References
- Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci, 28, 403–450. DOI: 10.1146/annurev.neuro.28.061604.135709
- Awh, E., Armstrong, K. M., & Moore, T. (2006). Visual and oculomotor selection: links, causes and implications for spatial attention. Trends Cogn Sci, 10, 124–130. DOI: 10.1016/j.tics.2006.01.001
- Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends Cogn Sci, 5, 119–126. DOI: 10.1016/S1364-6613(00)01593-X
- Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychol Bull, 91, 276–292. DOI: 10.1037/0033-2909.91.2.276
- Binda, P., & Murray, S. O. (2015a). Keeping a large-pupilled eye on high-level visual processing. Trends Cogn Sci, 19, 1–3. DOI: 10.1016/j.tics.2014.11.002
- Binda, P., & Murray, S. O. (2015b). Spatial attention increases the pupillary response to light changes. J Vis, 15, 1. DOI: 10.1167/15.2.1
- Binda, P., Pereverzeva, M., & Murray, S. O. (2013). Attention to bright surfaces enhances the pupillary light reflex. J Neurosci, 33, 2199–2204. DOI: 10.1523/JNEUROSCI.3440-12.2013
- Binda, P., Pereverzeva, M., & Murray, S. O. (2014). Pupil size reflects the focus of feature-based attention. J Neurophysiol, 112, 3046–3052. DOI: 10.1152/jn.00502.2014
- Bisley, J. W. (2011). The neural basis of visual attention. J Physiol, 589, 49–57. DOI: 10.1113/jphysiol.2010.192666
- Bisley, J. W., & Goldberg, M. E. (2010). Attention, intention, and priority in the parietal lobe. Annu Rev Neurosci, 33, 1–21. DOI: 10.1146/annurev-neuro-060909-152823
- Carrasco, M. (2011). Visual attention: the past 25 years. Vision Res, 51, 1484–1525. DOI: 10.1016/j.visres.2011.04.012
- Corneil, B. D., & Munoz, D. P. (2014). Overt Responses during Covert Orienting. Neuron, 82, 1230–1243. DOI: 10.1016/j.neuron.2014.05.040
- de Gee, J. W., Knapen, T., & Donner, T. H. (2014). Decision-related pupil dilation reflects upcoming choice and individual bias. Proc Natl Acad Sci USA, 111, E618–25. DOI: 10.1073/pnas.1317557111
- Dorris, M. C., & Munoz, D. P. (1998). Saccadic probability influences motor preparation signals and time to saccadic initiation. J Neurosci, 18, 7015–7026. DOI: 10.1523/JNEUROSCI.18-17-07015.1998
- Dorris, M. C., Olivier, E., & Munoz, D. P. (2007). Competitive integration of visual and preparatory signals in the superior colliculus during saccadic programming. J Neurosci, 27, 5053–5062. DOI: 10.1523/JNEUROSCI.4212-06.2007
- Dorris, M. C., Paré, M., & Munoz, D. P. (1997). Neuronal activity in monkey superior colliculus related to the initiation of saccadic eye movements. J Neurosci, 17, 8566–8579. DOI: 10.1523/JNEUROSCI.17-21-08566.1997
- Ebitz, R. B., & Platt, M. L. (2015). Neuronal activity in primate dorsal anterior cingulate cortex signals task conflict and predicts adjustments in pupil-linked arousal. Neuron, 85, 628–640. DOI: 10.1016/j.neuron.2014.12.053
- Eldar, E., Cohen, J. D., & Niv, Y. (2013). The effects of neural gain on attention and learning. Nat Neurosci, 16, 1146–1153. DOI: 10.1038/nn.3428
- Fabius, J. H., Mathôt, S., Schut, M. J., Nijboer, T. C. W., & Van der Stigchel, S. (2017). Focus of spatial attention during spatial working memory maintenance: Evidence from pupillary light response. Vis cogn, 25, 10–20. DOI: 10.1080/13506285.2017.1311975
- Gandhi, N. J., & Katnani, H. A. (2011). Motor functions of the superior colliculus. Annu Rev Neurosci, 34, 205–231. DOI: 10.1146/annurev-neuro-061010-113728
- Glimcher, P. W., & Sparks, D. L. (1992). Movement selection in advance of action in the superior colliculus. Nature, 355, 542–545. DOI: 10.1038/355542a0
- Hall, W. C., & Moschovakis, A. (2003).
The Superior Colliculus: New Approaches for Studying Sensorimotor Integration . Methods & New Frontiers in Neuroscience. CRC Press. DOI: 10.1201/9780203501504 - Hanning, N. M., Jonikaitis, D., Deubel, H., & Szinte, M. (2016). Oculomotor selection underlies feature retention in visual working memory. J of Neurophysiology, 115, 1071–1076. DOI: 10.1152/jn.00927.2015
- Hikosaka, O., Takikawa, Y., & Kawagoe, R. (2000). Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev, 80, 953–978. DOI: 10.1152/physrev.2000.80.3.953
- Ikkai, A., & Curtis, C. E. (2011). Common neural mechanisms supporting spatial working memory, attention and motor intention. Neuropsychologia, 49, 1428–1434. DOI: 10.1016/j.neuropsychologia.2010.12.020
- Jerde, T. A., Merriam, E. P., Riggall, A. C., Hedges, J. H., & Curtis, C. E. (2012). Prioritized maps of space in human frontoparietal cortex. J Neurosci, 32, 17382–17390. DOI: 10.1523/JNEUROSCI.3810-12.2012
- Johnston, K., & Everling, S. (2009). Task-relevant output signals are sent from monkey dorsolateral prefrontal cortex to the superior colliculus during a visuospatial working memory task. J Cogn Neurosci, 21, 1023–1038. DOI: 10.1162/jocn.2009.21067
- Joshi, S., Li, Y., Kalwani, R. M., & Gold, J. I. (2016). Relationships between Pupil Diameter and Neuronal Activity in the Locus Coeruleus, Colliculi, and Cingulate Cortex. Neuron, 89, 221–234. DOI: 10.1016/j.neuron.2015.11.028
- Karatekin, C., Bingham, C., & White, T. (2010). Oculomotor and pupillometric indices of pro- and antisaccade performance in youth-onset psychosis and attention deficit/hyperactivity disorder. Schizophr Bull, 36, 1167–1186. DOI: 10.1093/schbul/sbp035
- Kojima, J., Matsumura, M., Togawa, M., & Hikosaka, O. (1996). Tonic activity during visuo-oculomotor behavior in the monkey superior colliculus. Neurosci Res, 26, 17–28. DOI: 10.1016/0168-0102(96)01067-X
- Kowler, E. (2011). Eye movements: the past 25 years. Vision Res, 51, 1457–1483. DOI: 10.1016/j.visres.2010.12.014
- Krauzlis, R. J., Lovejoy, L. P., & Zenon, A. (2013). Superior colliculus and visual spatial attention. Annu Rev Neurosci, 36, 165–182. DOI: 10.1146/annurev-neuro-062012-170249
- Laughlin, S. B. (1992). Retinal information capacity and the function of the pupil. Ophthalmic Physiol Opt, 12, 161–164. DOI: 10.1111/j.1475-1313.1992.tb00281.x
- Lovejoy, L. P., & Krauzlis, R. J. (2010). Inactivation of primate superior colliculus impairs covert selection of signals for perceptual judgments. Nat Neurosci, 13, 261–266. DOI: 10.1038/nn.2470
- Mathôt, S., Dalmaijer, E., Grainger, J., & Van der Stigchel, S. (2014). The pupillary light response reflects exogenous attention and inhibition of return. J Vis, 14, 7. DOI: 10.1167/14.14.7
- Mathôt, S., van der Linden, L., Grainger, J., & Vitu, F. (2015). The pupillary light response reflects eye-movement preparation. J Exp Psychol Hum Percept Perform, 41, 28–35. DOI: 10.1037/a0038653
- Mathôt, S., van der Linden, L., Grainger, J., Vitu, F., Mathôt, S., van der Linden, L., Grainger, J., & Vitu, F. (2013). The pupillary light response reveals the focus of covert visual attention. PLoS One, 8,
e78168 . DOI: 10.1371/journal.pone.0078168 - Mathôt, S., & Van der Stigchel, S. (2015). New Light on the Mind’s Eye: The Pupillary Light Response as Active Vision. Curr Dir Psychol Sci, 24, 374–378. DOI: 10.1177/0963721415593725
- Maunsell, J. H. R. (2015). Neuronal Mechanisms of Visual Attention. Annu Rev Vis Sci, 1, 373–391. DOI: 10.1146/annurev-vision-082114-035431
- McPeek, R. M., & Keller, E. L. (2004). Deficits in saccade target selection after inactivation of superior colliculus. Nat Neurosci, 7, 757–763. DOI: 10.1038/nn1269
- Melcher, D., & Piazza, M. (2011). The role of attentional priority and saliency in determining capacity limits in enumeration and visual working memory. In: Burr, D. C. (ed.), PLoS One, 6,
e29296 . DOI: 10.1371/journal.pone.0029296 - Moore, T., & Zirnsak, M. (2017). Neural Mechanisms of Selective Visual Attention. Annu Rev Psychol, 68, 47–72. DOI: 10.1146/annurev-psych-122414-033400
- Nassar, M. R., Rumsey, K. M., Wilson, R. C., Parikh, K., Heasly, B., & Gold, J. I. (2012). Rational regulation of learning dynamics by pupil-linked arousal systems. Nat Neurosci, 15, 1040–1046. DOI: 10.1038/nn.3130
- Ohl, S., & Rolfs, M. (2017). Saccadic eye movements impose a natural bottleneck on visual short-term memory. J Exp Psychol Learn Mem Cogn, 43, 736–748. DOI: 10.1037/xlm0000338
- Olivers, C. N. L., Peters, J., Houtkamp, R., & Roelfsema, P. R. (2011). Different states in visual working memory: when it guides attention and when it does not. Trends Cogn Sci, 15, 327–334. DOI: 10.1016/j.tics.2011.05.004
- Pare, M., & Wurtz, R. H. (1997). Monkey posterior parietal cortex neurons antidromically activated from superior colliculus. J Neurophysiol, 78, 3493–3497. DOI: 10.1152/jn.1997.78.6.3493
- Pare, M., & Wurtz, R. H. (2001). Progression in neuronal processing for saccadic eye movements from parietal cortex area lip to superior colliculus. J Neurophysiol, 85, 2545–2562. DOI: 10.1152/jn.2001.85.6.2545
- Reimer, J., Froudarakis, E., Cadwell, C. R., Yatsenko, D., Denfield, G. H., & Tolias, A. S. (2014). Pupil fluctuations track fast switching of cortical states during quiet wakefulness. Neuron, 84, 355–362. DOI: 10.1016/j.neuron.2014.09.033
- Rizzolatti, G., Riggio, L., Dascola, I., & Umilta, C. (1987). Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia, 25, 31–40. DOI: 10.1016/0028-3932(87)90041-8
- Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychon Bull Rev, 16, 225–237. DOI: 10.3758/PBR.16.2.225
- Sommer, M. A., & Wurtz, R. H. (2000). Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus. J Neurophysiol, 83, 1979–2001. DOI: 10.1152/jn.2000.83.4.1979
- Soto, D., Hodsoll, J., Rotshtein, P., & Humphreys, G. W. (2008). Automatic guidance of attention from working memory. Trends Cogn Sci, 12, 342–348. DOI: 10.1016/j.tics.2008.05.007
- Srimal, R., & Curtis, C. E. (2008). Persistent neural activity during the maintenance of spatial position in working memory. Neuroimage, 39, 455–468. DOI: 10.1016/j.neuroimage.2007.08.040
- Stuphorn, V., Brown, J. W., & Schall, J. D. (2010). Role of supplementary eye field in saccade initiation: executive, not direct, control. J Neurophysiol, 103, 801–816. DOI: 10.1152/jn.00221.2009
- Thompson K. G., & Bichot, N. P. (2005). A visual salience map in the primate frontal eye field. Prog Brain Res, 147, 249–262. DOI: 10.1016/S0079-6123(04)47019-8
- Unsworth, N., & Robison, M. K. (2017). Pupillary correlates of covert shifts of attention during working memory maintenance. Atten Percept Psychophys, 79, 782–795. DOI: 10.3758/s13414-016-1272-7
- Unsworth, N., & Robison, M. K. (2018). Tracking working memory maintenance with pupillometry. Atten Percept Psychophys, 80, 461–484. DOI: 10.3758/s13414-017-1455-x
- Urai, A. E., Braun, A., & Donner, T. H. (2017). Pupil-linked arousal is driven by decision uncertainty and alters serial choice bias. Nat Commun, 8, 14637. DOI: 10.1038/ncomms14637
- Wang, C.-A., Blohm, G., Huang, J., Boehnke, S. E., & Munoz, D. P. (2017). Multisensory integration in orienting behavior: Pupil size, microsaccades, and saccades. Biol Psychol, 129, 36–44. DOI: 10.1016/j.biopsycho.2017.07.024
- Wang, C.-A., Boehnke, S. E., Itti, L., & Munoz, D. P. (2014). Transient pupil response is modulated by contrast-based saliency. J Neurosci, 34(2), 408–417. DOI: 10.1523/JNEUROSCI.3550-13.2014
- Wang, C.-A., Boehnke, S. E., White, B. J., & Munoz, D. P. (2012). Microstimulation of the monkey superior colliculus induces pupil dilation without evoking saccades. J Neurosci, 32, 3629–3636. DOI: 10.1523/JNEUROSCI.5512-11.2012
- Wang, C.-A., McInnis, H., Brien, D. C., Pari, G., & Munoz, D. P. (2016). Disruption of pupil size modulation correlates with voluntary motor preparation deficits in Parkinson’s disease. Neuropsychologia, 80, 176–184. DOI: 10.1016/j.neuropsychologia.2015.11.019
- Wang, C.-A., & Munoz, D. P. (2014). Modulation of stimulus contrast on the human pupil orienting response. Eur J Neurosci, 40, 2822–2832. DOI: 10.1111/ejn.12641
- Wang, C.-A., & Munoz, D. P. (2015). A circuit for pupil orienting responses: implications for cognitive modulation of pupil size. Curr Opin Neurobiol, 33, 134–140. DOI: 10.1016/j.conb.2015.03.018
- Wardak, C., Ibos, G., Duhamel, J.-R., & Olivier, E. (2006). Contribution of the monkey frontal eye field to covert visual attention. J Neurosci, 26, 4228–4235. DOI: 10.1523/JNEUROSCI.3336-05.2006
- Wardak, C., Olivier, E., & Duhamel, J.-R. (2004). A deficit in covert attention after parietal cortex inactivation in the monkey. Neuron, 42, 501–508. DOI: 10.1016/S0896-6273(04)00185-0
- White, B. J., & Munoz, D. P. (2011).
The Superior colliculus . In: Oxford Handbook of Eye Movements, Liversedge Gilchrist, I., & Everling, S. S. (eds.), 195–213. Oxford University Press. DOI: 10.1093/oxfordhb/9780199539789.013.0011 - Woodhouse, J. M. (1975). The effect of pupil size on grating detection at various contrast levels. Vision Res, 15, 645–648. DOI: 10.1016/0042-6989(75)90278-3
- World Medical Association. (2001). World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. Bull World Health Organ, 79, 373–374.
- Wurtz, R. H., Sommer, M. A., Paré, M., Ferraina, S., Pare, M., & Ferraina, S. (2001). Signal transformations from cerebral cortex to superior colliculus for the generation of saccades. Vision Res, 41, 3399–3412. DOI: 10.1016/S0042-6989(01)00066-9
- Zenon, A., & Krauzlis, R. J. (2012). Attention deficits without cortical neuronal deficits. Nature, 489, 434–437. DOI: 10.1038/nature11497
