & Koch, I. (2010). Control and interference in task switching: A review. Psychological Bulletin, 136, 849–874. DOI: 10.1037/a0019842
- Kiesel, A., Wendt, M., & Peters, A. (2007). Task switching: On the origin of response congruency effects. Psychological Research, 71, 117–125. DOI: 10.1007/s00426-005-0004-8
- Kleinsorge, T. (1999). Response repetition benefits and costs. Acta Psychologica, 103, 295–310. DOI: 10.1016/S0001-6918(99)00047-5
- Kleinsorge, T., & Heuer, H. (1999). Hierarchical switching in a multi-dimensional task space. Psychological Research, 62, 300–312. DOI: 10.1007/s004260050060
- Kleinsorge, T., Heuer, H., & Schmidtke, V. (2004). Assembling a task space: Global determination of local shift costs. Psychological Research, 68, 31–40. DOI: 10.1007/s00426-003-0134-9
- Koch, I. (2001). Automatic and intentional activation of task sets. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 1474–1486. DOI: 10.1037/0278-7393.27.6.1474
- Koch, I., & Allport, A. (2006). Cue-based and stimulus-based priming of tasks in task switching. Memory & Cognition, 34, 433–444. DOI: 10.3758/BF03193420
- Koch, I., Frings, C., & Schuch, S. (2018). Explaining response-repetition effects in task switching: Evidence from switching cue modality suggests episodic binding and response inhibition. Psychological Research, 82, 570–579. DOI: 10.1007/s00426-017-0847-9
- Koch, I., Gade, M., & Philipp, A. M. (2004). Inhibition of response mode in task switching. Experimental Psychology, 51, 52–58. DOI: 10.1027/1618-3169.51.1.52
- Koch, I., Gade, M., Schuch, S., & Philipp, A. M. (2010). The role of inhibition in task switching: A review. Psychonomic Bulletin and Review, 17, 1–14. DOI: 10.3758/PBR.17.1.1
- Koch, I., Poljac, E., Müller, H., & Kiesel, A. (2018). Cognitive structure, flexibility, and plasticity in human multitasking-an integrative review of dual-task and task-switching research. Psychological Bulletin, 144, 557–583. DOI: 10.1037/bul0000144
- Lavric, A., Mizon, G. A., & Monsell, S. (2008). Neurophysiological signature of effective anticipatory task-set control: A task-switching investigation. European Journal of Neuroscience, 28, 1016–1029. DOI: 10.1111/j.1460-9568.2008.06372.x
- Lewicki, P. (1985). Nonconscious biasing effects of single instances on subsequent judgments. Journal of Personality and Social Psychology, 48, 563–574. DOI: 10.1037/0022-3514.48.3.563
- Liefooghe, B., Hughes, S., Schmidt, J. R., & De Houwer, J. (2020). Stroop-like effects for derived stimulus-stimulus relations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 327–349. DOI: 10.1037/xlm0000724
- Lien, M. C., Schweickert, R., & Proctor, R. W. (2003). Task switching and response correspondence in the psychological refractory period paradigm. Journal of Experimental Psychology: Human Perception and Performance, 29, 692–712. DOI: 10.1037/0096-1523.29.3.692
- Lin, O. Y.-H., & MacLeod, C. M. (2018). The acquisition of simple associations as observed in color-word contingency learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44, 99–106. DOI: 10.1037/xlm0000436
- Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95, 492–527. DOI: 10.1037/0033-295X.95.4.492
- Logan, G. D., & Bundesen, C. (2003). Clever homunculus: Is there an endogenous act of control in the explicit task-cuing procedure? Journal of Experimental Psychology: Human Perception and Performance, 29, 575–599. DOI: 10.1037/0096-1523.29.3.575
- Logan, G. D., & Bundesen, C. (2004). Very clever homunculus: Compound stimulus strategies for the explicit task-cuing procedure. Psychonomic Bulletin & Review, 11, 832–840. DOI: 10.3758/BF03196709
- Logan, G. D., & Gordon, R. D. (2001). Executive control of visual attention in dual-task situations. Psychological Review, 108, 393–434. DOI: 10.1037/0033-295X.108.2.393
- Logan, G. D., & Schneider, D. W. (2006a). Interpreting instructional cues in task switching procedures: The role of mediator retrieval. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 347–363. DOI: 10.1037/0278-7393.32.3.347
- Logan, G. D., & Schneider, D. W. (2006b). Priming or executive control? Associative priming of cue encoding increases “switch costs” in the explicit task-cuing procedure. Memory & Cognition, 34, 1250–1259. DOI: 10.3758/BF03193269
- Logan, G. D., Schneider, D. W., & Bundesen, C. (2007). Still clever after all these years: Searching for the homunculus in explicitly cued task switching. Journal of Experimental Psychology: Human Perception and Performance, 33, 978–994. DOI: 10.1037/0096-1523.33.4.978
- Longman, C. S., Lavric, A., Munteanu, C., & Monsell, S. (2014). Attentional inertia and delayed orienting of spatial attention in task-switching. Journal of Experimental Psychology: Human Perception and Performance, 40, 1580–1602. DOI: 10.1037/a0036552
- Longman, C. S., Milton, F., Wills, A. J., & Verbruggen, F. (2018). Transfer of learned category-response associations is modulated by instruction. Acta Psychologica, 184, 144–167. DOI: 10.1016/j.actpsy.2017.04.004
- Martiny-Huenger, T., Martiny, S. E., Parks-Stamm, E. J., Pfeiffer, E., & Gollwitzer, P. M. (2017). From conscious thought to automatic action: A simulation account of action planning. Journal of Experimental Psychology: General, 146, 1513–1525. DOI: 10.1037/xge0000344
- Mayr, U., Awh, E., & Laurey, P. (2003). Conflict adaptation effects in the absence of executive control. Nature Neuroscience, 6, 450–452. DOI: 10.1038/nn1051
- Mayr, U., & Keele, S. W. (2000). Changing internal constraints on action: The role of backward inhibition. Journal of Experimental Psychology: General, 129, 4–26. DOI: 10.1037/0096-3445.129.1.4
- Mayr, U., & Kliegl, R. (2000). Task-set switching and long-term memory retrieval. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 1124–1140. DOI: 10.1037/0278-7393.26.5.1124
- Mayr, U., & Kliegl, R. (2003). Differential effects of cue changes and task changes on task-set selection costs. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 362–372. DOI: 10.1037/0278-7393.29.3.362
- Mayr, U., Kuhns, D., & Rieter, M. (2013). Eye movements reveal dynamics of task control. Journal of Experimental Psychology: General, 142, 489–509. DOI: 10.1037/a0029353
- Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning. Psychological Review, 85, 207–238. DOI: 10.1037/0033-295X.85.3.207
- Meier, C., Lea, S. E. G., & McLaren, I. P. L. (2016). Task-switching in pigeons: Associative learning or executive control? Journal of Experimental Psychology: Animal Learning and Cognition, 42, 163–176. DOI: 10.1037/xan0000100
- Meiran, N. (1996). Reconfiguration of processing mode prior to task performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 1423–1442. DOI: 10.1037/0278-7393.22.6.1423
- Meiran, N. (2000). Modeling cognitive control in task switching. Psychological Research, 63, 234–249. DOI: 10.1007/s004269900004
- Meiran, N., Chorev, Z., & Sapir, A. (2000). Component processes in task switching. Cognitive Psychology, 41, 211–253. DOI: 10.1006/cogp.2000.0736
- Meiran, N., Cole, M. W., & Braver, T. S. (2012). When planning results in loss of control: Intention-based reflexivity and proactive control. Frontiers in Human Neuroscience, 6,
Article 104 . DOI: 10.3389/fnhum.2012.00104 - Meiran, N., & Kessler, Y. (2008). The task rule congruency effect in task switching reflects activated long-term memory. Journal of Experimental Psychology: Human Perception and Performance, 34, 137–157. DOI: 10.1037/0096-1523.34.1.137
- Meiran, N., Kessler, Y., & Adi-Japha, E. (2008). Control by action representation and input selection (CARIS): A theoretical framework for task switching. Psychological Research, 72, 473–500. DOI: 10.1007/s00426-008-0136-8
- Moeller, B., & Frings, C. (2017). Dissociation of binding and learning processes. Attention, Perception, & Psychophysics, 79, 2590–2605. DOI: 10.3758/s13414-017-1393-7
- Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7, 134–140. DOI: 10.1016/S1364-6613(03)00028-7
- Monsell, S., & Mizon, G. A. (2006). Can the task-cuing paradigm measure an endogenous task-set reconfiguration process? Journal of Experimental Psychology: Human Perception and Performance, 32, 493–516. DOI: 10.1037/0096-1523.32.3.493
- Monsell, S., Sumner, P., & Waters, H. (2003). Task-set reconfiguration with predictable and unpredictable task switches. Memory and Cognition, 31, 327–342. DOI: 10.3758/BF03194391
- Mordkoff, J. T. (2012). Observation: Three reasons to avoid having half of the trials be congruent in a four-alternative forced-choice experiment on sequential modulation. Psychonomic Bulletin & Review, 19, 750–757. DOI: 10.3758/s13423-012-0257-3
- Moutsopoulou, K., Yang, Q., Desantis, A., & Waszak, F. (2015). Stimulus-classification and stimulus-action associations: Effects of repetition learning and durability. Quarterly Journal of Experimental Psychology, 68, 1744–1757. DOI: 10.1080/17470218.2014.984232
- Myung, I. J., Kim, C., & Pitt, M. A. (2000). Toward an explanation of the power law artifact: Insights from response surface analysis. Memory & Cognition, 28, 832–840. DOI: 10.3758/BF03198418
- Nadel, L., & Moscovitch, M. (1997). Memory consolidation, retrograde amnesia and the hippocampal complex. Current Opinion in Neurobiology, 7, 217–227. DOI: 10.1016/S0959-4388(97)80010-4
- Neill, W. T. (1997). Episodic retrieval in negative priming and repetition priming. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 1291–1305. DOI: 10.1037/0278-7393.23.6.1291
- Newell, A., & Rosenbloom, P. S. (1981).
Mechanisms of skill acquisition and the law of practice . In J. R. Anderson (Ed.), Cognitive skills and their acquisition (pp. 1–55). Hillsdale, NJ: Erlbaum. - Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19, 1–32. DOI: 10.1016/0010-0285(87)90002-8
- Norman, D. A., & Shallice, T. (1986).
Attention to action: Willed and automatic control of behaviour . In R. J. Davidson, G. E. Schwartz & D. Shapiro (Eds.), Consciousness and Self-Regulation: Advances in Research and Theory (pp. 1–18). New York: Plenum Press. DOI: 10.1007/978-1-4757-0629-1_1 - Nosofsky, R. M. (1988a). Exemplar-based accounts of relations between classification, recognition, and typicality. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14, 700–708. DOI: 10.1037/0278-7393.14.4.700
- Nosofsky, R. M. (1988b). Similarity, frequency, and category representations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14, 54–65. DOI: 10.1037/0278-7393.14.1.54
- Nosofsky, R. M., Little, D. R., Donkin, C., & Fific, M. (2011). Short-term memory scanning viewed as exemplar-based categorization. Psychological Review, 118, 280–315. DOI: 10.1037/a0022494
- Nosofsky, R. M., & Palmeri, T. J. (1997). An exemplar-based random walk model of speeded classification. Psychological Review, 104, 266–300. DOI: 10.1037/0033-295X.104.2.266
- Notebaert, W., & Soetens, E. (2003). The influence of irrelevant stimulus changes on stimulus and response repetition effects. Acta Psychologica, 112, 143–156. DOI: 10.1016/S0001-6918(02)00080-X
- Oberauer, K., & Lewandowsky, S. (2008). Forgetting in immediate serial recall: Decay, temporal distinctiveness, or interference? Psychological Review, 115, 544–576. DOI: 10.1037/0033-295X.115.3.544
- O’Shea, H., & Moran, A. (2017). Does motor simulation theory explain the cognitive mechanisms underlying motor imagery? A critical review. Frontiers in Human Neuroscience, 11. DOI: 10.3389/fnhum.2017.00072
- Pfeuffer, C. U., Moutsopoulou, K., Pfister, R., Waszak, F., & Kiesel, A. (2017). The power of words: On item-specific stimulus-response associations formed in the absence of action. Journal of Experimental Psychology: Human Perception and Performance, 43, 328–347. DOI: 10.1037/xhp0000317
- Rabbitt, P. (1997).
Introduction: Methodologies and models in the study of executive function . In P. Rabbitt (Ed.), Methodology of frontal and executive function (pp. 1–38). East Sussex, UK: Psychology Press Publishers. - Ramamoorthy, A., & Verguts, T. (2012). Word and deed: A computational model of instruction following. Brain Research, 1439, 54–65. DOI: 10.1016/j.brainres.2011.12.025
- Risko, E. F., Blais, C., Stolz, J. A., & Besner, D. (2008). Nonstrategic contributions to putatively strategic effects in selective attention tasks. Journal of Experimental Psychology: Human Perception and Performance, 34, 1044–1052. DOI: 10.1037/0096-1523.34.4.1044
- Roberts, S., & Pashler, H. (2000). How persuasive is a good fit? A comment on theory testing. Psychological Review, 107, 358–367. DOI: 10.1037/0033-295X.107.2.358
- Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124, 207–231. DOI: 10.1037/0096-3445.124.2.207
- Rothermund, K., Wentura, D., & De Houwer, J. (2005). Retrieval of incidental stimulus-response associations as a source of negative priming. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 482–495. DOI: 10.1037/0278-7393.31.3.482
- Rubinstein, J. S., Meyer, D. E., & Evans, J. E. (2001). Executive control of cognitive processes in task switching. Journal of Experimental Psychology: Human Perception and Performance, 27, 763–797. DOI: 10.1037/0096-1523.27.4.763
- Ruge, H., & Wolfensteller, U. (2010). Rapid formation of pragmatic rule representations in the human brain during instruction-based learning. Cerebral Cortex, 20, 1656–1667. DOI: 10.1093/cercor/bhp228
- Schmidt, J. R. (2013a). Temporal learning and list-level proportion congruency: Conflict adaptation or learning when to respond? Plos One, 8,
e0082320 . DOI: 10.1371/journal.pone.0082320 - Schmidt, J. R. (2013b). The Parallel Episodic Processing (PEP) model: Dissociating contingency and conflict adaptation in the item-specific proportion congruent paradigm. Acta Psychologica, 142, 119–126. DOI: 10.1016/j.actpsy.2012.11.004
- Schmidt, J. R. (2016a). Context-specific proportion congruent effects: An episodic learning account and computational model. Frontiers in Psychology, 7,
Article 1806 . DOI: 10.3389/fpsyg.2016.01806 - Schmidt, J. R. (2016b). Proportion congruency and practice: A contingency learning account of asymmetric list shifting effects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42, 1496–1505. DOI: 10.1037/xlm0000254
- Schmidt, J. R. (2018). Best not to bet on the horserace: A comment on Forrin and MacLeod (2017) and a relevant stimulus-response compatibility view of colour-word contingency learning asymmetries. Memory & Cognition, 46, 326–335. DOI: 10.3758/s13421-0170755-7
- Schmidt, J. R., & De Houwer, J. (2011). Now you see it, now you don’t: Controlling for contingencies and stimulus repetitions eliminates the Gratton effect. Acta Psychologica, 138, 176–186. DOI: 10.1016/j.actpsy.2011.06.002
- Schmidt, J. R., & De Houwer, J. (2016b). Time course of colour-word contingency learning: Practice curves, pre-exposure benefits, unlearning, and relearning. Learning and Motivation, 56, 15–30. DOI: 10.1016/j.lmot.2016.09.002
- Schmidt, J. R., De Houwer, J., & Rothermund, K. (2016). The Parallel Episodic Processing (PEP) Model 2.0: A single computational model of stimulus-response binding, contingency learning, power curves, and mixing costs. Cognitive Psychology, 91, 82–108. DOI: 10.1016/j.cogpsych.2016.10.004
- Schmidt, J. R., De Schryver, M., & Weissman, D. H. (2014). Removing the influence of feature repetitions on the congruency sequence effect: Why regressing out confounds from a nested design will often fall short. Journal of Experimental Psychology: Human Perception and Performance, 40, 2392–2402. DOI: 10.1037/a0038073
- Schmidt, J. R., & Liefooghe, B. (2016). Feature integration and task switching: Diminished switch costs after controlling for stimulus, response, and cue repetitions. Plos One, 11,
e0151188 . DOI: 10.1371/journal.pone.0151188 - Schmidt, J. R., & Weissman, D. H. (2016). Congruency sequence effects and previous response times: Conflict adaptation or temporal learning? Psychological Research, 80, 590–607. DOI: 10.1007/s00426-015-0681-x
- Schneider, D. W. (2015). Isolating a mediated route for response congruency effects in task switching. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41, 235–245. DOI: 10.1037/xlm0000049
- Schneider, D. W. (2016). Investigating a method for reducing residual switch costs in cued task switching. Memory & Cognition, 44, 762–777. DOI: 10.3758/s13421-016-0590-2
- Schneider, D. W., & Logan, G. D. (2005). Modeling task switching without switching tasks: A short-term priming account of explicitly cued performance. Journal of Experimental Psychology: General, 134, 343–367. DOI: 10.1037/0096-3445.134.3.343
- Schneider, D. W., & Logan, G. D. (2007). Task switching versus cue switching: Using transition cuing to disentangle sequential effects in task-switching performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33, 370–378. DOI: 10.1037/0278-7393.33.2.370
- Schneider, D. W., & Logan, G. D. (2009). Selecting a response in task switching: Testing a model of compound cue retrieval. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 122–136. DOI: 10.1037/a0013744
- Schneider, D. W., & Logan, G. D. (2014). Modelling response selection in task switching: Testing the contingent encoding assumption. Quarterly Journal of Experimental Psychology, 67, 1074–1095. DOI: 10.1080/17470218.2013.843009
- Schuch, S., & Koch, I. (2003). The role of response selection for inhibition of task sets in task shifting. Journal of Experimental Psychology: Human Perception and Performance, 29, 92–105. DOI: 10.1037/0096-1523.29.1.92
- Schuch, S., & Koch, I. (2004). The costs of changing the representation of action: Response repetition and response-response compatibility in dual tasks. Journal of Experimental Psychology: Human Perception and Performance, 30, 566–582. DOI: 10.1037/0096-1523.30.3.566
- Sexton, N. J., & Cooper, R. P. (2017). Task inhibition, conflict, and the n-2 repetition cost: A combined computational and empirical approach. Cognitive Psychology, 94, 1–25. DOI: 10.1016/j.cogpsych.2017.01.003
- Theeuwes, M., Liefooghe, B., De Schryver, M., & De Houwer, J. (2018). The role of motor imagery in learning via instructions. Acta Psychologica, 184, 110–123. DOI: 10.1016/j.actpsy.2017.05.002
- Tulving, E. (1972).
Episodic and semantic memory . In E. Tulving & W. Donaldson (Eds.), Organisation of memory (pp. 381–403). London: Academic Press. - Van Loy, B., Liefooghe, B., & Vandierendonck, A. (2010). Cognitive control in cued task switching with transition cues: Cue processing, task processing, and cue-task transition congruency. Quarterly Journal of Experimental Psychology, 63, 1916–1935. DOI: 10.1080/17470211003779160
- Vandierendonck, A., Liefooghe, B., & Verbruggen, F. (2010). Task switching: Interplay of reconfiguration and interference control. Psychological Bulletin, 136, 601–626. DOI: 10.1037/a0019791
- Verbruggen, F., Liefooghe, B., Vandierendonck, A., & Demanet, J. (2007). Short cue presentations encourage advance task preparation: A recipe to diminish the residual switch cost. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33, 342–356. DOI: 10.1037/0278-7393.33.2.342
- Verbruggen, F., McLaren, I. P. L., & Chambers, C. D. (2014). Banishing the control homunculi in studies of action control and behavior change. Perspectives on Psychological Science, 9, 497–524. DOI: 10.1177/1745691614526414
- Vikhar, P. A. (2016). Evolutionary algorithms: A critical review and its future prospects. International Conference on Global Trends in Signal Processing, Information Computing and Communication, 261–265. DOI: 10.1109/ICGTSPICC.2016.7955308
- Waszak, F., Hommel, B., & Allport, A. (2003). Task-switching and long-term priming: Role of episodic stimulus-task bindings in task-shift costs. Cognitive Psychology, 46, 361–413. DOI: 10.1016/S0010-0285(02)00520-0
- Waszak, F., Hommel, B., & Allport, A. (2004). Semantic generalization of stimulus-task bindings. Psychonomic Bulletin & Review, 11, 1027–1033. DOI: 10.3758/BF03196732
- Waszak, F., Hommel, B., & Allport, A. (2005). Interaction of task readiness and automatic retrieval in task switching: Negative priming and competitor priming. Memory & Cognition, 33, 595–610. DOI: 10.3758/BF03195327
- Wendt, M., & Kiesel, A. (2008). The impact of stimulus-specific practice and task instructions on response congruency effects between tasks. Psychological Research, 72, 425–432. DOI: 10.1007/s00426-007-0117-3
- Yeung, N., & Monsell, S. (2003a). Switching between tasks of unequal familiarity: The role of stimulus-attribute and response-set selection. Journal of Experimental Psychology: Human Perception and Performance, 29, 455–469. DOI: 10.1037/0096-1523.29.2.455
- Yeung, N., & Monsell, S. (2003b). The effects of recent practice on task switching. Journal of Experimental Psychology: Human Perception and Performance, 29, 919–936. DOI: 10.1037/0096-1523.29.5.919
- Yeung, N., Nystrom, L. E., Aronson, J. A., & Cohen, J. D. (2006). Between-task competition and cognitive control in task switching. Journal of Neuroscience, 26, 1429–1438. DOI: 10.1523/JNEUROSCI.3109-05.2006
