Have a personal or library account? Click to login
Sequence Knowledge on When and What Supports Dual-Tasking Cover

Sequence Knowledge on When and What Supports Dual-Tasking

Open Access
|Jul 2019

References

  1. 1Aufschnaiter, S., Kiesel, A., Dreisbach, G., Wenke, D., & Thomaschke, R. (2018). Time-based expectancy in temporally structured task switching. Journal of Experimental Psychology: Human Perception & Performance, 44, 856870. DOI: 10.1037/xhp0000494
  2. 2Bausenhart, K. M., Rolke, B., Hackley, S. A., & Ulrich, R. (2006). The locus of temporal preparation effects: evidence from the psychological refractory period paradigm. Psychnomic Bulletin & Review, 13(3), 536542. DOI: 10.3758/BF03193882
  3. 3Botvinick, M. M., & Bylsma, L. M. (2005). Distraction and action slips in an everyday task: Evidence for a dynamic representation of task context. Psychnomic Bulletin & Review, 12(6), 10111017. DOI: 10.3758/BF03206436
  4. 4Botvinick, M. M., & Plaut, D. C. (2006). Short-term memory for serial order: A recurrent neural network model. Psychological Review, 113, 201233. DOI: 10.1037/0033-295X.113.2.201
  5. 5Clegg, B. A., DiGirolamo, G. J., & Keele, S. W. (1998). Sequence learning. Trends in Cognitive Sciences, 2, 275281. DOI: 10.1016/S1364-6613(98)01202-9
  6. 6Cock, J., Berry, D. C., & Buchner, A. (2002). Negative priming and sequence learning. European Journal of Cognitive Psychology, 14, 2448. DOI: 10.1080/09541440042000151
  7. 7Deroost, N., & Soetens, E. (2006). Perceptual or motor learning in SRT tasks with complex sequence structures. Psychological Research, 70(2), 88102. DOI: 10.1007/s00426-004-0196-3
  8. 8Destrebecqz, A., & Cleeremans, A. (2001). Can sequence learning be implicit? New evidence with the process dissociation procedure. Psychonomic Bulletin & Review, 8(2), 343350. DOI: 10.3758/BF03196171
  9. 9Dignath, D., Pfister, R., Eder, A. B., Kiesel, A., & Kunde, W. (2014). Representing the hyphen in action–effect associations: Automatic acquisition and bidirectional retrieval of action–effect intervals. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(6), 17011712. DOI: 10.1037/xlm0000022
  10. 10Durst, M., & Janczyk, M. (2019). Two types of Backward Crosstalk: Sequential modulations and evidence from the diffusion model. Acta Psychologica, 193, 132152. DOI: 10.1016/j.actpsy.2018.11.013
  11. 11Haider, H., Eberhardt, K., Esser, S., & Rose, M. (2014). Implicit visual learning: How the task set modulates learning by determining the stimulus-response binding. Consciousness and Cognition, 26, 145161. DOI: 10.1016/j.concog.2014.03.005
  12. 12Halvorson, K. M., Ebner, H., & Hazeltine, E. (2013). Investigating perfect timesharing: The relationship between IM-compatible tasks and dual-task performance. Journal of Experimental Psychology: Human Perception and Performance, 39(2), 413432. DOI: 10.1037/a0029475
  13. 13Hazeltine, E., Ruthruff, E., & Remington, R. W. (2006). The role of input and output modality pairings in dual-task performance: evidence for content-dependent central interference. Cognitive Psychology, 52(4), 291345. DOI: 10.1016/j.cogpsych.2005.11.001
  14. 14Hilbig, B. E. (2016). Reaction time effects in lab- versus Web-based research: Experimental evidence. Behavior Research Methods, 48(4), 17181724. DOI: 10.3758/s13428-015-0678-9
  15. 15Hommel, B. (1998). Automatic stimulus-response translation in dual-task performance. Journal of Experimental Psychology: Human Perception and Performance, 24(5), 13681384. DOI: 10.1037/0096-1523.24.5.1368
  16. 16Hommel, B. (2013). Ideomotor action control: On the perceptual grounding of voluntary actions and agents. In W. Prinz, M. Beisert, & A. Herwig (Eds.), Action science: Foundations of an emerging discipline (pp. 113136). Cambridge, MA: MIT Press. DOI: 10.7551/mitpress/9780262018555.003.0005
  17. 17Jentzsch, I., Leuthold, H., & Ulrich, R. (2007). Decomposing sources of response slowing in the PRP paradigm. Journal of Experimental Psychology: Human Perception and Performance, 33(3), 610. DOI: 10.1037/0096-1523.33.3.610
  18. 18Koch, I. (2007). Anticipatory response control in motor sequence learning: Evidence from stimulus–response compatibility. Human Movement Science, 26, 257274. DOI: 10.1016/j.humov.2007.01.004
  19. 19Koch, I. (2009). The role of crosstalk in dual-task performance: Evidence from manipulating response-set overlap. Psychological Research, 73, 417424. DOI: 10.1007/s00426-008-0152-8
  20. 20Koch, I., & Jolicoeur, P. (2006). Process-based and code-based interference in dual-task performance. Psychological Research, 70(6), 403404. DOI: 10.1007/s00426-005-0006-6
  21. 21Koch, I., & Jolicoeur, P. (2007). Orthogonal cross-task compatibility: Abstract spatial coding in dual tasks. Psychonomic Bulletin & Review, 14(1), 4550. DOI: 10.3758/BF03194026
  22. 22Lashley, J. K. (1951). The problem of serial order in behavior. In L. A. Jeffress (Eds.), Cerebral mechanisms in behavior (pp. 112136). New York: Wiley.
  23. 23Lazarus Team. (1993). Lazarus: The professional Free Pascal RAD IDE (Version 1.6). Retrieved from http://www.lazarus-ide.org
  24. 24Logan, G. D., & Gordon, R. D. (2001). Executive control of visual attention in dual-task situations. Psychological Review, 108(2), 393434. DOI: 10.1037/0033-295X.108.2.393
  25. 25Luria, R., & Meiran, N. (2003). Online order control in the psychological refractory period paradigm. Journal of Experimental Psychology: Human Perception & Performance, 29(3), 556574. DOI: 10.1037/0096-1523.29.3.556
  26. 26Marcus, D. J., Karatekin, C., & Markiewicz, S. (2006). Oculomotor evidence of sequence learning on the serial reaction time task. Memory & Cognition, 34(2), 420432. DOI: 10.3758/BF03193419
  27. 27Masson, M. E. J., & Loftus, G. R. (2003). Using confidence intervals for graphically based data interpretation. Canadian Journal of Experimental Psychology, 57(3), 203220. DOI: 10.1037/h0087426
  28. 28Meyer, D. E., & Kieras, D. E. (1997). A computational theory of executive cognitive processes and multiple-task performance: Part 1. Basic mechanisms. Psychological Review, 104(1), 365. DOI: 10.1037/0033-295X.104.1.3
  29. 29Miller, J., Ulrich, R., & Rolke, B. (2009). On the optimality of serial and parallel processing in the psychological refractory period paradigm: Effects of the distribution of stimulus onset asynchronies. Cognitive Psychology, 58, 273310. DOI: 10.1016/j.cogpsych.2006.08.003
  30. 30Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19(1), 132. DOI: 10.1016/0010-0285(87)90002-8
  31. 31Pashler, H. (1984). Processing stages in overlapping tasks: evidence for a central bottleneck. Journal of Experimental Psychology: Human Perception and Performance, 10(3), 358377. DOI: 10.1037/0096-1523.10.3.358
  32. 32Pashler, H. (1994). Dual-task interference in simple tasks: Data and theory. Psychological Bulletin, 116(2), 220244. DOI: 10.1037/0033-2909.116.2.220
  33. 33Pashler, H., & Christian, C. L. (1994). Bottlenecks in planning and producing vocal, manual, and foot responses. Center for Human Information Processing Technical Report. Unpublished manuscript.
  34. 34Perlman, A., & Tzelgov, J. (2006). Interactions between encoding and retrieval in the domain of sequence-learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(1), 118130. DOI: 10.1037/0278-7393.32.1.118
  35. 35Plant, R. R., & Turner, G. (2009). Millisecond precision psychological research in a world of commodity computers: New hardware, new problems? Behavior Research Methods, 41(3), 598614. DOI: 10.3758/BRM.41.3.598
  36. 36Rah, S. K. Y., Reber, A. S., & Hsiao, A. T. (2000). Another wrinkle on the dual-task SRT experiment: It’s probably not dual-task. Psychonomic Bulletin & Review, 7(2), 309313. DOI: 10.3758/BF03212986
  37. 37Röttger, E., Haider, H., Zhao, F., & Gaschler, R. (2019). Implicit sequence learning despite multitasking: the role of across-task predictability. Psychological Research, 83(3), 526543. DOI: 10.1007/s00426-017-0920-4
  38. 38Salvucci, D. D., & Taatgen, N. A. (2008). Threaded cognition: An integrated theory of concurrent multitasking. Psychological Review, 115(1), 101130. DOI: 10.1037/0033-295X.115.1.101
  39. 39Schiffer, A. M., Waszak, F., & Yeung, N. (2015). The role of prediction and outcomes in adaptive cognitive control. Journal of Physiology – Paris, 109(1–3), 3852. DOI: 10.1016/j.jphysparis.2015.02.001
  40. 40Schmidt, J. R. (2013). Temporal learning and list-level proportion congruency: conflict adaptation or learning when to respond? PLoS One, 8(11), e82320. DOI: 10.1371/journal.pone.0082320
  41. 41Schmidt, J. R., & Weissman, D. H. (2016). Congruency sequence effects and previous response times: Conflict adaptation or temporal learning? Psychological Research, 80(4), 590607. DOI: 10.1007/s00426-015-0681-x
  42. 42Schmidtke, V., & Heuer, H. (1997). Task integration as a factor in secondary-task effects on sequence learning. Psychological Research, 60(1), 5371. DOI: 10.1007/BF00419680
  43. 43Schuck, N. W., Gaschler, R., & Frensch, P. A. (2012). Implicit learning of what comes when and where within a sequence: The timing-course of acquiring serial position-item and item-item associations to represent serial order. Advances in Cognitive Psychology, 8, 8397. DOI: 10.5709/acp-0106-0
  44. 44Schumacher, E. H., & Schwarb, H. (2009). Parallel response selection disrupts sequence learning under dual-task conditions. Journal of Experimental Psychology: General, 138(2), 270290. DOI: 10.1037/a0015378
  45. 45Shin, J. C. (2008). The procedural learning of action order is independent of temporal learning. Psychological Research, 72(4), 376386. DOI: 10.1007/s00426-007-0115-5
  46. 46Shin, J. C., & Ivry, R. B. (2002). Concurrent learning of temporal and spatial sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(3), 445457. DOI: 10.1037/0278-7393.28.3.445
  47. 47Stadler, M. A. (1995). Role of attention in implicit learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(3), 674685. DOI: 10.1037/0278-7393.21.3.674
  48. 48Thomaschke, R., & Dreisbach, G. (2013). Temporal predictability facilitates action, not perception. Psychological Science, 24(7), 13351340. DOI: 10.1177/0956797612469411
  49. 49Thomaschke, R., Hoffmann, J., Haering, C., & Kiesel, A. (2016). Time-based expectancy for task relevant stimulus features. Timing & Time Perception, 4(2016), 248270. DOI: 10.1163/22134468-00002069
  50. 50Tombu, M., & Jolicoeur, P. (2003). A central capacity sharing model of dual-task performance. Journal of Experimental Psychology: Human Perception and Performance, 29, 318. DOI: 10.1037/0096-1523.29.1.3
  51. 51Ulrich, R., & Giray, M. (1989). Time resolution of clocks: Effects on reaction time measurement—Good news for bad clocks. British Journal of Mathematical and Statistical Psychology, 42(1), 112. DOI: 10.1111/j.2044-8317.1989.tb01111.x
  52. 52Willingham, D. B., Wells, L. A., Farrell, J. M., & Stemwedel, M. E. (2000). Implicit motor sequence learning is represented in response locations. Memory & Cognition, 28(3), 366375. DOI: 10.3758/BF03198552
DOI: https://doi.org/10.5334/joc.76 | Journal eISSN: 2514-4820
Language: English
Submitted on: Jul 20, 2018
Accepted on: Jun 18, 2019
Published on: Jul 19, 2019
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Fang Zhao, Robert Gaschler, Lisa Schneider, Roland Thomaschke, Eva Röttger, Hilde Haider, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.