References
- 1Bhandari, A., & Duncan, J. (2014). Goal neglect and knowledge chunking in the construction of novel behaviour. Cognition, 130(1), 11–30. DOI: 10.1016/j.cognition.2013.08.013
- 2Braem, S., Liefooghe, B., De Houwer, J., Brass, M., & Abrahamse, A. L. (2017). There are limits to the effects of task instructions: Making the automatic effects of instructions context-specific takes practice. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(3), 394–403. DOI: 10.1037/xlm0000310
- 3Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436. DOI: 10.1163/156856897X00357
- 4Brass, M., Liefooghe, B., Braem, S., & De Houwer, J. (2017). Following new task instructions: Evidence for a dissociation between knowing and doing. Neuroscience and Biobehavioral Reviews, 81, 16–28. DOI: 10.1016/j.neubiorev.2017.02.012
- 5Chein, J. M., & Schneider, W. (2012). The brain’s learning and control architecture. Current Directions in Psychological Science, 21(2), 78–84. DOI: 10.1177/0963721411434977
- 6Cohen-Kdoshay, O., & Meiran, N. (2007). The representation of instructions in working memory leads to autonomous response activation: Evidence from the first trials in the flanker paradigm. Quarterly Journal of Experimental Psychology, 60(8), 1140–1154.
- 7Cohen-Kdoshay, O., & Meiran, N. (2009). The representation of instructions operates like a prepared reflex. Experimental Psychology, 56(2), 128–133. DOI: 10.1027/1618-3169.56.2.128
- 8Cole, M. W., Braver, T. S., & Meiran, N. (2017). The task novelty paradox: Flexible control of inflexible neural pathways during rapid instructed task learning. Neuroscience and Behavioral Reviews, 81, 4–15. DOI: 10.1016/j.neubiorev.2017.02.009
- 9Cole, M. W., Laurent, P., & Stocco, A. (2013). Rapid instructed task learning: A new window into the human brain’s unique capacity for flexible cognitive control. Cognitive and Affective Behavioral Neuroscience, 13(1), 1–22. DOI: 10.3758/s13415-012-0125-7
- 10De Houwer, J., Beckers, T., Vandorpe, S., & Custers, R. (2005). Further evidence for the role of mode-independent short-term associations in spatial Simon effects. Perception and Psychophysics, 67(4), 659–666. DOI: 10.3758/BF03193522
- 11Everaert, T., Theeuwes, M., Liefooghe, B., & De Houwer, M. (2014). Automatic motor activation by mere instruction. Cognitive and Affective Behavioral Neuroscience, 14(4), 1300–1309. DOI: 10.3758/s13415-014-0294-7
- 12Exner, S. (1879).
Physiologie der Grosshirnrinde . In L. Hermann (Ed.), Handbuch der Physiologie, 2, (pp. 189–350). Leipzig, Germany: Vogel. - 13Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 1030–1044. DOI: 10.1037/0096-1523.18.4.1030
- 14Gade, M., & Koch, I. (2005). Linking inhibition to activation in the control of task sequences. Psychonomic Bulletin & Review, 12, 530–534. DOI: 10.3758/BF03193800
- 15Hazeltine, E., & Schumacher, E. H. (2016).
Understanding central processes: The case against simple stimulus-response associations and for complex task representation . In B. H. Ross (Ed.) Psychology of Learning and Motivation (pp. 195–245). New York: Academic Press. - 16Henson, R. N., Eckstein, D., Waszak, F., Frings, C., & Horner, A. J. (2014). Stimulus-response bindings in priming. Trends in Cognitive Sciences, 18(7), 376–384. DOI: 10.1016/j.tics.2014.03.004
- 17Horner, A. J., & Henson, R. N. (2009). Bindings between stimuli and multiple response codes dominate long-lag repetition priming in speeded classification tasks. Journal of experimental Psychology: Learning, Memory, and Cognition, 35(3), 757–779. DOI: 10.1037/a0015262
- 18Horner, A. J., & Henson, R. N. (2011). Stimulus-response bindings code both abstract and specific representations of stimuli: Evidence from a classification priming design that reverses multiple levels of response representation. Memory and Cognition, 39, 1457–1471. DOI: 10.3758/s13421-011-0118-8
- 19Hübner, R., & Druey, M. D. (2006). Response execution, selection or activation: What is sufficient for response-related repetition effects under task shifting? Psychological Research, 70(4), 245–261. DOI: 10.1007/s00426-005-0219-8
- 20Jonides, J., & Mack, R. (1984). On the cost and benefit of cost and benefit. Psychological Bulletin, 96(1), 29–44. DOI: 10.1037/0033-2909.96.1.29
- 21Kiesel, A., Wendt, M., & Peters, A. (2007). Task switching: On the origin of response congruency effects. Psychological Research, 71(2), 117–125. DOI: 10.1007/s00426-005-0004-8
- 22Liefooghe, B., & De Houwer, J. (2018). Automatic effects of instructions do not require the intention to execute these instructions. Journal of Cognitive Psychology, 30(1), 108–121. DOI: 10.1080/20445911.2017.1365871
- 23Liefooghe, B., De Houwer, J., & Wenke, D. (2013). Instruction-based response activation depends on task preparation. Psychonomic Bulletin and Review, 20, 481–487. DOI: 10.3758/s13423-013-0374-7
- 24Liefooghe, B., Wenke, D., & De Houwer, J. (2012). Instruction-based task-rule congruency effects. Journal of Experimental Psychology: Learning, Memory and Cognition, 38(5), 1325–1335. DOI: 10.1037/a0028148
- 25Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95(4), 492–527. DOI: 10.1037/0033-295X.95.4.492
- 26Logan, G. D. (1992). Attention and preattention in theories of automaticity. American Journal of Psychology, 105(2), 317–339. DOI: 10.2307/1423031
- 27Longman, C. S., Kiesel, A., & Verbruggen, F. (2018). Learning in the absence of overt practice: A novel (previously unseen) stimulus can trigger retrieval of an unpracticed response. Psychological Research. Manuscript resubmitted for publication. DOI: 10.1007/s00426-018-1106-4
- 28Longman, C. S., Milton, F., Wills, A. J., & Verbruggen, F. (2018). Transfer of learned category-response associations is modulated by instruction. Acta Psychologica, 184, 144–167. DOI: 10.1016/j.actpsy.2017.04.004
- 29Martiny-Huenger, T., Martiny, S. E., & Gollwitzer, P. (2015).
Action control by if-then planning: Explicating the mechanisms of strategic automaticity in regard to objective and subjective agency . In B. Eitam & P. Haggard (Eds.), Human agency (pp. 63–93). Oxford University Press. - 30Meiran, N., & Cohen-Kdoshay, O. (2012). Working memory load but not multitasking eliminates the prepared reflex: Further evidence from the adapted flanker paradigm. Acta Psychologica, 139, 309–313. DOI: 10.1016/j.actpsy.2011.12.008
- 31Meiran, N., Cole, M. W., & Braver, T. S. (2012). When planning results in loss of control: Intension-based reflexivity and working-memory. Frontiers in Human Neuroscience, 6, 104. DOI: 10.3389/fnhum.2012.00104
- 32Meiran, N., Liefooghe, B., & De Houwer, J. (2017). Powerful instructions: Automaticity without practice. Current directions in Psychological Science, 26(6), 509–514. DOI: 10.1177/0963721417711638
- 33Meiran, N., Pereg, M., Givon, E., Danieli, G., & Shahar, N. (2016). The role of working memory in rapid instructed task learning and intention-based reflexivity: An individual differences examination. Neuropsychologia, 90, 180–189. DOI: 10.1016/j.neuropsychologia.2016.06.037
- 34Meiran, N., Pereg, M., Kessler, Y., Cole, M. W., & Braver, T. S. (2015a). The power of instructions: Proactive configuration of stimulus-response translation. Journal of Experimental Psychology: Learning, Memory and Cognition, 41(3), 768–786. DOI: 10.1037/xlm0000063
- 35Meiran, N., Pereg, M., Kessler, Y., Cole, M. W., & Braver, T. S. (2015b). Reflexive activation of newly instructed stimulus-response rules: Evidence from lateralized readiness potentials in no-go trials. Cognitive, Affective, & Behavioral Neuroscience, 15(2), 365–373. DOI: 10.3758/s13415-014-0321-8
- 36Morey, R. D., Rouder, J. N., & Jamil, T. (2015). BayesFactor: Computation of Bayes factors for common designs (Version 0.9.11-1).
- 37Ramamoorthy, A., & Verguts, T. (2012). Word and deed: A computational model of instruction following. Brain Research, 1439, 54–65. DOI: 10.1016/j.brainres.2011.12.025
- 38R Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria.
- 39Schönbrodt, F. D., & Wagenmakers, E. (2017). Bayes factor design analysis: Planning for compelling evidence. Psychonomic Bulletin and Review, 25(1), 128–142. DOI: 10.3758/s13423-017-1230-y
- 40Schuch, S., & Koch, I. (2003). The role of response selection for inhibition of task sets in task shifting. Journal of Experimental Psychology: Human Perception and Performance, 29(1), 92–105. DOI: 10.1037/0096-1523.29.1.92
- 41Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending, and a general theory. Psychological Review, 84(2), 127–190. DOI: 10.1037/0033-295X.84.2.127
- 42Tibboel, H., & Liefooghe, B. (in press). Attention for future reward. Psychological Research. DOI: 10.1007/s00426-018-1094-4
- 43Tibboel, H., Liefooghe, B., & De Houwer, J. (2016). Attention to future actions: The influence of instructed S-R versus S-S mappings on attentional control. Psychological Research, 80(6), 905–911. DOI: 10.1007/s00426-015-0695-4
- 44Verbruggen, F., & Logan, G. D. (2009). Automaticity of cognitive control: Goal priming in response-inhibition paradigms. Journal of Experimental Psychology: Learning Memory and Cognition, 35(5), 1381–1388. DOI: 10.1037/a0016645
- 45Verbruggen, F., McLaren, I. P., & Chambers, C. D. (2014). Banishing the Control Homunculi in Studies of Action Control and Behavior Change. Perspectives on Psychological Science, 9(5), 497–524. DOI: 10.1177/1745691614526414
- 46Verbruggen, F., McLaren, R., Pereg, M., & Meiran, N. (2018). The development of proactive control and instruction-based reflexivity: A cross-sectional study. Psychological Science, 29(7), 1113–1125. DOI: 10.1177/0956797618755322
- 47Wenke, D., Gaschler, R., & Nattkemper, D. (2007). Instruction-induced feature binding. Psychological Research, 71(1), 92–106. DOI: 10.1007/s00426-005-0038-y
