Have a personal or library account? Click to login
Working Memory and Attention – A Conceptual Analysis and Review Cover

Working Memory and Attention – A Conceptual Analysis and Review

By: Klaus Oberauer  
Open Access
|Aug 2019

References

  1. Allen, R. J., Baddeley, A. D., & Hitch, G. J. (2006). Is the binding of visual features in working memory resource-demanding? Journal of Experimental Psychology: General, 135, 298313. DOI: 10.1037/0096-3445.135.2.298
  2. Anderson, J. R., Reder, L. M., & Lebiere, C. (1996). Working memory: Activation limits on retrieval. Cognitive Psychology, 30, 221256. DOI: 10.1006/cogp.1996.0007
  3. Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: a failed theoretical dichotomy. Trends in Cognitive Sciences, 16, 437443. DOI: 10.1016/j.tics.2012.06.010
  4. Awh, E., Jonides, J., & Reuter-Lorenz, P. A. (1998). Rehearsal in spatial working memory. Journal of Experimental Psychology: Human Perception and Performance, 24, 780790. DOI: 10.1037/0096-1523.24.3.780
  5. Baddeley, A. D. (1986). Working memory. Oxford: Clarendon Press.
  6. Baddeley, A. D. (1993). Working memory or working attention? In: A. Baddeley, & L. Weiskrantz (Eds.), Attention: Selection, awareness, and control, (pp. 152170). Oxford: Clarendon.
  7. Baddeley, A. D. (1996). Exploring the central executive. Quarterly Journal of Experimental Psychology, 49A, 528. DOI: 10.1080/713755608
  8. Baddeley, A. D., Papagno, C., & Andrade, J. (1993). The sandwich effect: The role of attentional factors in serial recall. Journal of Experimental Psychology: Learning, Memory and Cognition, 19, 862870. DOI: 10.1037/0278-7393.19.4.862
  9. Barrouillet, P., Bernardin, S., & Camos, V. (2004). Time constraints and resource sharing in adults’ working memory spans. Journal of Experimental Psychology: General, 133, 83100. DOI: 10.1037/0096-3445.133.1.83
  10. Barrouillet, P., Bernardin, S., Portrat, S., Vergauwe, E., & Camos, V. (2007). Time and cognitive load in working memory. Journal of Experimental Psychology: Learning, Memory & Cognition, 33, 570585. DOI: 10.1037/0278-7393.33.3.570
  11. Barrouillet, P., Portrat, S., & Camos, V. (2011). On the law relating processing to storage in working memory. Psychological Review, 118, 175192. DOI: 10.1037/a0022324
  12. Belopolsky, A. V., & Theeuwes, J. (2009). No functional role of attention-based rehearsal in maintenance of spatial working memory representations. Acta Psychologica, 132, 124135. DOI: 10.1016/j.actpsy.2009.01.002
  13. Bettencourt, K. C., & Xu, Y. (2016). Decoding the content of visual short-term memory under distraction in occipital and parietal areas. Nature Neuroscience, 19, 150157. DOI: 10.1038/nn.4174
  14. Bichot, N. P., Heard, M. T., DeGennaro, E. M., & Desimone, R. (2015). A Source for Feature-Based Attention in the Prefrontal Cortex. Neuron, 88(4), 832844. DOI: 10.1016/j.neuron.2015.10.001
  15. Bunting, M. F., Cowan, N., & Colflesh, G. J. H. (2008). The deployment of attention in short-term memory tasks: Trade-offs between immediate and delayed deployment. Memory & Cognition, 36, 799812. DOI: 10.3758/MC.36.4.799
  16. Camos, V., Lagner, P., & Barrouillet, P. (2009). Two maintenance mechanisms of verbal information in working memory. Journal of Memory and Language, 61, 457469. DOI: 10.1016/j.jml.2009.06.002
  17. Case, R. (1972). Validation of a neo-Piagetian mental capacity construct. Journal of Experimental Child Psychology, 14, 287302. DOI: 10.1016/0022-0965(72)90051-3
  18. Case, R., Kurland, M., & Goldberg, J. (1982). Operational efficiency and the growth of short-term memory span. Journal of Experimental Child Psychology, 33, 386404. DOI: 10.1016/0022-0965(82)90054-6
  19. Chein, J. M., Moore, A. B., & Conway, A. R. A. (2011). Domain-general mechanisms of complex working memory span. NeuroImage, 54, 550559. DOI: 10.1016/j.neuroimage.2010.07.067
  20. Chen, H., Swan, G., & Wyble, B. (2016). Prolonged focal attention without binding: Trackng a ball for half a minute without remembering its color. Cognition, 147, 144148. DOI: 10.1016/j.cognition.2015.11.014
  21. Chen, H., & Wyble, B. (2015a). Amnesia for object attributes: Failure to report attended information that had just reached conscious awareness. Psychological Science, 26, 203210. DOI: 10.1177/0956797614560648
  22. Chen, H., & Wyble, B. (2015b). The location but not the attributes of visual cues are automatically encoded into working memory. Vision Research, 107, 7685. DOI: 10.1016/j.visres.2014.11.010
  23. Chen, Z., & Cowan, N. (2009). How verbal memory loads consume attention. Memory & Cognition, 37, 829836. DOI: 10.3758/MC.37.6.829
  24. Christophel, T. B., Iamshchinina, P., Yan, C., Allefeld, C., & Haynes, J.-D. (2018). Cortical specialization for attended versus unattended working memory. Nature Neuroscience, 21, 494496. DOI: 10.1038/s41593-018-0094-4
  25. Chuderski, A. (2014). The relational integration task explains fluid reasoning above and beyond other working memory tasks. Memory & Cognition, 42, 448463. DOI: 10.3758/s13421-013-0366-x
  26. Chun, M. M. (2011). Visual working memory as visual attention sustained internally over time. Neuropsychologia, 49(6), 14071409. DOI: 10.1016/j.neuropsychologia.2011.01.029
  27. Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011). A taxonomy of external and internal attention. Annual Review of Psychology, 62, 73101. DOI: 10.1146/annurev.psych.093008.100427
  28. Cowan, N. (1995). Attention and memory: An integrated framework. New York: Oxford University Press.
  29. Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87185. DOI: 10.1017/S0140525X01003922
  30. Cowan, N. (2005). Working memory capacity. New York: Psychology Press.
  31. Cowan, N. (2017). The many faces of working memory and short-term storage. Psychonomic Bulletin & Review, 24, 11581170. DOI: 10.3758/s13423-016-1191-6
  32. Cowan, N., Elliott, E. M., Saults, J. S., Morey, C. C., Mattox, S., Hismjatullina, A., & Conway, A. R. A. (2005). On the capacity of attention: its estimation and its role in working memory and cognitive aptitudes. Cognitive Psychology, 51, 42100. DOI: 10.1016/j.cogpsych.2004.12.001
  33. Cowan, N., Fristoe, N., Elliott, E. M., Brunner, R. P., & Saults, J. S. (2006). Scope of attention, control of attention, and intelligence in children and adults. Memory & Cognition, 34, 17541768. DOI: 10.3758/BF03195936
  34. Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19, 450466. DOI: 10.1016/S0022-5371(80)90312-6
  35. Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193222. DOI: 10.1146/annurev.ne.18.030195.001205
  36. Ecker, U. K. H., Lewandowsky, S., & Oberauer, K. (2014). Removal of information from working memory: A specific updating process. Journal of Memory and Language, 74, 7790. DOI: 10.1016/j.jml.2013.09.003
  37. Ecker, U. K. H., Oberauer, K., & Lewandowsky, S. (2014). Working memory updating involves item-specific removal. Journal of Memory & Language, 74, 115. DOI: 10.1016/j.jml.2014.03.006
  38. Eliasmith, C. (2013). How to build a brain: A neural architecture for biological cognition. New York, NY: Oxford University Press. DOI: 10.1093/acprof:oso/9780199794546.001.0001
  39. Emrich, S. M., Rigall, A. C., LaRocque, J. J., & Postle, B. R. (2013). Distributed patterns of activity in sensory cortex reflect the precision of multiple items maintained in visual short-term memory. Journal of Neuroscience, 33, 65166523. DOI: 10.1523/JNEUROSCI.5732-12.2013
  40. Ester, E. F., Fukuda, K., May, L. M., Vogel, E. K., & Awh, E. (2014). Evidence for a fixed capacity limit in attending multiple locations. Cognitive, Affective, & Behavioral Neuroscience, 14, 6277. DOI: 10.3758/s13415-013-0222-2
  41. Feldmann-Wüstefeld, T., Vogel, E. K., & Awh, E. (2018). Contralateral delay activity indexes working memory storage, not the current focus of spatial attention. Journal of Cognitive Neuroscience, 30(8), 11851196. DOI: 10.1162/jocn_a_01271
  42. Foerster, R. M., & Schneider, W. X. (2018). Involuntary top-down control by search-irrelevant features: Visual working memory biases attention in an object-based manner. Cognition, 172, 3745. DOI: 10.1016/j.cognition.2017.12.002
  43. Fougnie, D., & Marois, R. (2006). Distinct capacity limits for attention and working memory. Psychological Science, 17, 526534. DOI: 10.1111/j.1467-9280.2006.01739.x
  44. Gao, Z., Yu, S., Zhu, C., Shui, R., Weng, X., Li, P., & Shen, M. (2016). Object-based encoding in visual working memory: Evidence from memory-driven attentional capture. Scientific Reports, 6. DOI: 10.1038/srep22822
  45. Garavan, H. (1998). Serial attention within working memory. Memory & Cognition, 26, 263276. DOI: 10.3758/BF03201138
  46. Gazzaley, A., & Nobre, A. C. (2012). Top-down modulation: bridging selective attention and working memory. Trends in Cognitive Sciences, 16, 129135. DOI: 10.1016/j.tics.2011.11.014
  47. Gilchrist, A. L., & Cowan, N. (2011). Can the focus of attention accommodate multiple, separate items? Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 14841502. DOI: 10.1037/a0024352
  48. Göthe, K., Oberauer, K., & Kliegl, R. (2016). Eliminating dual-task costs by minimizing crosstalk between tasks: The role of modality and feature pairings. Cognition, 150, 92108. DOI: 10.1016/j.cognition.2016.02.003
  49. Griffin, I. C., & Nobre, A. C. (2003). Orienting attention to locations in internal representations. Journal of Cognitive Neuroscience, 15, 11761194. DOI: 10.1162/089892903322598139
  50. Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and a new view. In: G. H. Bower (Ed.), The Psychology of Learning and Motivation, 22, (pp. 193225). New York: Academic Press. DOI: 10.1016/S0079-7421(08)60041-9
  51. Hasher, L., Zacks, R. T., & May, C. P. (1999). Inhibitory control, circadian arousal, and age. In: D. Gopher, & A. Koriat (Eds.), Attention and Performance, (pp. 653675). Cambridge, MA: MIT Press.
  52. Hazeltine, E., & Witfall, T. (2011). Searching working memory for the source of dual-task costs. Psychological Research, 75, 466475. DOI: 10.1007/s00426-011-0343-6
  53. Hedge, C., Oberauer, K., & Leonards, U. (2015). Selection in spatial working memory is independent of perceptual selective attention, but they interact in a shared spatial priority map. Attention, Perception & Psychophysics, 77, 2665322668. DOI: 10.3758/s13414-015-0976-4
  54. Hollingworth, A., & Beck, V. M. (2016). Memory-based attention capture when multiple items are maintained in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 42, 911917. DOI: 10.1037/xhp0000230
  55. Hollingworth, A., & Maxcey-Richard, A. M. (2013). Selective maintenance in visual working memory does not require sustained visual attention. Journal of Experimental Psychology: Human Perception and Performance, 39, 10471058. DOI: 10.1037/a0030238
  56. Ikkai, A., McCollough, A. W., & Vogel, E. K. (2010). Contralateral delay activity provides a neural measure of the number of representations in visual working memory. Journal of Neurophysiology, 103, 19631968. DOI: 10.1152/jn.00978.2009
  57. Jolicoeur, P., & Dell’Acqua, R. (1998). The demonstration of short-term consolidation. Cognitive Psychology, 36, 138202. DOI: 10.1006/cogp.1998.0684
  58. Jurado, M. B., & Rosselli, M. (2007). The elusive nature of executive functions: A review of our current understanding. Neuropsychology Review, 17, 213233. DOI: 10.1007/s11065-007-9040-z
  59. Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From eye fixations to comprehension. Psychological Review, 87, 329354. DOI: 10.1037/0033-295X.87.4.329
  60. Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension: Individual differences in working memory. Psychological Review, 99, 122149. DOI: 10.1037/0033-295X.99.1.122
  61. Kane, M. J., Bleckley, M. K., Conway, A. R. A., & Engle, R. W. (2001). A controlled-attention view of working-memory capacity. Journal of Experimental Psychology: General, 130, 169183. DOI: 10.1037/0096-3445.130.2.169
  62. Kane, M. J., & Engle, R. W. (2003). Working-memory capacity and the control of attention: The contributions of goal neglect, response competition, and task set to Stroop interference. Journal of Experimental Psychology: General, 132(47–70). DOI: 10.1037/0096-3445.132.1.47
  63. Kelley, T. A., & Lavie, N. (2011). Working Memory Load Modulates Distractor Competition in Primary Visual Cortex. Cerebral Cortex, 21(3), 659665. DOI: 10.1093/cercor/bhq139
  64. Keye, D., Wilhelm, O., Oberauer, K., & van Ravenzwaaij, D. (2009). Individual differences in conflict-monitoring: Testing means and covariance hypothesis about the Simon and the Eriksen Flanker task. Psychological Research-Psychologische Forschung, 73(6), 762776. DOI: 10.1007/s00426-008-0188-9
  65. Kim, S.-Y., Kim, M.-S., & Chun, M. M. (2005). Concurrent working memory load can reduce distraction. Proceedings of the National Academy of Sciences, 102, 1652416529. DOI: 10.1073/pnas.0505454102
  66. Kiyonaga, A., & Egner, T. (2014). Working memory as internal attention: Toward an integrative account of internal and external selection processes. Psychonomic Bulletin & Review. DOI: 10.3758/s13423-012-0359-y
  67. Klapp, S. T., Marshburn, E. A., & Lester, P. T. (1983). Short-term memory does not involve the “working memory” of information processing: The demise of a common assumption. Journal of Experimental Psychology: General, 112, 240264. DOI: 10.1037/0096-3445.112.2.240
  68. Konstantinou, N., Beal, E., King, J.-R., & Lavie, N. (2014). Working memory load and distraction: Dissociable effects of visual maintenance and cognitive control. Attention, Perception & Psychophysics, 76, 19851997. DOI: 10.3758/s13414-014-0742-z
  69. Konstantinou, N., & Lavie, N. (2013). Dissociable roles of different types of working memory load in visual detection. Journal of Experimental Psychology: Human Perception and Performance, 39, 919924. DOI: 10.1037/a0033037
  70. Landman, R., Spekreijse, H., & Lamme, V. A. F. (2003). Large capacity storage of integrated objects before change blindness. Vision Research, 43(149–164). DOI: 10.1016/S0042-6989(02)00402-9
  71. LaRocque, J. J., Lewis-Peacock, J. A., Drysdale, A. T., Oberauer, K., & Postle, B. R. (2013). Decoding attended information in short-term memory: An EEG study. Journal of Cognitive Neuroscience, 25(1), 127142. DOI: 10.1162/jocn_a_00305
  72. Lavie, N. (2005). Distracted and confused?: Selective attention under load. Trends in Cognitive Sciences, 9, 7582. DOI: 10.1016/j.tics.2004.12.004
  73. Lavie, N., Hirst, A., de Fockert, J. W., & Viding, E. (2004). Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133, 339354. DOI: 10.1037/0096-3445.133.3.339
  74. Lawrence, B. M., Myerson, J., & Abrams, R. A. (2004). Interference with spatial working memory: An eye movement is more than a shift of attention. Psychonomic Bulletin & Review, 11, 488494. DOI: 10.3758/BF03196600
  75. Lawrence, B. M., Myerson, J., Oonk, H. M., & Abrams, R. A. (2001). The effects of eye and limb movements on working memory. Memory, 9, 433444. DOI: 10.1080/09658210143000047
  76. Lepsien, J., Thornton, I., & Nobre, A. C. (2011). Modulation of working-memory maintenance by directed attention. Neuropsychologia, 49, 15691577. DOI: 10.1016/j.neuropsychologia.2011.03.011
  77. Lewis-Peacock, J. A., Drysdale, A. T., Oberauer, K., & Postle, B. R. (2011). Neural evidence for a distinction between short-term memory and the focus of attention. Journal of Cognitive Neuroscience, 24, 6179. DOI: 10.1162/jocn_a_00140
  78. Lewis-Peacock, J. A., Kessler, Y., & Oberauer, K. (2018). The removal of information from working memory. Annals of the New York Academy of Science, 1424, 3344. DOI: 10.1111/nyas.13714
  79. Liefooghe, B., Barrouillet, P., Vandierendonck, A., & Camos, V. (2008). Working memory costs of task switching. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 478494. DOI: 10.1037/0278-7393.34.3.478
  80. Logie, R. H., Brockmole, J. B., & Jaswal, S. (2011). Feature binding in visual short-term memory is unaffected by task-irrelevant changes of location, shape, and color. Memory & Cognition, 39, 2436. DOI: 10.3758/s13421-010-0001-z
  81. Luria, R., Balaban, H., Awh, E., & Vogel, E. K. (2016). The contralateral delay activity as a neural measure of visual working memory. Neuroscience and Biobehavioral Reviews, 62, 100108. DOI: 10.1016/j.neubiorev.2016.01.003
  82. Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing concepts of working memory. Nature Neuroscience Reviews, 17, 347356. DOI: 10.1038/nn.3655
  83. Mall, J. T., Morey, C. C., Wolff, M. J., & Lehnert, F. (2014). Visual selective attention is equally functional for individuals with low and high working memory capacity: Evidence from accuracy and eye movements. Attention, Perception & Psychophysics. DOI: 10.3758/s13414-013-0610-2
  84. Mallett, R., & Lewis-Peacock, J. A. (2018). Behavioral decoding of working memory items inside and outside the focus of attention. Annals of the New York Academy of Sciences, 1424(1), 256267. DOI: 10.1111/nyas.13647
  85. Marshall, L., & Bays, P. M. (2013). Obligatory encoding of task-irrelevant features depletes working memory resources. Journal of Vision, 13, 113. DOI: 10.1167/13.2.21
  86. McElree, B. (2006). Accessing recent events. In: B. H. Ross (Ed.), The Psychology of Learning and Motivation, 46, (pp. 155200). San Diego: Academic Press. DOI: 10.1016/S0079-7421(06)46005-9
  87. McVay, J. C., & Kane, M. J. (2009). Conducting the train of thought: Working memory capacity, goal neglect, and mind wandering in an executive-control task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 196204. DOI: 10.1037/a0014104
  88. McVay, J. C., & Kane, M. J. (2012). Why does working memory capacity predict variation in reading comprehension? On the influence of mind wandering and executive attention. Journal of Experimental Psychology: General, 141, 302320. DOI: 10.1037/a0025250
  89. Meiran, N., Liefooghe, B., & De Houwer, J. (2017). Powerful instructions: Automaticity without practice. Current Directions in Psychological Science, 26, 509514. DOI: 10.1177/0963721417711638
  90. Mendoza-Halliday, D., & Martinez-Trujillo, J. C. (2017). Neuronal population coding of perceived and memorized visual features in the lateral prefrontal cortex. nature Communications, 8, 15471. DOI: 10.1038/ncomms15471
  91. Mongillo, G., Barak, O., & Tsodyks, M. (2008). Synaptic theory of working memory. Science, 319, 15431546. DOI: 10.1126/science.1150769
  92. Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7, 134140. DOI: 10.1016/S1364-6613(03)00028-7
  93. Morey, C. C., & Bieler, M. (2012). Visual short-term memory always requires general attention. Psychonomic Bulletin & Review, 20, 163170. DOI: 10.3758/s13423-012-0313-z
  94. Navon, D., & Gopher, D. (1979). On the economy of the human-processing system. Psychological Review, 86, 214255. DOI: 10.1037/0033-295X.86.3.214
  95. Navon, D., & Miller, J. (2002). Queuing or sharing? A critical evaluation of the single-bottleneck notion. Cognitive Psychology, 44, 193251. DOI: 10.1006/cogp.2001.0767
  96. Nieuwenstein, M., & Wyble, B. (2014). Beyond a mask and against the bottleneck: Retroactive dual-task interference during working memory consolidation of a masked visual target. Journal of Experimental Psychology: General, 143, 14091427. DOI: 10.1037/a0035257
  97. Oberauer, K. (2001). Removing irrelevant information from working memory: A cognitive aging study with the modified Sternberg task. Journal of Experimental Psychology-Learning Memory and Cognition, 27(4), 948957. DOI: 10.1037/0278-7393.27.4.948
  98. Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(3), 411421. DOI: 10.1037/0278-7393.28.3.411
  99. Oberauer, K. (2003). Selective attention to elements in working memory. Experimental Psychology, 50(4), 257269. DOI: 10.1026//1618-3169.50.4.257
  100. Oberauer, K. (2005). Control of the contents of working memory – A comparison of two paradigms and two age groups. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(4), 714728. DOI: 10.1037/0278-7393.31.4.714
  101. Oberauer, K. (2009). Design for a working memory. Psychology of Learning and Motivation: Advances in Research and Theory, 51, 45100. DOI: 10.1016/S0079-7421(09)51002-X
  102. Oberauer, K. (2013). The focus of attention in working memory – from metaphors to mechanisms. frontiers in human neuroscience, 7. DOI: 10.3389/fnhum.2013.00673
  103. Oberauer, K. (2018). Removal of irrelevant information from working memory: Sometimes fast, sometimes slow, and sometimes not at all. Annals of the New York Academy of Science, 1424, 239255. DOI: 10.1111/nyas.13603
  104. Oberauer, K., Awh, E., & Sutterer, D. W. (2017). The role of long-term memory in a test of visual working memory: Proactive facilitation but no proactive interference. Journal of Experimental Psychology: Learning, Memory and Cognition, 43, 122. DOI: 10.1037/xlm0000302
  105. Oberauer, K., & Bialkova, S. (2011). Serial and parallel processes in working memory after practice. Journal of Experimental Psychology: Human Perception and Performance, 37(2), 606614. DOI: 10.1037/a0020986
  106. Oberauer, K., Demmrich, A., Mayr, U., & Kliegl, R. (2001). Dissociating retention and access in working memory: An age-comparative study of mental arithmetic. Memory & Cognition, 29(1), 1833. DOI: 10.3758/BF03195737
  107. Oberauer, K., Farrell, S., Jarrold, C., & Lewandowsky, S. (2016). What limits working memory capacity? Psychological Bulletin, 142, 758799. DOI: 10.1037/bul0000046
  108. Oberauer, K., & Hein, L. (2012). Attention to information in working memory. Current Directions in Psychological Science, 21, 164169. DOI: 10.1177/0963721412444727
  109. Oberauer, K., & Lewandowsky, S. (2013). Evidence against decay in verbal working memory. Journal of Experimental Psychology: General, 142, 380411. DOI: 10.1037/a0029588
  110. Oberauer, K., & Lewandowsky, S. (2014). Further evidence against decay in working memory. Journal of Memory and Language, 73, 1530. DOI: 10.1016/j.jml.2014.02.003
  111. Oberauer, K., Lewandowsky, S., Farrell, S., Jarrold, C., & Greaves, M. (2012). Modeling working memory: An interference model of complex span. Psychonomic Bulletin & Review, 19, 779819. DOI: 10.3758/s13423-012-0272-4
  112. Oberauer, K., & Lin, H.-Y. (2017). An interference model of visual working memory. Psychological Review, 124, 2159. DOI: 10.1037/rev0000044
  113. Oberauer, K., Souza, A. S., Druey, M., & Gade, M. (2013). Analogous mechanisms of selection and updating in declarative and procedural working memory: Experiments and a computational model. Cognitive Psychology, 66, 157211. DOI: 10.1016/j.cogpsych.2012.11.001
  114. Olivers, C. N. L. (2008). Interactions between visual working memory and visual attention. Frontiers in Bioscience, 13, 11821191. DOI: 10.2741/2754
  115. Olivers, C. N. L., Peters, J., Houtkamp, R., & Roelfsema, P. R. (2011). Different states in visual working memory: When it guides attention and when it does not. Trends in Cognitive Sciences, 15, 327334. DOI: 10.1016/j.tics.2011.05.004
  116. Park, S., Kim, M.-S., & Chun, M. M. (2007). Concurrent working memory load can facilitate selective attention: Evidence for specialized load. Journal of Experimental Psychology: Human Perception and Performance, 33(1062–1075). DOI: 10.1037/0096-1523.33.5.1062
  117. Pashler, H. (1994). Dual-task interference in simple tasks: Data and theory. Psychological Bulletin, 116, 220244. DOI: 10.1037/0033-2909.116.2.220
  118. Plate, T. A. (2003). Convolution-based memory models. In: L. Nadel (Ed.), Encyclopedia of cognitive science, (pp. 824828). London: Nature Publishing Group.
  119. Ralph, A., Walters, J. N., Stevens, A., Fitzgerald, K. J., Tehan, G., Surprenant, A. M., Turcotte, J., et al. (2011). Immunity to proactive interference is not a property of the focus of attention in working memory. Memory & Cognition, 39, 217230. DOI: 10.3758/s13421-010-0030-7
  120. Randall, J. G., Oswald, F. L., & Beier, M. E. (2014). Mind-wandering, cognition, and performance: A theory-driven meta-analysis of attention regulation. Psychological Bulletin, 140, 14111431. DOI: 10.1037/a0037428
  121. Rerko, L., Souza, A. S., & Oberauer, K. (2014). Retro-cue benefits in working memory without sustained attention. Memory & Cognition, 42, 712728. DOI: 10.3758/s13421-013-0392-8
  122. Ricker, T. J., & Hardman, K. O. (2017). The nature of short-term consolidation in visual working memory. Journal of Experimental Psychology: General. DOI: 10.1037/xge0000346
  123. Rose, N. S., LaRocque, J. J., Riggall, A. C., Gosseries, O., Starrett, M. J., Meyering, E. E., & Postle, B. R. (2016). Reactivation of latent working memories with transcranial magnetic stimulation. Science, 354, 11361139. DOI: 10.1126/science.aah7011
  124. Sander, M. C., Werkle-Bergner, M., & Lindenberger, U. (2011). Binding and strategic selection in working memory: A lifespan dissociation. Psychology and Aging, 26, 612624. DOI: 10.1037/a0023055
  125. Saults, J. S., & Cowan, N. (2007). A central capacity limit to the simultaneous storage of visual and auditory arrays in working memory. Journal of Experimental Psychology: General, 136, 663684. DOI: 10.1037/0096-3445.136.4.663
  126. Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84, 166. DOI: 10.1037/0033-295X.84.1.1
  127. Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending, and a general theory. Psychological Review, 84, 127190. DOI: 10.1037/0033-295X.84.2.127
  128. Shipstead, Z., Lindsey, D. R. B., Marshall, R. L., & Engle, R. E. (2014). The mechanisms of working memory capacity: Primary memory, secondary memory, and attention control. Journal of Memory and Language, 72, 116141. DOI: 10.1016/j.jml.2014.01.004
  129. Singh, K. A., Gignac, G. E., Brydges, C. R., & Ecker, U. K. H. (2018). Working memory capacity mediates the relationship between removal and fluid intelligence. Journal of Memory and Language, 101, 1836. DOI: 10.1016/j.jml.2018.03.002
  130. Soto, D., Hodsoll, J., Rotshtein, P., & Humphreys, G. W. (2008). Automatic guidance of attention from working memory. Trends in Cognitive Sciences, 12, 342348. DOI: 10.1016/j.tics.2008.05.007
  131. Souza, A. S., & Oberauer, K. (2016). In search of the focus of attention in working memory: 13 years of the retro-cue effect. Attention, Perception & Psychophysics. DOI: 10.3758/s13414-016-1108-5
  132. Souza, A. S., & Oberauer, K. (2017). The contributions of visual and central attention to visual working memory. Attention, Perception & Psychophysics, 79, 18971916. DOI: 10.3758/s13414-017-1357-y
  133. Souza, A. S., Rerko, L., & Oberauer, K. (2015). Refreshing memory traces: Thinking of an item improves retrieval from visual working memory. Annals of the New York Academy of Sciences, 1339, 2031. DOI: 10.1111/nyas.12603
  134. Souza, A. S., Vergauwe, E., & Oberauer, K. (2018). Where to attend next: Guiding refreshing of visual, spatial, and verbal representations in working memory. Annals of the New York Academy of Science. DOI: 10.1111/nyas.13621
  135. Sprague, T. C., Ester, E. F., & Serences, J. T. (2016). Restoring latent visual working memory representations in human cortex. Neuron, 91, 694707. DOI: 10.1016/j.neuron.2016.07.006
  136. Szmalec, A., Vandierendonck, A., & Kemps, E. (2005). Response selection involves executive control: Evidence from the selective interference paradigm. Memory & Cognition, 33, 531541. DOI: 10.3758/BF03193069
  137. Tehan, G., & Humphreys, M. S. (1998). Creating proactive interference in immediate recall: Building a DOG from a DART, a MOP, and a FIG. Memory & Cognition, 26, 477489. DOI: 10.3758/BF03201157
  138. Thalmann, M., Souza, A. S., & Oberauer, K. (2019). Revisiting the attentional demands of rehearsal in working-memory tasks. Journal of Memory and Language, 105, 118. DOI: 10.1016/j.jml.2018.10.005
  139. Theeuwes, J. (2018). Visual selection: Usually fast and automatic; seldom slow and volitional. Journal of Cognition, 1, 115. DOI: 10.5334/joc.13
  140. Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature, 428, 751753. DOI: 10.1038/nature02466
  141. Todd, J. J., & Marois, R. (2005). Posterior parietal cortex activity predicts individual differences in visual short-term memory capacity. Cognitive, Affective, & Behavioral Neuroscience, 5, 144155. DOI: 10.3758/CABN.5.2.144
  142. Tombu, M., & Jolicoeur, P. (2003). A central capacity sharing model of dual-task performance. Journal of Experimental Psychology: Human Perception and Performance, 29, 318. DOI: 10.1037/0096–;1523.29.1.3
  143. Tremblay, S., Saint-Aubin, J., & Jalberg, A. (2006). Rehearsal in serial memory for visual-spatial information: Evidence from eye movements. Psychonomic Bulletin & Review, 13, 452457. DOI: 10.3758/BF03193869
  144. Tsubomi, H., Fukuda, K., Watanabe, K., & Vogel, E. K. (2013). Neural limits to representing objects still within view. Journal of Neuroscience, 33, 82578263. DOI: 10.1523/JNEUROSCI.5348-12.2013
  145. Ueno, T., Allen, R. J., Baddeley, A. D., Hitch, G. J., & Saito, S. (2011). Disruption of visual feature binding in working meemory. Memory & Cognition, 39, 1223. DOI: 10.3758/s13421-010-0013-8
  146. Unsworth, N. (2015). Consistency of attentional control as an important cognitive trait: A latent variable analysis. Intelligence, 49, 110128. DOI: 10.1016/j.intell.2015.01.005
  147. Unsworth, N., Fukuda, K., Awh, E., & Vogel, E. K. (2014). Working memory and fluid intelligence: Capacity, attention control, and secondary memory retrieval. Cognitive Psychology, 71, 126. DOI: 10.1016/j.cogpsych.2014.01.003
  148. Van der Stigchel, S., Merten, H., Meeter, M., & Theeuwes, J. (2007). The effects of a task-irrelevant visual event on spatial working memory. Psychonomic Bulletin & Review, 14, 10661071. DOI: 10.3758/BF03193092
  149. van Moorselaar, D., Battistoni, E., Theeuwes, J., & Olivers, C. N. L. (2014). Rapid influences of cued visual memories on attentional guidance. Annals of the New York Academy of Sciences. DOI: 10.1111/nyas.12574
  150. van Moorselaar, D., Foster, J. J., Sutterer, D. W., Theeuwes, J., Olivers, C. N. L., & Awh, E. (2017). Spatially selective alpha oscillations reveal moment-by-moment trade-offs between working memory and attention. Journal of Cognitive Neuroscience, 30, 256266. DOI: 10.1162/jocn_a_01198
  151. van Moorselaar, D., Theeuwes, J., & Olivers, C. N. L. (2014). In competition for the attentional template: Can multiple items within visual working memory guide attention? Journal of Experimental Psychology: Human Perception and Performance, 40, 14501464. DOI: 10.1037/a0036229
  152. Vergauwe, E., Barrouillet, P., & Camos, V. (2010). Do mental processes share a domain-general resource? Psychological Science, 21, 384390. DOI: 10.1177/0956797610361340
  153. Vergauwe, E., Camos, V., & Barrouillet, P. (2014). The impact of storage on processing: How is information maintained in working memory? Journal of Experimental Psychology: Learning, Memory, and Cognition, 40, 10721095. DOI: 10.1037/a0035779
  154. Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428, 748751. DOI: 10.1038/nature02447
  155. Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(24), 500503. DOI: 10.1038/nature04171
  156. Watanabe, K., & Funahashi, S. (2014). Neural mechanisms of dual-task interference and cognitive capacity limitation in the prefrontal cortex. Nature Neuroscience, 17, 601611. DOI: 10.1038/nn.3667
  157. Wickens, C. D. (1980). The structure of attentional ressources. In: R. S. Nickerson (Ed.), Attention & Performance, VIII, (pp. 239257). Hillsdale, N.J.: Erlbaum.
  158. Wilhelm, O., Hildebrandt, A., & Oberauer, K. (2013). What is working memory capacity, and how can we measure it? frontiers in Psychology, 4. DOI: 10.3389/fpsyg.2013.00433
  159. Williams, M., Pouget, P., Boucher, L., & Woodman, G. F. (2013). Visual-spatial attention aids the maintenance of object representations in visual working memory. Memory & Cognition, 41, 698715. DOI: 10.3758/s13421-013-0296-7
  160. Wolff, M. J., Jochim, J., Akyürek, E. G., & Stokes, M. G. (2017). Dynamic hidden states underlying working-memory-guided behavior. Nature Neuroscience, 20, 864871. DOI: 10.1038/nn.4546
  161. Woodman, G. F., Carlisle, N. B., & Reinhart, R. M. G. (2013). Where do we store the memory representations that guide attention? Journal of Vision, 13, 117. DOI: 10.1167/13.3.1
  162. Woodman, G. F., & Chun, M. M. (2006). The role of working memory and long-term memory in visual search. Visual Cognition, 14, 808830. DOI: 10.1080/13506280500197397
  163. Xu, Y., & Chun, M. M. (2006). Dissociable neural mechanisms supporting visual short-term memory for objects. Nature, 440, 9194. DOI: 10.1038/nature04262
  164. Yeung, N., Botvinick, M., & Cohen, J. D. (2004). The neural basis of error detection: Conflict monitoring and the error-related negativity. Psychological Review, 111, 931959. DOI: 10.1037/0033-295X.111.4.931
  165. Yu, Q., & Shim, W. M. (2017). Occipital, parietal, and frontal cortices selectively maintain task-relevant features of multi-feature objects in visual working memory. NeuroImage, 157, 97107. DOI: 10.1016/j.neuroimage.2017.05.055
DOI: https://doi.org/10.5334/joc.58 | Journal eISSN: 2514-4820
Language: English
Submitted on: Dec 2, 2018
|
Accepted on: Feb 14, 2019
|
Published on: Aug 8, 2019
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Klaus Oberauer, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.