References
- Angele, B., Tran, R., & Rayner, K. (2013). Parafoveal-Foveal Overlap Can Facilitate Ongoing Word Identification During Reading: Evidence From Eye Movements. Journal of Experimental Psychology-Human Perception and Performance, 39(2), 526–538. <Go to ISI>://WOS:000316519400018. DOI: 10.1037/a0029492
- Bentin, S., Kutas, M., & Hillyard, S. A. (1995). Semantic processing and memory for attended and unattended words in dichotic listening: behavioral and electrophysiological evidence. Journal of Experimental Psychology. Human Perception and Performance, 21(1), 54–67.
http://www.ncbi.nlm.nih.gov/pubmed/7707033 . DOI: 10.1037/0096-1523.21.1.54 - Benzitoun, C., Fort, K., & Sagot, B. (2012). TCOF-POS: un corpus libre de français parlé annoté en morphosyntaxe. JEP-TALN 2012-Journées d’Études sur la Parole et conférence annuelle du Traitement Automatique des Langues Naturelles,
- Cheyette, S. J., & Plaut, D. C. (2017). Modeling the N400 ERP component as transient semantic over-activation within a neural network model of word comprehension. Cognition, 162, 153–166. DOI: 10.1016/j.cognition.2016.10.016
- Dare, N., & Shillcock, R. (2013). Serial and parallel processing in reading: Investigating the effects of parafoveal orthographic information on nonisolated word recognition. Quarterly Journal of Experimental Psychology, 66(3), 487–504. DOI: 10.1080/17470218.2012.703212
- Davis, C. J. (2010). SOLAR versus SERIOL revisited. European Journal of Cognitive Psychology, 22(5), 695–724. DOI: 10.1080/09541440903155682
- DeLong, K. A., & Kutas, M. (2020). Comprehending surprising sentences: sensitivity of post-N400 positivities to contextual congruity and semantic relatedness. Language, Cognition and Neuroscience, 35(8), 1044–1063. DOI: 10.1080/23273798.2019.1708960
- DeLong, K. A., Urbach, T. P., & Kutas, M. (2005). Probabilistic word pre-activation during language comprehension inferred from electrical brain activity. Nature Neuroscience, 8(8), 1117–1121. DOI: 10.1038/nn1504
- Duñabeitia, J. A., Molinaro, N., Laka, I., Estévez, A., & Carreiras, M. (2009). N250 effects for letter transpositions depend on lexicality: ‘Casual’ or ‘causal’? Neuroreport, 20, 381–387. DOI: 10.1097/WNR.0b013e3283249b1c
- Engbert, R., Nuthmann, A., Richter, E. M., & Kliegl, R. (2005). SWIFT: A dynamical model of saccade generation during reading. Psychological Review, 112(4), 777–813. DOI: 10.1037/0033-295x.112.4.777
- Ferrand, L., New, B., Brysbaert, M., Keuleers, E., Bonin, P., Méot, A., Augustinova, M., & Pallier, C. (2010). The French Lexicon Project: Lexical decision data for 38,840 French words and 38,840 pseudowords. Behavior Research Methods, 42, 488–496. DOI: 10.3758/BRM.42.2.488
- Gomez, P., Ratcliff, R., & Perea, M. (2008). The overlap model: A model of letter position coding. Psychological Review, 115(3), 577–601. <Go to ISI>://WOS:000258016400003. DOI: 10.1037/a0012667
- Grainger, J. (2008). Cracking the orthographic code. International Journal of Psychology, 43(3–4), 348–348. <Go to ISI>://WOS:000259264304140
- Grainger, J., Dufau, S., & Ziegler, J. C. (2016). A Vision of Reading. Trends in Cognitive Sciences, 20(3), 171–179. DOI: 10.1016/j.tics.2015.12.008
- Grainger, J., & Holcomb, P. J. (2009). An ERP investigation of orthographic priming with relative-position and absolute-position primes. Brain Research, 1270, 45–53. <Go to ISI>://WOS:000266351800006. DOI: 10.1016/j.brainres.2009.02.080
- Grainger, J., Kiyonaga, K., & Holcomb, P. J. (2006). The time course of orthographic and phonological code activation. Psychol Sci, 17(12), 1021–1026. DOI: 10.1111/j.1467-9280.2006.01821.x
- Grainger, J., Tydgat, I., & Isselé, J. (2010). Crowding affects letters and symbols differently. Journal of Experimental Psychology: Human Perception and Performance, 36, 673–688. DOI: 10.1037/a0016888
- Grainger, J., & van Heuven, W. J. B. (2003).
Modeling letter position coding in printed word perception . In P. Bonin (Ed.), The Mental Lexicon (pp. 1–24). Nova Science Publishers. - Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., Parkkonen, L., & Hamalainen, M. S. (2014). MNE software for processing MEG and EEG data. Neuroimage, 86, 446–460. DOI: 10.1016/j.neuroimage.2013.10.027
- Holcomb, P. J. (1988). Automatic and attentional processing: An event-related brain potential analysis of semantic priming. Brain and Language, 35(1), 66–85. DOI: 10.1016/0093-934X(88)90101-0
- Holcomb, P. J., & Grainger, J. (2006). On the time course of visual word recognition: An event-related potential investigation using masked repetition priming. Journal of Cognitive Neuroscience, 18(10), 1631–1643. <Go to ISI>://WOS:000241278500003. DOI: 10.1162/jocn.2006.18.10.1631
- Holcomb, P. J., Grainger, J., & O’rourke, T. (2002). An electrophysiological study of the effects of orthographic neighborhood size on printed word perception. Journal of Cognitive Neuroscience, 14(6), 938–950. DOI: 10.1162/089892902760191153
- Janicas, B. (2022). OB1-reader: The influence of grammar on word recognition. Report. Amsterdam: Vrije Universiteit Amsterdam.
- Kuperberg, G. R., Brothers, T., & Wlotko, E. W. (2020). A Tale of Two Positivities and the N400: Distinct Neural Signatures Are Evoked by Confirmed and Violated Predictions at Different Levels of Representation. Journal of Cognitive Neuroscience, 32(1), 12–35. DOI: 10.1162/jocn_a_01465
- Kutas, M., & Hillyard, S. A. (1980). Reading senseless sentences: Brain potentials reflect semantic incongruity. Science, 207(4427), 203–205. DOI: 10.1126/science.7350657
- Laszlo, S., & Federmeier, K. D. (2009). A beautiful day in the neighborhood: An event-related potential study of lexical relationships and prediction in context. Journal of Memory and Language, 61(3), 326–338. DOI: 10.1016/j.jml.2009.06.004
- Laszlo, S., & Plaut, D. C. (2012). A neurally plausible parallel distributed processing model of event-related potential word reading data. Brain and Language, 120(3), 271–281. DOI: 10.1016/j.bandl.2011.09.001
- Lau, E. F., Holcomb, P. J., & Kuperberg, G. R. (2013). Dissociating N400 effects of prediction from association in single-word contexts. Journal of Cognitive Neuroscience, 25(3), 484–502. DOI: 10.1162/jocn_a_00328
- Levy, R. (2008). Expectation-based syntactic comprehension. Cognition, 106(3), 1126–1177. DOI: 10.1016/j.cognition.2007.05.006
- McClelland, J. L., & Rumelhart, D. E. (1988). Explorations in parallel distributed processing: A handbook of models, programs, and exercises. MIT Press. DOI: 10.7551/mitpress/5617.001.0001
- Meeter, M., Jehee, J., & Murre, J. (2007). Neural models that convince: Model hierarchies and other strategies to bridge the gap between behavior and the brain. Philosophical Psychology, 20(6), 749–772. DOI: 10.1080/09515080701694128
- Meeter, M., Marzouki, Y., Avramiea, A. E., Snell, J., & Grainger, J. (2020). The Role of Attention in Word Recognition: Results from OB1-Reader. Cognitive Science, 44(7). DOI: 10.1111/cogs.12846
- Murakami, S., & Okada, Y. (2006). Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals. The Journal of Physiology, 575(3), 925–936. DOI: 10.1113/jphysiol.2006.105379
- Murphy, K. A., Jogia, J., & Talcott, J. B. (2019). On the neural basis of word reading: A meta-analysis of fMRI evidence using activation likelihood estimation. Journal of Neurolinguistics, 49, 71–83. DOI: 10.1016/j.jneuroling.2018.08.005
- Nieuwland, M. S., Politzer-Ahles, S., Heyselaar, E., Segaert, K., Darley, E., Kazanina, N., Von Grebmer Zu Wolfsthurn, S., Bartolozzi, F., Kogan, V., Ito, A., Meziere, D., Barr, D. J., Rousselet, G. A., Ferguson, H. J., Busch-Moreno, S., Fu, X., Tuomainen, J., Kulakova, E., Husband, E. M., … Huettig, F. (2018). Large-scale replication study reveals a limit on probabilistic prediction in language comprehension. Elife, 7. DOI: 10.7554/eLife.33468
- Nour Eddine, S., Brothers, T., & Kuperberg, G. R. (2022).
Chapter Four - The N400 in silico: A review of computational models . In K. D. Federmeier (Ed.), Psychology of Learning and Motivation (Vol. 76, pp. 123–206). Academic Press. DOI: 10.1016/bs.plm.2022.03.005 - Perea, M., & Gomez, P. (2012). Subtle increases in interletter spacing facilitate the encoding of words during normal reading. PLoS One, 7,
e47568 . DOI: 10.1371/journal.pone.0047568 - Rabe, M. M., Chandra, J., Krugel, A., Seelig, S. A., Vasishth, S., & Engbert, R. (2021). A Bayesian approach to dynamical modeling of eye-movement control in reading of normal, mirrored, and scrambled texts. Psychological Review, 128(5), 803–823. DOI: 10.1037/rev0000268
- Rabovsky, M., Hansen, S. S., & McClelland, J. L. (2018). Modelling the N400 brain potential as change in a probabilistic representation of meaning. Nature Human Behaviour, 2(9), 693–705. DOI: 10.1038/s41562-018-0406-4
- Rabovsky, M., & McRae, K. (2014). Simulating the N400 ERP component as semantic network error: Insights from a feature-based connectionist attractor model of word meaning. Cognition, 132(1), 68–89. DOI: 10.1016/j.cognition.2014.03.010
- Reichle, E. D., Pollatsek, A., Fisher, D. L., & Rayner, K. (1998). Toward a model of eye movement control in reading. Psychological Review, 105(1), 125–157. DOI: 10.1037/0033-295X.105.1.125
- Reichle, E. D., Warren, T., & McConnell, K. (2009). Using E–Z Reader to model the effects of higher level language processing on eye movements during reading. Psychonomic Bulletin & Review, 16(1), 1–21. DOI: 10.3758/Pbr.16.1.1
- Snell, J. (in press). PONG: A Computational Model of Visual Word Recognition Through Bihemispheric Activation. Psychological Review, Manuscript in press.
- Snell, J., & Grainger, J. (2017). The sentence superiority effect revisited. Cognition, 168, 217–221. <Go to ISI>://WOS:000411545500020. DOI: 10.1016/j.cognition.2017.07.003
- Snell, J., & Grainger, J. (2019). Readers Are Parallel Processors. Trends in Cognitive Sciences, 23(7), 537–546. DOI: 10.1016/j.tics.2019.04.006
- Snell, J., Meade, G., Meeter, M., Holcomb, P., & Grainger, J. (2019). An electrophysiological investigation of orthographic spatial integration in reading. Neuropsychologia, 129, 276–283. DOI: 10.1016/j.neuropsychologia.2019.04.009
- Snell, J., Meeter, M., & Grainger, J. (2017). Evidence for simultaneous syntactic processing of multiple words during reading. PLoS One, 12(3). DOI: 10.1371/journal.pone.0173720
- Snell, J., van Leipsig, S., Grainger, J., & Meeter, M. (2018). OB1-reader: The open-bigram model for word recognition and eye movements in text reading. Psychological Review, 125, 969–984. DOI: 10.1037/rev0000119
- Snell, J., Vitu, F., & Grainger, J. (2017). Integration of parafoveal orthographic information during foveal word reading: beyond the sub-lexical level? Quarterly Journal of Experimental Psychology, 70(10), 1984–1996. <Go to ISI>://WOS:000399502500002. DOI: 10.1080/17470218.2016.1217247
- Vigario, R., Sarela, J., Jousmaki, V., Hamalainen, M., & Oja, E. (2000). Independent component approach to the analysis of EEG and MEG recordings. IEEE Trans Biomed Eng, 47(5), 589–593. DOI: 10.1109/10.841330
- Wen, Y., Snell, J., & Grainger, J. (2019). Parallel, cascaded, interactive processing of words during sentence reading. Cognition, 189, 221–226. DOI: 10.1016/j.cognition.2019.04.013
