Have a personal or library account? Click to login
Modelling of Musical Perception using Spectral Knowledge Representation Cover

Modelling of Musical Perception using Spectral Knowledge Representation

Open Access
|Apr 2024

References

  1. Baars, B. J. (1988). A cognitive theory of consciousness. Cambridge University Press.
  2. Balzano, G. J. (1977). Chronometric Studies of the Musical Interval Sense. PhD thesis, Stanford University.
  3. Bernardes, G., Cocharro, D., Caetano, M., Guedes, C., & Davies, M. E. (2016). A multilevel tonal interval space for modelling pitch relatedness and musical consonance. Journal of New Music Research, 45(4), 281294. DOI: 10.1080/09298215.2016.1182192
  4. Brachman, R. J., & Levesque, H. J. (Eds.) (1985). Readings in Knowledge Representation. San Francisco, CA: Morgan Kaufmann.
  5. Brachman, R., & Levesque, H. (1992). Knowledge Representation. London: MIT Press.
  6. Chew, E. (2014). Mathematical and Computational Modeling of Tonality: Theory and Applications, volume 204 of International Series on Operations Research and Management Science. New York, NY: Springer. DOI: 10.1007/978-1-4614-9475-1_1
  7. Christensen, T., & Rameau, J.-P. (1987). Eighteenth-century science and the “corps sonore:” the scientific background to rameau’s “principle of harmony”. Journal of Music Theory, 31(1), 2350. DOI: 10.2307/843545
  8. Davis, S., & Mermelstein, P. (1980). Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Transactions on Acoustics, Speech, and Signal Processing, 28(4), 357366. DOI: 10.1109/TASSP.1980.1163420
  9. Forth, J., Agres, K., Purver, M., & Wiggins, G. A. (2016). Entraining IDyOT: timing in the information dynamics of thinking. Frontiers in Psychology, 7, 1575. DOI: 10.3389/fpsyg.2016.01575
  10. Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127138. DOI: 10.1038/nrn2787
  11. Friston, K. J. (2011). Functional and effective connectivity: a review. Brain connectivity, 1(1), 1336. DOI: 10.1089/brain.2011.0008
  12. Friston, K. J., Kahan, J., Razi, A., Stephan, K. E., & Sporns, O. (2014). On nodes and modes in resting state fmri. NeuroImage, 99, 533547. DOI: 10.1016/j.neuroimage.2014.05.056
  13. Gärdenfors, P. (2000). Conceptual Spaces: the geometry of thought. Cambridge, MA: MIT Press. DOI: 10.7551/mitpress/2076.001.0001
  14. Groschner, L. N., Malis, J. G., Zuidinga, B., & Borst, A. (2022). A biophysical account of multiplication by a single neuron. Nature, 603(7899), 119123. DOI: 10.1038/s41586-022-04428-3
  15. Harrison, P. M. C., & Pearce, M. T. (2018). An energy-based generative sequence model for testing sensory theories of Western harmony.
  16. Harte, C., Sandler, M., & Gasser, M. (2006). Detecting harmonic change in musical audio. In Proceedings of the 1st ACM Workshop on Audio and Music Computing Multimedia, pages 2126, New York. ACM. DOI: 10.1145/1178723.1178727
  17. Hedges, T. W. (2017). Advances in Multiple Viewpoint Systems and Applications in Modelling Higher Order Musical Structure. PhD thesis, Queen Mary University of London.
  18. Hedges, T. W., & Wiggins, G. A. (2016). Improving predictions of derived viewpoints in multiple viewpoint systems. In Proceedings of ISMIR 2016.
  19. Helmholtz, H. (1954). On the Sensations of Tone as a Physiological Basis for the Theory of Music. Dover, New York, second edition. Translated by A. Ellis (originally published 1877).
  20. Homer, S. T., Harley, N., & Wiggins, G. A. (forthcoming). The Discrete Resonance Spectrogram: a novel method for precise determination of spectral content. In preparation.
  21. Hoppensteadt, F. C., & Izhikevich, E. M. (1996). Synaptic organizations and dynamical properties of weakly connected neural oscillators. Biological Cybernetics, 75(2), 117127. DOI: 10.1007/s004220050279
  22. Kennedy, R. A., & Sadeghi, P. (2013). Hilbert Space Methods in Signal Processing. Cambridge, UK: Cambridge University Press. DOI: 10.1017/CBO9780511844515
  23. Klapuri, A. (2006). Multiple fundamental frequency estimation by summing harmonic amplitudes. In Proceedings of ISMIR 2006.
  24. Kraus, N., & Nicol, T. (2019). Brainstem encoding of speech and music sounds in humans. In The Oxford Handbook of the Auditory Brainstem, pages (on–line version). Oxford University Press. DOI: 10.1093/oxfordhb/9780190849061.013.26
  25. Krumhansl, C. L., & Kessler, E. J. (1982). Tracing the dynamic changes in perceived tonal organisation in a spatial representation of musical keys. Psychological Review, 89(4), 334368. DOI: 10.1037/0033-295X.89.4.334
  26. Krumhansl, C. L., & Shepard, R. N. (1979). Quantification of the hierarchy of tonal functions within a diatonic context. Journal of Experimental Psychology: Human Perception and Performance, 5(4), 579594. DOI: 10.1037//0096-1523.5.4.579
  27. Large, E. W. (2006). A generic nonlinear model for auditory perception. In A. L. Nuttall, T. Ren, P. Gillespie, K. Grosh & E. de Boer (Eds.), Auditory Mechanisms: Processes and Models, pages 516517. Singapore: World Scientific. DOI: 10.1142/9789812773456_0087
  28. Large, E. W., Almonte, F., & Velasco, M. (2010). A canonical model for gradient frequency neural networks. Physica D. DOI: 10.1016/j.physd.2009.11.015
  29. Lerdahl, F. (2001). Tonal Pitch Space. Oxford: Oxford University Press.
  30. Lerud, K. D., Kim, J. C., Almonte, F. V., Carney, L. H., & Large, E. W. (2019a). A canonical oscillator model of cochlear dynamics. Hearing Research, 380, 100107. DOI: 10.1016/j.heares.2019.06.001
  31. Lerud, K. D., Kim, J. C., Almonte, F. V., Carney, L. H., & Large, E. W. (2019b). A canonical oscillator model of cochlear dynamics. Hearing Research, 380, 100107. DOI: 10.1016/j.heares.2019.06.001
  32. Lindeberg, T., & Friberg, A. (2015). Idealized computational models for auditory receptive fields. PLOS ONE, 10(3), 158. DOI: 10.1371/journal.pone.0119032
  33. Longuet-Higgins, H. C. (1962a). Letter to a musical friend. The musical review, 23, 2448, 271–80.
  34. Longuet-Higgins, H. C. (1962b). Second letter to a musical friend. The Music Review, 23, 271280.
  35. Mallat, S. G. (2009). A Wavelet Tour of Signal Processing: The Sparse Way. Elsevier/Academic Press, 3rd ed edition.
  36. Mehotra, K., Mohan, C. K., & Ranka, S. (1996). Elements of Artificial Neural Networks. Bradford Books. DOI: 10.7551/mitpress/2687.001.0001
  37. Milne, A. (2013). A Computational Model of the Cognition of Tonality. PhD thesis, The Open University.
  38. Milne, A. J., & Holland, S. (2016). Empirically testing tonnetz, voice-leading, and spectral models of perceived triadic distance. Journal of Mathematics and Music, 10(1), 5985. DOI: 10.1080/17459737.2016.1152517
  39. Milne, A. J., Laney, R., & Sharp, D. B. (2015). A spectral pitch class model of the probe tone data and scalic tonality. Music Perception, 32(4), 364393. DOI: 10.1525/mp.2015.32.4.364
  40. Milne, A. J., Prechtl, A., Laney, R., & Sharp, D. B. (2010). Spectral pitch distance and microtonal melodies. In Proceedings of the International Conference of Music Perception and Cognition 2010 (ICMPC 11).
  41. Milne, A. J., Sethares, W. A., Laney, R., & Sharp, D. B. (2011). Modelling the similarity of pitch collections with expectation tensor. Journal of Mathematics and Music, 5(1), 120. DOI: 10.1080/17459737.2011.573678
  42. Muggleton, S. (1991). Inductive logic programming. New Generation Computing, 8(4), 295318. DOI: 10.1007/BF03037089
  43. Needham, T. (2021). Visual Differential Geometry and Forms: A Mathematical Drama in Five Acts. Princeton University Press. DOI: 10.1515/9780691219899
  44. Oppenheim, A. V. & Schafer, R. W. (2010). Discrete-Time Signal Processing. Pearson, 3rd ed edition.
  45. Parncutt, R. (2011). The tonic as triad: Key profiles as pitch salience profiles of tonic triads. Music Perception, 28(4), 333366. DOI: 10.1525/mp.2011.28.4.333
  46. Pearce, M. T. (2005). The Construction and Evaluation of Statistical Models of Melodic Structure in Music Perception and Composition. PhD thesis, London, London, UK: Department of Computing, City University.
  47. Pearce, M. T., Müllensiefen, D., & Wiggins, G. A. (2010). The role of expectation and probabilistic learning in auditory boundary perception: A model comparison. Perception, 39(10), 13671391. DOI: 10.1068/p6507
  48. Pearce, M. T., & Wiggins, G. A. (2012). Auditory expectation: The information dynamics of music perception and cognition. Topics in Cognitive Science, 4(4), 625652. DOI: 10.1111/j.1756-8765.2012.01214.x
  49. Rameau, J.-P. (1722). Traité de l’harmonie réduite à ses principes naturels. Ballard, Paris.
  50. Rumelhart, D. E., & McClelland, J. L. (1986). Parallel Distributed Processing: Exploration in the Microstructure of Cognition. Cambridge, MA: MIT Press. Volumes 1 and 2. DOI: 10.7551/mitpress/5236.001.0001
  51. Saenz, M., & Langers, D. R. (2014). Tonotopic mapping of human auditory cortex. Hearing Research, 307, 4252. Human Auditory NeuroImaging. DOI: 10.1016/j.heares.2013.07.016
  52. Shannon, C. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379423, 623–56. DOI: 10.1002/j.1538-7305.1948.tb00917.x
  53. Shepard, R. N. (1982). Geometrical approximations to the structure of musical pitch. Psychological Review, 89(4): 305333. DOI: 10.1037//0033-295X.89.4.305
  54. Skoe, E., & Kraus, N. (2010). Auditory brain stem response to complex sounds: a tutorial. Ear and hearing, 31(3), 302324. DOI: 10.1097/AUD.0b013e3181cdb272
  55. Spivey, M. (2008). The Continuity of Mind. Oxford University Press.
  56. Strogatz, S. H. (2015). Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Westview Press, a member of the Perseus Books Group, Boulder, CO, second edition edition.
  57. Vernon, D. (2014). Artificial Cognitive Systems: A Primer. Cambridge, MA: MIT Press.
  58. Ward, L. M., & Greenwood, P. E. (2007). 1/f noise. Scholarpedia, 2(12), 1537. revision #137265. DOI: 10.4249/scholarpedia.1537
  59. Weiss, T. F. (1996). Cellular Biophysics. Cambridge, MA, USA: MIT Press.
  60. Wiggins, G. A. (2011). Computer models of (music) cognition. In P. Rebuschat, M. Rohrmeier, I. Cross & J. Hawkins (Eds.), Language and Music as Cognitive Systems, pages 169188. Oxford: Oxford University Press. DOI: 10.1093/acprof:oso/9780199553426.003.0018
  61. Wiggins, G. A. (2012). The mind’s chorus: Creativity before consciousness. Cognitive Computation, 4(3), 306319. DOI: 10.1007/s12559-012-9151-6
  62. Wiggins, G. A. (2020). Creativity, information, and consciousness: the information dynamics of thinking. Physics of Life Reviews, 34–35:139. DOI: 10.1016/j.plrev.2018.05.001
  63. Wiggins, G. A., & Forth, J. C. (2015). IDyOT: A computational theory of creativity as everyday reasoning from learned information. In T. R. Besold, M. Schorlemmer & A. Smaill (Eds.), Computational Creativity Research: Towards Creative Machines, Atlantis Thinking Machines, pages 127150. Atlantis/Springer. DOI: 10.2991/978-94-6239-085-0_7
  64. Wiggins, G. A., & Sanjekdar, A. (2019). Learning and consolidation as re-representation: revising the meaning of memory. Frontiers in Psychology: Cognitive Science, 10(802). DOI: 10.3389/fpsyg.2019.00802
DOI: https://doi.org/10.5334/joc.356 | Journal eISSN: 2514-4820
Language: English
Submitted on: Nov 30, 2022
|
Accepted on: Mar 8, 2024
|
Published on: Apr 8, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Steven T. Homer, Nicholas Harley, Geraint A. Wiggins, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.