Have a personal or library account? Click to login
Explaining the Sentence Superiority Effect and N400s Elicited by Words and Short Sentences with OB1-Reader Cover

Explaining the Sentence Superiority Effect and N400s Elicited by Words and Short Sentences with OB1-Reader

Open Access
|Apr 2024

References

  1. Angele, B., Tran, R., & Rayner, K. (2013). Parafoveal-Foveal Overlap Can Facilitate Ongoing Word Identification During Reading: Evidence From Eye Movements. Journal of Experimental Psychology-Human Perception and Performance, 39(2), 526538. <Go to ISI>://WOS:000316519400018. DOI: 10.1037/a0029492
  2. Bentin, S., Kutas, M., & Hillyard, S. A. (1995). Semantic processing and memory for attended and unattended words in dichotic listening: behavioral and electrophysiological evidence. Journal of Experimental Psychology. Human Perception and Performance, 21(1), 5467. http://www.ncbi.nlm.nih.gov/pubmed/7707033. DOI: 10.1037/0096-1523.21.1.54
  3. Benzitoun, C., Fort, K., & Sagot, B. (2012). TCOF-POS: un corpus libre de français parlé annoté en morphosyntaxe. JEP-TALN 2012-Journées d’Études sur la Parole et conférence annuelle du Traitement Automatique des Langues Naturelles,
  4. Cheyette, S. J., & Plaut, D. C. (2017). Modeling the N400 ERP component as transient semantic over-activation within a neural network model of word comprehension. Cognition, 162, 153166. DOI: 10.1016/j.cognition.2016.10.016
  5. Dare, N., & Shillcock, R. (2013). Serial and parallel processing in reading: Investigating the effects of parafoveal orthographic information on nonisolated word recognition. Quarterly Journal of Experimental Psychology, 66(3), 487504. DOI: 10.1080/17470218.2012.703212
  6. Davis, C. J. (2010). SOLAR versus SERIOL revisited. European Journal of Cognitive Psychology, 22(5), 695724. DOI: 10.1080/09541440903155682
  7. DeLong, K. A., & Kutas, M. (2020). Comprehending surprising sentences: sensitivity of post-N400 positivities to contextual congruity and semantic relatedness. Language, Cognition and Neuroscience, 35(8), 10441063. DOI: 10.1080/23273798.2019.1708960
  8. DeLong, K. A., Urbach, T. P., & Kutas, M. (2005). Probabilistic word pre-activation during language comprehension inferred from electrical brain activity. Nature Neuroscience, 8(8), 11171121. DOI: 10.1038/nn1504
  9. Duñabeitia, J. A., Molinaro, N., Laka, I., Estévez, A., & Carreiras, M. (2009). N250 effects for letter transpositions depend on lexicality: ‘Casual’ or ‘causal’? Neuroreport, 20, 381387. DOI: 10.1097/WNR.0b013e3283249b1c
  10. Engbert, R., Nuthmann, A., Richter, E. M., & Kliegl, R. (2005). SWIFT: A dynamical model of saccade generation during reading. Psychological Review, 112(4), 777813. DOI: 10.1037/0033-295x.112.4.777
  11. Ferrand, L., New, B., Brysbaert, M., Keuleers, E., Bonin, P., Méot, A., Augustinova, M., & Pallier, C. (2010). The French Lexicon Project: Lexical decision data for 38,840 French words and 38,840 pseudowords. Behavior Research Methods, 42, 488496. DOI: 10.3758/BRM.42.2.488
  12. Gomez, P., Ratcliff, R., & Perea, M. (2008). The overlap model: A model of letter position coding. Psychological Review, 115(3), 577601. <Go to ISI>://WOS:000258016400003. DOI: 10.1037/a0012667
  13. Grainger, J. (2008). Cracking the orthographic code. International Journal of Psychology, 43(3–4), 348348. <Go to ISI>://WOS:000259264304140
  14. Grainger, J., Dufau, S., & Ziegler, J. C. (2016). A Vision of Reading. Trends in Cognitive Sciences, 20(3), 171179. DOI: 10.1016/j.tics.2015.12.008
  15. Grainger, J., & Holcomb, P. J. (2009). An ERP investigation of orthographic priming with relative-position and absolute-position primes. Brain Research, 1270, 4553. <Go to ISI>://WOS:000266351800006. DOI: 10.1016/j.brainres.2009.02.080
  16. Grainger, J., Kiyonaga, K., & Holcomb, P. J. (2006). The time course of orthographic and phonological code activation. Psychol Sci, 17(12), 10211026. DOI: 10.1111/j.1467-9280.2006.01821.x
  17. Grainger, J., Tydgat, I., & Isselé, J. (2010). Crowding affects letters and symbols differently. Journal of Experimental Psychology: Human Perception and Performance, 36, 673688. DOI: 10.1037/a0016888
  18. Grainger, J., & van Heuven, W. J. B. (2003). Modeling letter position coding in printed word perception. In P. Bonin (Ed.), The Mental Lexicon (pp. 124). Nova Science Publishers.
  19. Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., Parkkonen, L., & Hamalainen, M. S. (2014). MNE software for processing MEG and EEG data. Neuroimage, 86, 446460. DOI: 10.1016/j.neuroimage.2013.10.027
  20. Holcomb, P. J. (1988). Automatic and attentional processing: An event-related brain potential analysis of semantic priming. Brain and Language, 35(1), 6685. DOI: 10.1016/0093-934X(88)90101-0
  21. Holcomb, P. J., & Grainger, J. (2006). On the time course of visual word recognition: An event-related potential investigation using masked repetition priming. Journal of Cognitive Neuroscience, 18(10), 16311643. <Go to ISI>://WOS:000241278500003. DOI: 10.1162/jocn.2006.18.10.1631
  22. Holcomb, P. J., Grainger, J., & O’rourke, T. (2002). An electrophysiological study of the effects of orthographic neighborhood size on printed word perception. Journal of Cognitive Neuroscience, 14(6), 938950. DOI: 10.1162/089892902760191153
  23. Janicas, B. (2022). OB1-reader: The influence of grammar on word recognition. Report. Amsterdam: Vrije Universiteit Amsterdam.
  24. Kuperberg, G. R., Brothers, T., & Wlotko, E. W. (2020). A Tale of Two Positivities and the N400: Distinct Neural Signatures Are Evoked by Confirmed and Violated Predictions at Different Levels of Representation. Journal of Cognitive Neuroscience, 32(1), 1235. DOI: 10.1162/jocn_a_01465
  25. Kutas, M., & Hillyard, S. A. (1980). Reading senseless sentences: Brain potentials reflect semantic incongruity. Science, 207(4427), 203205. DOI: 10.1126/science.7350657
  26. Laszlo, S., & Federmeier, K. D. (2009). A beautiful day in the neighborhood: An event-related potential study of lexical relationships and prediction in context. Journal of Memory and Language, 61(3), 326338. DOI: 10.1016/j.jml.2009.06.004
  27. Laszlo, S., & Plaut, D. C. (2012). A neurally plausible parallel distributed processing model of event-related potential word reading data. Brain and Language, 120(3), 271281. DOI: 10.1016/j.bandl.2011.09.001
  28. Lau, E. F., Holcomb, P. J., & Kuperberg, G. R. (2013). Dissociating N400 effects of prediction from association in single-word contexts. Journal of Cognitive Neuroscience, 25(3), 484502. DOI: 10.1162/jocn_a_00328
  29. Levy, R. (2008). Expectation-based syntactic comprehension. Cognition, 106(3), 11261177. DOI: 10.1016/j.cognition.2007.05.006
  30. McClelland, J. L., & Rumelhart, D. E. (1988). Explorations in parallel distributed processing: A handbook of models, programs, and exercises. MIT Press. DOI: 10.7551/mitpress/5617.001.0001
  31. Meeter, M., Jehee, J., & Murre, J. (2007). Neural models that convince: Model hierarchies and other strategies to bridge the gap between behavior and the brain. Philosophical Psychology, 20(6), 749772. DOI: 10.1080/09515080701694128
  32. Meeter, M., Marzouki, Y., Avramiea, A. E., Snell, J., & Grainger, J. (2020). The Role of Attention in Word Recognition: Results from OB1-Reader. Cognitive Science, 44(7). DOI: 10.1111/cogs.12846
  33. Murakami, S., & Okada, Y. (2006). Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals. The Journal of Physiology, 575(3), 925936. DOI: 10.1113/jphysiol.2006.105379
  34. Murphy, K. A., Jogia, J., & Talcott, J. B. (2019). On the neural basis of word reading: A meta-analysis of fMRI evidence using activation likelihood estimation. Journal of Neurolinguistics, 49, 7183. DOI: 10.1016/j.jneuroling.2018.08.005
  35. Nieuwland, M. S., Politzer-Ahles, S., Heyselaar, E., Segaert, K., Darley, E., Kazanina, N., Von Grebmer Zu Wolfsthurn, S., Bartolozzi, F., Kogan, V., Ito, A., Meziere, D., Barr, D. J., Rousselet, G. A., Ferguson, H. J., Busch-Moreno, S., Fu, X., Tuomainen, J., Kulakova, E., Husband, E. M., … Huettig, F. (2018). Large-scale replication study reveals a limit on probabilistic prediction in language comprehension. Elife, 7. DOI: 10.7554/eLife.33468
  36. Nour Eddine, S., Brothers, T., & Kuperberg, G. R. (2022). Chapter Four - The N400 in silico: A review of computational models. In K. D. Federmeier (Ed.), Psychology of Learning and Motivation (Vol. 76, pp. 123206). Academic Press. DOI: 10.1016/bs.plm.2022.03.005
  37. Perea, M., & Gomez, P. (2012). Subtle increases in interletter spacing facilitate the encoding of words during normal reading. PLoS One, 7, e47568. DOI: 10.1371/journal.pone.0047568
  38. Rabe, M. M., Chandra, J., Krugel, A., Seelig, S. A., Vasishth, S., & Engbert, R. (2021). A Bayesian approach to dynamical modeling of eye-movement control in reading of normal, mirrored, and scrambled texts. Psychological Review, 128(5), 803823. DOI: 10.1037/rev0000268
  39. Rabovsky, M., Hansen, S. S., & McClelland, J. L. (2018). Modelling the N400 brain potential as change in a probabilistic representation of meaning. Nature Human Behaviour, 2(9), 693705. DOI: 10.1038/s41562-018-0406-4
  40. Rabovsky, M., & McRae, K. (2014). Simulating the N400 ERP component as semantic network error: Insights from a feature-based connectionist attractor model of word meaning. Cognition, 132(1), 6889. DOI: 10.1016/j.cognition.2014.03.010
  41. Reichle, E. D., Pollatsek, A., Fisher, D. L., & Rayner, K. (1998). Toward a model of eye movement control in reading. Psychological Review, 105(1), 125157. DOI: 10.1037/0033-295X.105.1.125
  42. Reichle, E. D., Warren, T., & McConnell, K. (2009). Using E–Z Reader to model the effects of higher level language processing on eye movements during reading. Psychonomic Bulletin & Review, 16(1), 121. DOI: 10.3758/Pbr.16.1.1
  43. Snell, J. (in press). PONG: A Computational Model of Visual Word Recognition Through Bihemispheric Activation. Psychological Review, Manuscript in press.
  44. Snell, J., & Grainger, J. (2017). The sentence superiority effect revisited. Cognition, 168, 217221. <Go to ISI>://WOS:000411545500020. DOI: 10.1016/j.cognition.2017.07.003
  45. Snell, J., & Grainger, J. (2019). Readers Are Parallel Processors. Trends in Cognitive Sciences, 23(7), 537546. DOI: 10.1016/j.tics.2019.04.006
  46. Snell, J., Meade, G., Meeter, M., Holcomb, P., & Grainger, J. (2019). An electrophysiological investigation of orthographic spatial integration in reading. Neuropsychologia, 129, 276283. DOI: 10.1016/j.neuropsychologia.2019.04.009
  47. Snell, J., Meeter, M., & Grainger, J. (2017). Evidence for simultaneous syntactic processing of multiple words during reading. PLoS One, 12(3). DOI: 10.1371/journal.pone.0173720
  48. Snell, J., van Leipsig, S., Grainger, J., & Meeter, M. (2018). OB1-reader: The open-bigram model for word recognition and eye movements in text reading. Psychological Review, 125, 969984. DOI: 10.1037/rev0000119
  49. Snell, J., Vitu, F., & Grainger, J. (2017). Integration of parafoveal orthographic information during foveal word reading: beyond the sub-lexical level? Quarterly Journal of Experimental Psychology, 70(10), 19841996. <Go to ISI>://WOS:000399502500002. DOI: 10.1080/17470218.2016.1217247
  50. Vigario, R., Sarela, J., Jousmaki, V., Hamalainen, M., & Oja, E. (2000). Independent component approach to the analysis of EEG and MEG recordings. IEEE Trans Biomed Eng, 47(5), 589593. DOI: 10.1109/10.841330
  51. Wen, Y., Snell, J., & Grainger, J. (2019). Parallel, cascaded, interactive processing of words during sentence reading. Cognition, 189, 221226. DOI: 10.1016/j.cognition.2019.04.013
DOI: https://doi.org/10.5334/joc.358 | Journal eISSN: 2514-4820
Language: English
Submitted on: Sep 1, 2023
|
Accepted on: Mar 26, 2024
|
Published on: Apr 17, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Noor Seijdel, Gina Stolwijk, Beatriz Janicas, Joshua Snell, Martijn Meeter, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.