Have a personal or library account? Click to login
ChatGPT Relies More Heavily on Consonants Than on Vowels to Recognize Words Cover

ChatGPT Relies More Heavily on Consonants Than on Vowels to Recognize Words

Open Access
|Feb 2026

References

  1. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects models using lme4. Journal of Statistical Software, 67, 148. 10.18637/jss.v067.i01
  2. Bonatti, L., Peña, M., Nespor, M., & Mehler, J. (2005). Linguistic constraints on statistical computations: The role of consonants and vowels in continuous speech processing. Psychological Science, 16, 451459. 10.1111/j.0956-7976.2005.01556.x
  3. Bonatti, L., Peña, M., Nespor, M., & Mehler, J. (2007). On consonants, vowels, chicken and eggs. Psychological Science, 18, 924925. 10.1111/j.1467-9280.2007.02002.x
  4. Bouchon, C., Hochmann, J. R., & Toro, J. M. (2022). Spanish-learning infants switch from a vowel to a consonant bias during the first year of life. Journal of Experimental Child Psychology, 221, 105444. 10.1016/j.jecp.2022.105444
  5. Boudelaa, S. (2015). The differential time course for consonant and vowel processing in Arabic: Implications for language learning and rehabilitation. Frontiers in Psychology, 5, 1557. 10.3389/fpsyg.2014.01557
  6. Brown, et al. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 18771901.
  7. Caramazza, A., Chialant, D., Capasso, D., & Miceli, G. (2000). Separable processing of consonants and vowels. Nature, 403, 428430. 10.1038/35000206
  8. Carreiras, M., Duñabeitia, J. A., & Molinaro, N. (2009). Consonants and vowels contribute differently to visual word recognition: ERPs of relative position priming. Cerebral Cortex, 19, 26592670. 10.1093/cercor/bhp019
  9. Carreiras, M., Gillon-Dowens, M., Vergara, M., & Perea, M. (2008). Are vowels and consonants processed differently? Event-related potential evidence with a delayed letter paradigm. Journal of Cognitive Neuroscience, 21, 275288. 10.1162/jocn.2008.21023
  10. Carreiras, M., & Price, C. (2008). Brain activation for consonants and vowels. Cerebral Cortex, 18, 17271735. 10.1093/cercor/bhm202
  11. Chomsky, N., Roberts, I., & Watumull, J. (2023). The false promise of ChatGPT. The New York Times, 2023/03/08. 10.3917/phimag.hs057.0009
  12. Cutler, A., Sebastian-Gallés, N., Soler-Vilageliu, O., & van Ooijen, B. (2000). Constraints on vowels and consonants on lexical selection: Cross-linguistic comparisons. Memory & Cognition, 28, 746755. 10.3758/BF03198409
  13. Duñabeitia, J. A., & Carreiras, M. (2011). The relative position priming effect depends on whether letters are vowels or consonants. Journal of Experimental Psychology: Learning, Memory and Cognition, 37, 11431163. 10.1037/a0023577
  14. Hochmann, J. R., Benavides-Varela, S., Nespor, M., & Mehler, J. (2011). Consonants and vowels: Different roles in early language acquisition. Developmental Science, 14, 14451458. 10.1111/j.1467-7687.2011.01089.x
  15. Keidel, J., Jenison, R., Kluender, K., & Seidenberg, M. (2007). Does grammar constrain statistical learning? Commentary on Bonatti, Peña, Nespor, and Mehler (2005). Psychological Science, 18, 922923. 10.1111/j.1467-9280.2007.02001.x
  16. Lador-Weizman, Y., & Deutsch, A. (2025). A consonantal bias in the process of learning artificial words by Hebrew speakers: Evidence from the visual world paradigm. Language, Cognition and Neuroscience, 40, 10151029. 10.1080/23273798.2025.2506635
  17. Maddieson, I. (2013). Consonant-Vowel Ratio. In M. Dryer & M. Haspelmath (Eds.), WALS Online (v2020.3) [Data set]. Zenodo. 10.5281/zenodo.7385533
  18. Marcus, G. (2018). Innateness, AlphaZero, and Artificial Intelligence. arXiv:1801.05667.
  19. Nazzi, T. (2005). Use of phonetic specificity during the acquisition of new words: Differences between consonants and vowels. Cognition, 98, 1330. 10.1016/j.cognition.2004.10.005
  20. Nazzi, T., Poltrock, S., & Von Holzen, K. (2016). The developmental origins of the consonant bias in lexical processing. Current Directions in Psychological Science, 25, 291296. 10.1177/0963721416655786
  21. Nespor, M., Peña, M., & Mehler, J. (2002). On the different roles of vowels and consonants in speech processing and language acquisition. Lingue e Linguaggio, 2, 203230.
  22. New, B., Araujo, V., & Nazzi, T. (2008). Differential processing of consonants and vowels in lexical access through reading. Psychological Science, 19, 12231227. 10.1111/j.1467-9280.2008.02228.x
  23. Perea, M., & Lupker, S. (2004). Can CANISO activate CASINO? Transposed-letter similarity effects with nonadjacent letter positions. Journal of Memory and Language, 51, 231246. 10.1016/j.jml.2004.05.005
  24. R Core Team. (2021). A language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria.
  25. Soares, A., Perea, M., & Comesaña, M. (2014). Tracking the emergence of the consonant bias in visual-word recognition: Evidence with developing readers. PLOS ONE, 9, e88580. 10.1371/journal.pone.0088580
  26. Toro, J. M. (2024). Insights from animals to build better artificial language learners. Comparative Cognition & Behavior Reviews, 19, 9195. 10.3819/CCBR.2024.190008
  27. van Ooijen, B. (1996). Vowel mutability and lexical selection in English: Evidence from a word reconstruction task. Memory & Cognition, 24, 573583. 10.3758/BF03201084
DOI: https://doi.org/10.5334/joc.487 | Journal eISSN: 2514-4820
Language: English
Submitted on: Nov 11, 2025
|
Accepted on: Jan 22, 2026
|
Published on: Feb 9, 2026
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2026 Toro Juan Manuel, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.