Have a personal or library account? Click to login
Global and Selective Effects of Auditory Attention on Arousal: Insights From Pupil Dilation Cover

Global and Selective Effects of Auditory Attention on Arousal: Insights From Pupil Dilation

Open Access
|Jan 2026

References

  1. Aguera, P. E., Jerbi, K., Caclin, A., & Bertrand, O. (2011). ELAN: a software package for analysis and visualization of MEG, EEG, and LFP signals. Comput Intell Neurosci, 2011, 158970. 10.1155/2011/158970
  2. Aminihajibashi, S., Hagen, T., Laeng, B., & Espeseth, T. (2020). Pupillary and behavioral markers of alerting and orienting: An individual difference approach. Brain Cogn, 143, 105597. 10.1016/j.bandc.2020.105597
  3. Aston-Jones, G., & Cohen, J. D. (2005). AN INTEGRATIVE THEORY OF LOCUS COERULEUS-NOREPINEPHRINE FUNCTION: Adaptive Gain and Optimal Performance. Annu Rev Neurosci, 28(1), 40350. 10.1146/annurev.neuro.28.061604.135709
  4. Bidet-Caulet, A., Bottemanne, L., Fonteneau, C., Giard, M. H., & Bertrand, O. (2015). Brain Dynamics of Distractibility: Interaction Between Top-Down and Bottom-Up Mechanisms of Auditory Attention. Brain Topogr, 28(3), 42336. 10.1007/s10548-014-0354-x
  5. Bidet-Caulet, A., Latinus, M., Roux, S., Malvy, J., Bonnet-Brilhault, F., & Bruneau, N. (2017). Atypical sound discrimination in children with ASD as indicated by cortical ERPs. Journal of neurodevelopmental disorders, 9, 13. 10.1186/s11689-017-9194-9
  6. Berridge, C. W., & Waterhouse, B. D. (2003). The locus coeruleus–noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev, 42(1), 3384. 10.1016/S0165-0173(03)00143-7
  7. Bonmassar, C., Widmann, A., & Wetzel, N. (2020). The impact of novelty and emotion on attention-related neuronal and pupil responses in children. Developmental Cognitive Neuroscience, 42, 100766. 10.1016/j.dcn.2020.100766
  8. Breton-Provencher, V., & Sur, M. (2019). Active control of arousal by a locus coeruleus GABAergic circuit. Nat Neurosci, 22, 218228. 10.1038/s41593-018-0305-z
  9. Broadbent, D. E. (1971). Decision and Stress. Academic Press: New York.
  10. Cacioppo, J. T., Tassinary, L. G., & Berntson, G. G. (Eds.). (2007). Handbook of psychophysiology (3rd ed.). Cambridge University Press. 10.1017/CBO9780511546396
  11. Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.
  12. Corbetta, M., Patel, G., & Shulman, G. L. (2008). The Reorienting System of the Human Brain: From Environment to Theory of Mind. Neuron, 58(3), 30624. 10.1016/j.neuron.2008.04.017
  13. Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci, 3(3), 20115. 10.1038/nrn755
  14. Coull, J. T. (1998). Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology. Prog Neurobiol, 55(4), 34361. 10.1016/S0301-0082(98)00011-2
  15. Coull, J. T., & Nobre, A. C. (1998). Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J Neurosci, 18(18), 74267435. 10.1523/JNEUROSCI.18-18-07426.1998
  16. Dahl, M. J., Mather, M., & Werkle-Bergner, M. (2022). Noradrenergic modulation of rhythmic neural activity shapes selective attention. Trends in cognitive sciences, 26(1), 3852. 10.1016/j.tics.2021.10.009
  17. Dragone, A., Lasaponara, S., Pinto, M., Rotondaro, F., De Luca, M., & Doricchi, F. (2018). Expectancy modulates pupil size during endogenous orienting of spatial attention. Cortex, 102, 5766. 10.1016/j.cortex.2017.09.011
  18. Easterbrook, J. A. (1959). The effect of emotion on cue utilization and the organization of behavior. Psychol Rev, 66(3), 183201. 10.1037/h0047707
  19. ElShafei, H. A., Bouet, R., Bertrand, O., & Bidet-Caulet, A. (2018). Two Sides of the Same Coin: Distinct Sub-Bands in the α Rhythm Reflect Facilitation and Suppression Mechanisms during Auditory Anticipatory Attention. eNeuro, 5(4), ENEURO.014118.2018. 10.1523/ENEURO.0141-18.2018
  20. Eysenck, M. W. (1982). Attention and Arousal: Cognition and Performance. Springer, Berlin. 10.1007/978-3-642-68390-9
  21. Friedman, D., Hakerem, G., Sutton, S., & Fleiss, J. L. (1973). Effect of stimulus uncertainty on the pupillary dilation response and the vertex evoked potential. Electroencephalography and Clinical Neurophysiology, 34(5), 475484. 10.1016/0013-4694(73)90065-5
  22. Gilzenrat, M. S., Nieuwenhuis, S., Jepma, M., & Cohen, J. D. (2010). Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function. Cogn Affect Behav Neurosci, 10(2), 25269. 10.3758/CABN.10.2.252
  23. Grandjean, A., Mathieu, A., Chen, S., Wdmann, A., Wetzel, N., & Bidet-Caulet, A. (2025). The dynamic interplay between tonic and phasic arousal shapes attention to optimize performance. bioRxiv. 10.1101/2024.03.22.586259
  24. Griffin, I. C., Miniussi, C., & Nobre, A. C. (2001). Orienting attention in time. Frontiers in Bioscience, 6, D660D671. 10.2741/Griffin
  25. Hackley, S. A., & Valle-Inclán, F. (1999). Accessing preparatory attention with measures of event-related brain potentials. In G. Aschersleben, T. Bachmann, & J. Müsseler (Eds.), Cognitive Contributions to the Perception of Spatial and Temporal Events (pp. 249267).
  26. Hong, L., Walz, J. M., & Sajda, P. (2014). Your eyes give you away: Prestimulus changes in pupil diameter correlate with post-stimulus task-related EEG dynamics. PLoS One, 9(3), e91321. 10.1371/journal.pone.0091321
  27. Howells, F. M., Stein, D. J., & Russell, V. A. (2012). Synergistic tonic and phasic activity of the locus coeruleus norepinephrine (LC-NE) arousal system is required for optimal attentional performance. Metabolic brain disease, 27(3), 267274. 10.1007/s11011-012-9287-9
  28. Hoyer, R. S., Abdoun, O., Riedinger, M., Bouet, R., Elshafei, A., & Bidet-Caulet, A. (2023a). When do we become more distractible? Progressive evolution of different components of distractibility from early to late adulthood. J Exp Psychol Gen, 152(12), 340317. 10.1037/xge0001458
  29. Hoyer, R. S., Elshafei, H., Hemmerlin, J., Bouet, R., & Bidet-Caulet, A. (2021). Why Are Children So Distractible? Development of Attention and Motor Control From Childhood to Adulthood. Child Dev, 92(4), e71637. 10.1111/cdev.13561
  30. Hoyer, R. S., Pakulak, E., Bidet-Caulet, A., & Karns, C. M. (2023b). Relationships among age, socioeconomic status, and distractibility in preschoolers as assessed by the Competitive Attention Test. J Exp Child Psychol, 227, 105584. 10.1016/j.jecp.2022.105584
  31. Jepma, M., & Nieuwenhuis, S. (2011). Pupil diameter predicts changes in the exploration–exploitation trade-off: Evidence for the adaptive gain theory. Journal of Cognitive Neuroscience, 23(7), 15871596. 10.1162/jocn.2010.21548
  32. Joshi, S., Li, Y., Kalwani, R., & Gold, J. I. (2016). Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron, 89(1), 22134. 10.1016/j.neuron.2015.11.028
  33. Kahneman, D. (1973). Attention and Effort. Prentice-Hall, Englewood Cliffs, N.J.
  34. Kahneman, D., Beatty, J., & Pollack, I. (1967). Perceptual deficit during a mental task. Science, 157(3785), 218219. 10.1126/science.157.3785.218
  35. Koelewijn, T., Shinn-Cunningham, B. G., Zekveld, A. A., & Kramer, S. E. (2014). The pupil response is sensitive to divided attention during speech processing. Hearing research, 312, 114120. 10.1016/j.heares.2014.03.010
  36. Konishi, M., Brown, K., Battaglini, L., & Smallwood, J. (2017). When attention wanders: Pupillometric signatures of fluctuations in external attention. Cognition, 168, 1626. 10.1016/j.cognition.2017.06.006
  37. Korn, C. W., & Bach, D. R. (2016). A solid frame for the window on cognition: Modeling event-related pupil responses. Journal of Vision, 16(3), 28. 10.1167/16.3.28
  38. Kramer, S. E., Lorens, A., Coninx, F., Zekveld, A. A., Piotrowska, A., & Skarzynski, H. (2012). Processing load during listening: The influence of task characteristics on the pupil response. Language and Cognitive Processes, 28(4), 426442. 10.1080/01690965.2011.642267
  39. Laeng, B., Eidet, L. M., Sulutvedt, U., & Panksepp, J. (2016). Music chills: The eye pupil as a mirror to music’s soul. Consciousness and cognition, 44, 161178. 10.1016/j.concog.2016.07.009
  40. Lee, M. D., & Wagenmakers, E.-J. (2014). Bayesian Cognitive Modeling: A Practical Course. Cambridge University Press, Cambridge. 10.1017/CBO9781139087759
  41. Liao, H. I., Yoneya, M., Kidani, S., Kashino, M., & Furukawa, S. (2016). Human Pupillary Dilation Response to Deviant Auditory Stimuli: Effects of Stimulus Properties and Voluntary Attention. Frontiers in neuroscience, 10, 43. 10.3389/fnins.2016.00043
  42. Lisi, M., Bonato, M., & Zorzi, M. (2015). Pupil dilation reveals top–down attentional load during spatial monitoring. Biological Psychology, 112, 3945. 10.1016/j.biopsycho.2015.10.002
  43. Malhotra, P. A. (2019). Impairments of attention in Alzheimer’s disease. Current opinion in psychology, 29, 4148. 10.1016/j.copsyc.2018.11.002
  44. Marois, A., Labonté, K., Parent, M., & Vachon, F. (2018). Eyes have ears: Indexing the orienting response to sound using pupillometry. International Journal of Psychophysiology, 123, 152162. 10.1016/j.biopsycho.2015.10.002
  45. Marois, A., & Vachon, F. (2018). Can pupillometry index auditory attentional capture in contexts of active visual processing? J Cogn Psychol, 30(4), 484502. 10.1080/20445911.2018.1470518
  46. Masson, R., & Bidet-Caulet, A. (2019). Fronto-central P3a to distracting sounds: An index of their arousing properties. NeuroImage, 185, 16480. 10.1016/j.neuroimage.2018.10.041
  47. Mather, M., Clewett, D., Sakaki, M., & Harley, C. W. (2016). Norepinephrine ignites local hot spots of neuronal excitation: How arousal amplifies selectivity in perception and memory. Behav Brain Sci, 39, e200. 10.1017/S0140525X15000667
  48. Mathôt, S. (2018). Pupillometry: Psychology, Physiology, and Function. Journal of Cognition, 1(1), 16, 123. 10.5334/joc.18
  49. Murphy, P. R., O’connell, R. G., O’sullivan, M., Robertson, I. H., & Balsters, J. H. (2014). Pupil diameter covaries with BOLD activity in human locus coeruleus. Human Brain Mapping, 35(8), 41404154. 10.1002/hbm.22466
  50. Murphy, P. R., Robertson, I. H., Balsters, J. H., & O’connell, R. G. (2011). Pupillometry and P3 index the locus coeruleus-noradrenergic arousal function in humans. Psychophysiology, 48(11), 15321543. 10.1111/j.1469-8986.2011.01226.x
  51. Näätänen, R. (1992). Attention and Brain Function (1st ed.). Routledge.
  52. Niemi, P., & Näätänen, R. (1981). Foreperiod and simple reaction time. Psychological Bulletin, 89(1), 133162. 10.1037/0033-2909.89.1.133
  53. Nieuwenhuis, S., De Geus, E. J., & Aston-Jones, G. (2011). The anatomical and functional relationship between the P3 and autonomic components of the orienting response. Psychophysiology, 48(2), 16275. 10.1111/j.1469-8986.2010.01057.x
  54. Ohm, D. T., Peterson, C., Lobrovich, R., Cousins, K. A. Q., Gibbons, G. S., McMillan, C. T., Wolk, D. A., Van Deerlin, V., Elman, L., Spindler, M., Deik, A., Siderowf, A., Trojanowski, J. Q., Lee, E. B., Grossman, M., & Irwin, D. J. (2020). Degeneration of the locus coeruleus is a common feature of tauopathies and distinct from TDP-43 proteinopathies in the frontotemporal lobar degeneration spectrum. Acta neuropathologica, 140(5), 675693. 10.1007/s00401-020-02210-1
  55. Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annu Rev Neurosci, 13, 2542. 10.1146/annurev.ne.13.030190.000325
  56. Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109(2), 160174. 10.1037/0096-3445.109.2.160
  57. Preuschoff, K., ‘t Hart, B. M., & Einhäuser, W. (2011). Pupil Dilation Signals Surprise: Evidence for Noradrenaline’s Role in Decision Making. Frontiers in neuroscience, 5, 115. 10.3389/fnins.2011.00115
  58. Schwarz, L. A., Miyamichi, K., Gao, X. J., Beier, K. T., Weissbourd, B., DeLoach, K. E., Ren, J., Ibanes, S., Malenka, R. C., Kremer, E. J., & Luo, L. (2015). Viral-genetic tracing of the input-output organization of a central noradrenaline circuit. Nature, 524(7563), 8892. 10.1038/nature14600
  59. Seropian, L., Ferschneider, M., Cholvy, F., Micheyl, C., Bidet-Caulet, A., & Moulin, A. (2022). Comparing methods of analysis in pupillometry: application to the assessment of listening effort in hearing-impaired patients. Heliyon, 8(6), e09631. 10.1016/j.heliyon.2022.e09631
  60. Steiner, G. Z., & Barry, R. J. (2011). Pupillary responses and event-related potentials as indices of the orienting reflex. Psychophysiology, 48(12), 16481655. 10.1111/j.1469-8986.2011.01271.x
  61. Sturm, W., & Willmes, K. (2001). On the functional neuroanatomy of intrinsic and phasic alertness. NeuroImage, 14(1Pt2), S7684. 10.1006/nimg.2001.0839
  62. Tops, M., & Boksem, M. A. S. (2010). Absorbed in the task: Personality measures predict engagement during task performance as tracked by error negativity and asymmetrical frontal activity. Cognitive, Affective & Behavioral Neuroscience, 10(4), 441453. 10.3758/CABN.10.4.441
  63. Totah, N. K., Logothetis, N. K., & Eschenko, O. (2021). Synchronous spiking associated with prefrontal high γ oscillations evokes a 5-Hz rhythmic modulation of spiking in locus coeruleus. Journal of neurophysiology, 125(4), 11911201. 10.1152/jn.00677.2020
  64. Unsworth, N., & Robison, M. K. (2016). Pupillary correlates of lapses of sustained attention. Cognitive, Affective, & Behavioral Neuroscience, 601615. 10.3758/s13415-016-0417-4
  65. Unsworth, N., & Robison, M. K. (2018). Tracking arousal state and mind wandering with pupillometry. Cognitive, affective & behavioral neuroscience, 18(4), 638664. 10.3758/s13415-018-0594-4
  66. Wang, C. A., Baird, T., Huang, J., Coutinho, J. D., Brien, D. C., & Munoz, D. P. (2018). Arousal Effects on Pupil Size, Heart Rate, and Skin Conductance in an Emotional Face Task. Frontiers in neurology, 9, 1029. 10.3389/fneur.2018.01029
  67. Wetzel, N., Buttelmann, D., Schieler, A., & Widmann, A. (2016). Infant and adult pupil dilation in response to unexpected sounds. Dev Psychobiol, 58(3), 382392. 10.1002/dev.21377
  68. Widmann, A., Schröger, E., Wetzel, N. (2018). Emotion lies in the eye of the listener: emotional arousal to novel sounds is reflected in the sympathetic contribution to the pupil dilation response and the P3. Biol Psychol, 133, 1017. 10.1016/j.biopsycho.2018.01.010
  69. Yerkes, R. M., & Dodson, J. D. (1908). The Relation of Strength of Stimulus to Rapidity of Habit Formation. J Comp Neurol Psychol, 18, 45982. 10.1002/cne.920180503
  70. Zekveld, A. A., Koelewijn, T., & Kramer, S. E. (2018). The Pupil Dilation Response to Auditory Stimuli: Current State of Knowledge. Trends in hearing, 22. 10.1177/2331216518777174
DOI: https://doi.org/10.5334/joc.474 | Journal eISSN: 2514-4820
Language: English
Submitted on: Mar 5, 2025
|
Accepted on: Nov 21, 2025
|
Published on: Jan 7, 2026
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2026 Aurélie Grandjean, Roxane S. Hoyer, Anne Mathieu, Anne Caclin, Annie Moulin, Aurélie Bidet-Caulet, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.