References
- 1Aeschbach, S., & Wulff, D. U. (2023). associatoR. GitHub.
https://github.com/samuelae/associatoR - 2Atari, M., Xue, M. J., Park, P. S., Blasi, D., & Henrich, J. (2023). Which humans? PsyArXiv. 10.31234/osf.io/5b26t
- 3Avis, M., Forbes, S., & Ferguson, S. (2014). The brand personality of rocks: A critical evaluation of a brand personality scale. Marketing Theory, 14(4), 451–475. 10.1177/1470593113512323
- 4Barone, B., Rodrigues, H., Nogueira, R. M., Guimarães, K. R. L. S. L. D. Q., & Behrens, J. H. (2020). What about sustainability? Understanding consumers’ conceptual representations through free word association. International Journal of Consumer Studies, 44(1), 44–52. 10.1111/ijcs.12543
- 5Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), Article
P10008 . 10.1088/1742-5468/2008/10/P10008 - 6Brysbaert, M., Warriner, A. B., & Kuperman, V. (2014). Concreteness ratings for 40 thousand generally known English word lemmas. Behavior Research Methods, 46(3), 904–911. 10.3758/s13428-013-0403-5
- 7Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li, Y., Lundberg, S., Nori, H., Palangi, H., Tulio Ribeiro, M., & Zhang, Y. (2023). Sparks of artificial general intelligence: Early experiments with GPT-4. arXiv. 10.48550/arXiv.2303.12712
- 8Bullinaria, J. A., & Levy, J. P. (2007). Extracting semantic representations from word co-occurrence statistics: A computational study. Behavior Research Methods, 39(3), 510–526. 10.3758/BF03193020
- 9Bullinaria, J. A., & Levy, J. P. (2012). Extracting semantic representations from word co-occurrence statistics: Stop-lists, stemming, and SVD. Behavior Research Methods, 44(3), 890–907. 10.3758/s13428-011-0183-8
- 10Cassani, G., Günther, F., Attanasio, G., Bianchi, F., & Marelli, M. (2023). Meaning modulations and stability in large language models: An analysis of BERT embeddings for psycholinguistic research. PsyArXiv. 10.31234/osf.io/b45ys
- 11Cave, S., & Dihal, K. (2019). Hopes and fears for intelligent machines in fiction and reality. Nature Machine Intelligence, 1(2), 74–78. 10.1038/s42256-019-0020-9
- 12Chari, T., & Pachter, L. (2023). The specious art of single-cell genomics. PLOS Computational Biology, 19(8),
e1011288 . 10.1371/journal.pcbi.1011288 - 13Church, K. W., & Hanks, P. (1990).
Word association norms, mutual information, and lexicography . Computational Linguistics, 16(1), 22–29.https://aclanthology.org/J90-1003 - 14Coane, J. H., Cipollini, J., Barrett, T. E., Kavaler, J., & Umanath, S. (2023). Lay definitions of intelligence, knowledge, and memory: Inter- and independence of constructs. Journal of Intelligence, 11(5), Article
84 . 10.3390/jintelligence11050084 - 15De Deyne, S., Navarro, D. J., Perfors, A., Brysbaert, M., & Storms, G. (2019). The “Small World of Words” English word association norms for over 12,000 cue words. Behavior Research Methods, 51(3), 987–1006. 10.3758/s13428-018-1115-7
- 16De Deyne, S., Navarro, D. J., & Storms, G. (2013). Better explanations of lexical and semantic cognition using networks derived from continued rather than single-word associations. Behavior Research Methods, 45(2), 480–498. 10.3758/s13428-012-0260-7
- 17Dubossarsky, H., De Deyne, S., & Hills, T. T. (2017). Quantifying the structure of free association networks across the life span. Developmental Psychology, 53(8), 1560–1570. 10.1037/dev0000347
- 18Ezugwu, A. E., Ikotun, A. M., Oyelade, O. O., Abualigah, L., Agushaka, J. O., Eke, C. I., & Akinyelu, A. A. (2022). A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Engineering Applications of Artificial Intelligence, 110, Article
104743 . 10.1016/j.engappai.2022.104743 - 19Feinerer, I., Hornik, K., & Meyer, D. (2008). Text mining infrastructure in R. Journal of Statistical Software, 25(5), 1–54. 10.18637/jss.v025.i05
- 20File, B., Keczer, Z., Vancsó, A., Böthe, B., Tóth-Király, I., Hunyadi, M., Ujhelyi, A., Ulbert, I., Góth, J., & Orosz, G. (2019). Emergence of polarized opinions from free association networks. Behavior Research Methods, 51(1), 280–294. 10.3758/s13428-018-1090-z
- 21Galton, F. (1883). Inquiries into human faculty and its development. MacMillan. 10.1037/14178-000
- 22Gao, C., Shinkareva, S. V., & Desai, R. H. (2023). SCOPE: The South Carolina psycholinguistic metabase. Behavior Research Methods, 55(6), 2853–2884. 10.3758/s13428-022-01934-0
- 23Haslbeck, J. M. B., & Wulff, D. U. (2020). Estimating the number of clusters via a corrected clustering instability. Computational Statistics, 35(4), 1879–1894. 10.1007/s00180-020-00981-5
- 24Hennig, C. (2015). Clustering strategy and method selection. arXiv. 10.48550/arXiv.1503.02059
- 25Hertwig, R., Wulff, D. U., & Mata, R. (2019). Three gaps and what they may mean for risk preference. Philosophical Transactions of the Royal Society B, 374(1766), Article
20180140 . 10.1098/rstb.2018.0140 - 26Hussain, Z., Binz, M., Mata, R., & Wulff, D. U. (2024). A tutorial on open-source large language models for behavioral science. Behavior Research Methods, 1–24. 10.3758/s13428-024-02455-8
- 27Hussain, Z., Mata, R., Newell, B. R., & Wulff, D. U. (2024). Probing the contents of text, behavior, and brain data toward improving human-LLM alignment [Manuscript in preparation].
- 28Hussain, Z., Mata, R., & Wulff, D. U. (2024). Novel embeddings improve the prediction of risk perception. EPJ Data Science, 13, Article 38. 10.1140/epjds/s13688-024-00478-x
- 29Jung, C. G. (1910). The association method. The American Journal of Psychology, 21(2), 219–269. 10.2307/1413002
- 30Kenett, Y. N., Anaki, D., & Faust, M. (2014). Investigating the structure of semantic networks in low and high creative persons. Frontiers in Human Neuroscience, 8, Article 407. 10.3389/fnhum.2014.00407
- 31Kiss, G. R., Armstrong, C., Milroy, R., & Piper, J. (1973).
An associative thesaurus of English and its computer analysis . In A. J. Aitken (Ed.), The computer and literary studies (pp. 153–165). University Press. - 32Koll, O., von Wallpach, S., & Kreuzer, M. (2010). Multi-method research on consumer–brand associations: Comparing free associations, storytelling, and collages. Psychology & Marketing, 27(6), 584–602. 10.1002/mar.20346
- 33Lakens, D. (2024). When and how to deviate from a preregistration. Collabra: Psychology, 10(1), Article
117094 . 10.1525/collabra.117094 - 34Mata, R., Frey, R., Richter, D., Schupp, J., & Hertwig, R. (2018). Risk preference: A view from psychology. Journal of Economic Perspectives, 32(2), 155–172. 10.1257/jep.32.2.155
- 35McInnes, L., Healy, J., & Melville, J. (2018). UMAP: uniform manifold approximation and projection for dimension reduction. arXiv. 10.48550/arXiv.1802.03426
- 36Morais, A. S., Olsson, H., & Schooler, L. J. (2013). Mapping the structure of semantic memory. Cognitive Science, 37(1), 125–145. 10.1111/cogs.12013
- 37Nelson, D. L., Mcevoy, C. L., & Dennis, S. (2000). What is free association and what does it measure? Memory & Cognition, 28(6), 887–899. 10.3758/BF03209337
- 38Nelson, D. L., McEvoy, C. L., & Schreiber, T. A. (2004). The University of South Florida free association, rhyme, and word fragment norms. Behavior Research Methods, Instruments, & Computers, 36(3), 402–407. 10.3758/BF03195588
- 39OpenAI. (2023). GPT-4 technical report. arXiv. 10.48550/arXiv.2303.08774
- 40R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
https://www.R-project.org/ - 41Richie, R., & Bhatia, S. (2021). Similarity judgment within and across categories: A comprehensive model comparison. Cognitive Science, 45(8), Article
e13030 . 10.1111/cogs.13030 - 42Schnabel, K., & Asendorpf, J. B. (2013). Free associations as a measure of stable implicit attitudes. European Journal of Personality, 27(1), 39–50. 10.1002/per.1890
- 43Selwyn, N., & Gallo Cordoba, B. (2022). Australian public understandings of artificial intelligence. AI & Society, 37(4), 1645–1662. 10.1007/s00146-021-01268-z
- 44Stella, M., De Nigris, S., Aloric, A., & Siew, C. S. (2019). Forma mentis networks quantify crucial differences in STEM perception between students and experts. PloS one, 14(10),
e0222870 . 10.1371/journal.pone.0222870 - 45Sternberg, R. J., Conway, B. E., Ketron, J. L., & Bernstein, M. (1981). People’s conceptions of intelligence. Journal of Personality and Social Psychology, 41(1), 37–55. 10.1037/0022-3514.41.1.37
- 46Steyvers, M., & Tenenbaum, J. B. (2005). The large-scale structure of semantic networks: Statistical analyses and a model of semantic growth. Cognitive Science, 29(1), 41–78. 10.1207/s15516709cog2901_3
- 47Sucholutsky, I., Muttenthaler, L., Weller, A., Peng, A., Bobu, A., Kim, B., Love, B. C., Grant, E., Groen, I., Achterberg, J., Tenenbaum, J. B., Collins, K. M., Hermann, K. L., Oktar, K., Greff, K., Hebart, M. N., Jacoby, N., Zhang, Q., Marjieh, R., … Griffiths, T. L. (2023). Getting aligned on representational alignment. arXiv. 10.48550/arXiv.2310.13018
- 48Szalay, L. B., & Brent, J. E. (1967). The analysis of cultural meanings through free verbal associations. The Journal of Social Psychology, 72(2), 161–187. 10.1080/00224545.1967.9922313
- 49Szollosi, A., & Newell, B. R. (2020). People as intuitive scientists: Reconsidering statistical explanations of decision making. Trends in Cognitive Sciences, 24(12), 1008–1018. 10.1016/j.tics.2020.09.005
- 50Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(2), 411–423. 10.1111/1467-9868.00293
- 51Vankrunkelsven, H., Verheyen, S., Storms, G., & De Deyne, S. (2018). Predicting lexical norms: A comparison between a word association model and text-based word co-occurrence models. Journal of Cognition, 1(1), Article
45 . 10.5334/joc.50 - 52Wang, Y., Huang, H., Rudin, C., & Shaposhnik, Y. (2021). Understanding how dimension reduction tools work: An empirical approach to deciphering t-SNE, UMAP, TriMAP, and PaCMAP for data visualization. The Journal of Machine Learning Research, 22(1), 9129–9201.
- 53Warriner, A. B., Kuperman, V., & Brysbaert, M. (2013). Norms of valence, arousal, and dominance for 13,915 English lemmas. Behavior Research Methods, 45(4), 1191–1207. 10.3758/s13428-012-0314-x
- 54Wickham, H. (2023). Stringr: Simple, consistent wrappers for common string operations [R package version 1.5.1,
https://github.com/tidyverse/stringr ].https://stringr.tidyverse.org - 55Wijffels, J. (2023). Udpipe: Tokenization, parts of speech tagging, lemmatization and dependency parsing with the ‘UDPipe’ ‘NLP’ toolkit [R package version 0.8.11].
https://CRAN.R-project.org/package=udpipe - 56Wulff, D. U., Aeschbach, S., Deyne, S. D., & Mata, R. (2022). Data from the MySWOW proof-of-concept study: Linking individual semantic networks and cognitive performance. Journal of Open Psychology Data, 10(1), Article
5 . 10.5334/jopd.55 - 57Wulff, D. U., De Deyne, S., Aeschbach, S., & Mata, R. (2022). Using network science to understand the aging lexicon: Linking individuals’ experience, semantic networks, and cognitive performance. Topics in Cognitive Science, 14(1), 93–110. 10.1111/tops.12586
- 58Wulff, D. U., De Deyne, S., Jones, M. N., & Mata, R. (2019). New perspectives on the aging lexicon. Trends in Cognitive Sciences, 23(8), 686–698. 10.1016/j.tics.2019.05.003
- 59Wulff, D. U., Hills, T. T., & Mata, R. (2022). Structural differences in the semantic networks of younger and older adults. Scientific Reports, 12(1),
Article: 21459 . 10.1038/s41598-022-11698-4 - 60Wulff, D. U., & Mata, R. (2022). On the semantic representation of risk. Science Advances, 8(27), Article
eabm1883 . 10.1126/sciadv.abm1883 - 61Wulff, D. U., & Mata, R. (2023). Automated jingle–jangle detection: Using embeddings to tackle taxonomic incommensurability. PsyArXiv. 10.31234/osf.io/9h7aw
- 62Zaller, J., & Feldman, S. (1992). A simple theory of the survey response: Answering questions versus revealing preferences. American Journal of Political Science, 36(3), 579–616. 10.2307/2111583
