Have a personal or library account? Click to login
The Pleasurable Urge to Move to Music Through the Lens of Learning Progress Cover

The Pleasurable Urge to Move to Music Through the Lens of Learning Progress

Open Access
|Sep 2023

References

  1. Abuhamdeh, S., & Csikszentmihalyi, M. (2012). The Importance of Challenge for the Enjoyment of Intrinsically Motivated, Goal-Directed Activities. Personality and Social Psychology Bulletin, 38(3), 317330. DOI: 10.1177/0146167211427147
  2. Alexander, G., DeLong, M. R., & Strick, P. L. (1986). Parallel Organization of Functionally Segregated Circuits Linking Basal Ganglia and Cortex. Annual Review of Neuroscience, 9(1), 357381. DOI: 10.1146/annurev.neuro.9.1.357
  3. Barto, A. G., & Şimşek, Ö. (2005). Intrinsic motivation for reinforcement learning systems. Proceedings of the Thirteenth Yale Workshop on Adaptive and Learning Systems, 113118.
  4. Belfi, A. M., Kasdan, A., Rowland, J., Vessel, E. A., Starr, G. G., & Poeppel, D. (2018). Rapid Timing of Musical Aesthetic Judgments. Journal of Experimental Psychology: General, 147(10), 15311543. DOI: 10.1037/xge0000474.supp
  5. Belfi, A. M., & Loui, P. (2020). Musical anhedonia and rewards of music listening: current advances and a proposed model. Annals of the New York Academy of Sciences, 1464(1), 99114. DOI: 10.1111/nyas.14241
  6. Bengtsson, S. L., Ullen, F., Henrik Ehrsson, H., Hashimoto, T., Kito, T., Naito, E., … Sadato, N. (2009). Listening to rhythms activates motor and premotor cortices. Cortex, 45(1), 6271. DOI: 10.1016/j.cortex.2008.07.002
  7. Berlyne, D. E. (1971). Aesthetics and Psychobiology. East Norwalk, CT: Appleton-Century-Crofts.
  8. Berridge, K. C., & Kringelbach, M. L. (2015). Pleasure Systems in the Brain. Neuron, 86(3), 646664. DOI: 10.1016/j.neuron.2015.02.018
  9. Bianco, R., Gold, B. P., Johnson, A. P., & Penhune, V. B. (2019). Music predictability and liking enhance pupil dilation and promote motor learning in non-musicians. Scientific Reports, 9(1), 112. DOI: 10.1038/s41598-019-53510-w
  10. Bianco, R., Ptasczynski, L. E., & Omigie, D. (2020). Pupil responses to pitch deviants reflect predictability of melodic sequences. Brain and Cognition, 138(July 2019), 103621. DOI: 10.1016/j.bandc.2019.103621
  11. Blood, A. J., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 1181811823. DOI: 10.1073/pnas.191355898
  12. Blood, A. J., Zatorre, R. J., Bermudez, P., & Evans, A. C. (1999). Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nature Neuroscience, 2(4), 382387. DOI: 10.1038/7299
  13. Bowling, D. L., Ancochea, P. G., Hove, M. J., Fitch, W. T., & Madison, G. (2019). Pupillometry of Groove: Evidence for Noradrenergic Arousal in the Link Between Music and Movement. Frontiers in Neuroscience, 12, 112. DOI: 10.3389/fnins.2018.01039
  14. Brattico, E., Bogert, B., & Jacobsen, T. (2013). Toward a neural chronometry for the aesthetic experience of music. Frontiers in Psychology, 4(MAY), 121. DOI: 10.3389/fpsyg.2013.00206
  15. Brattico, P., Brattico, E., & Vuust, P. (2017). Global Sensory Qualities and Aesthetic Experience in Music. Frontiers in Neuroscience, 11(April), 113. DOI: 10.3389/fnins.2017.00159
  16. Brielmann, A. A. (2022). Top-down processes in art experience. In The Routledge International Handbook of Neuroaesthetics (pp. 461474). DOI: 10.4324/9781003008675-27
  17. Brielmann, A. A., Berentelg, M., & Dayan, P. (2023). Modeling individual aesthetic judgments over time. Preprint, 124. DOI: 10.31234/osf.io/b8rg5
  18. Brielmann, A. A., & Dayan, P. (2022). A computational model of aesthetic value. Psychological Review, 129(6), 13191337. DOI: 10.1037/rev0000337
  19. Bromberg-Martin, E. S., & Hikosaka, O. (2009). Midbrain dopamine neurons signal preference for advance information about upcoming rewards. Neuron, 63(1), 119126. DOI: 10.1016/j.neuron.2009.06.009
  20. Burger, B., Thompson, M. R., Luck, G., Saarikallio, S. H., & Toiviainen, P. (2014). Hunting for the beat in the body: On period and phase locking in music- induced movement. Frontiers in Human Neuroscience, 8(903), 116. DOI: 10.3389/fnhum.2014.00903
  21. Cameron, D. J., Pickett, K. A., Earhart, G. M., & Grahn, J. A. (2016). The Effect of Dopaminergic Medication on Beat-Based Auditory Timing in Parkinson’s Disease. Frontiers in Neurology, 7(19), 18. DOI: 10.3389/fpls.2015.00830
  22. Câmara, G. S., & Danielsen, A. (2018). Groove. In A. Rehding & S. Rings (Eds.), The Oxford Handbook of Critical Concepts in Music Theory (pp. 271294). Oxford: Oxford University Press. DOI: 10.1093/oxfordhb/9780190454746.013.17
  23. Cannon, J. J., & Patel, A. D. (2020). How Beat Perception Co-opts Motor Neurophysiology. Trends in Cognitive Sciences, 25(2), 137150. DOI: 10.1016/j.tics.2020.11.002
  24. Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008). Listening to musical rhythms recruits motor regions of the brain. Cerebral Cortex, 18(12), 28442854. DOI: 10.1093/cercor/bhn042
  25. Cheung, V. K. M., Harrison, P. M. C., Meyer, L., Pearce, M. T., Haynes, J.-D., & Koelsch, S. (2019). Uncertainty and Surprise Jointly Predict Musical Pleasure and Amygdala, Hippocampus, and Auditory Cortex Activity. Current Biology, 19. DOI: 10.1016/j.cub.2019.09.067
  26. Chmiel, A., & Schubert, E. (2017). Back to the inverted-U for music preference: A review of the literature. Psychology of Music, 45(6), 886909. DOI: 10.1177/0305735617697507
  27. Cirelli, L. K., Einarson, K. M., & Trainor, L. J. (2014). Interpersonal synchrony increases prosocial behavior in infants. Developmental Science, 17(6), 10031011. DOI: 10.1111/desc.12193
  28. Clemente, A., Pearce, M. T., & Nadal, M. (2022). Musical aesthetic sensitivity. Psychology of Aesthetics, Creativity, and the Arts, 16(1), 58. DOI: 10.1037/aca0000381
  29. Csikszentmihalyi, M. (1990). Flow: The Psychology of Optimal Experience. New York: Harper and Row. Retrieved from http://journals.aom.org/doi/10.5465/amr.1991.4279513%0Ahttps://www.tandfonline.com/doi/full/10.1080/00222216.1992.11969876%0Ahttps://www.cambridge.org/core/product/identifier/9780511621956/type/book
  30. Dauer, W., & Przedborski, S. (2003). Parkinson’s Disease: Mechanisms and Models. Neuron, 39, 889909. DOI: 10.1017/CCOL9780521851282.008
  31. De Fleurian, R., Harrison, P. M. C., Pearce, M. T., & Quiroga-Martinez, D. R. (2019). Reward prediction tells us less than expected about musical pleasure. Proceedings of the National Academy of Sciences of the United States of America, 116(42), 2081320814. DOI: 10.1073/pnas.1913244116
  32. Dubey, R., & Griffiths, T. L. (2020). Reconciling Novelty and Complexity through a Rational Analysis of Curiosity. Psychological Research, 127(3), 455. DOI: 10.1037/rev0000175
  33. Duman, D., Snape, N., Danso, A., Toiviainen, P., & Luck, G. (2023). Groove as a multidimensional participatory experience. Psychology of Music, 0(0). DOI: 10.1177/03057356231165327
  34. Engeser, S., & Rheinberg, F. (2008). Flow, performance and moderators of challenge-skill balance. Motivation and Emotion, 32(3), 158172. DOI: 10.1007/s11031-008-9102-4
  35. Fasano, M. C., Glerean, E., Gold, B. P., Sheng, D., Sams, M., Vuust, P., … Brattico, E. (2020). Inter-subject Similarity of Brain Activity in Expert Musicians After Multimodal Learning: A Behavioral and Neuroimaging Study on Learning to Play a Piano Sonata. Neuroscience, 441, 102116. DOI: 10.1016/j.neuroscience.2020.06.015
  36. Ferreri, L., Mas-Herrero, E., Cardona, G., Zatorre, R. J., Antonijoan, R. M., Valle, M., … Rodriguez-Fornells, A. (2021). Dopamine modulations of reward-driven music memory consolidation. Annals of the New York Academy of Sciences, 114. DOI: 10.1111/nyas.14656
  37. Ferreri, L., Mas-herrero, E., Zatorre, R. J., Ripollés, P., Gomez-andres, A., & Alicart, H. (2019). Dopamine modulates the reward experiences elicited by music. PNAS, 116 (9) 37(9), 37933798. DOI: 10.1073/pnas.1811878116
  38. Ferreri, L., & Rodriguez-Fornells, A. (2017). Music-related reward responses predict episodic memory performance. Experimental Brain Research, 235(12), 37213731. DOI: 10.1007/s00221-017-5095-0
  39. Ferreri, L., & Rodriguez-fornells, A. (2022). Memory modulations through musical pleasure. Annals of the New York Academy of Sciences, 16. DOI: 10.1111/nyas.14867
  40. Fitch, W. T., & Rosenfeld, A. J. (2007). Perception and production of syncopated rhythms. Music Perception, 25(1), 4358. DOI: 10.1525/mp.2007.25.1.43
  41. Fiveash, A., Ferreri, L., Bouwer, F. L., Kösem, S., Moghimi, S., Ravignani, A., … Tillmann, B. (2023). Can rhythm-mediated reward boost learning, memory, and social connection? Perspectives for future research. Neuroscience & Biobehavioral Reviews. DOI: 10.1016/j.neubiorev.2023.105153
  42. Forest, T. A., Siegelman, N., & Finn, A. S. (2021). Attention shifts to more complex structure with experience. PsyArxiv. DOI: 10.31234/osf.io/kr5a9
  43. Foster Vander Elst, O., Vuust, P., & Kringelbach, M. L. (2021). Sweet anticipation and positive emotions in music, groove, and dance. Current Opinion in Behavioral Sciences, 39, 7984. DOI: 10.1016/j.cobeha.2021.02.016
  44. Franěk, M., Radil, T., Indra, M., & Lánsky, P. (1987). Following complex rhythmical acoustical patterns by tapping. International Journal of Psychophysiology, 5(3), 187192. DOI: 10.1016/0167-8760(87)90005-5
  45. Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127138. DOI: 10.1038/nrn2787
  46. Friston, K., Schwartenbeck, P., FitzGerald, T., Moutoussis, M., Behrens, T., & Dolan, R. J. (2014). The anatomy of choice: Dopamine and decision-making. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1655). DOI: 10.1098/rstb.2013.0481
  47. Galvan, J., & Omigie, D. (2022). Individual Differences in the Expression and Experience of Curiosity Are Reflected in Patterns of Music Preferences and Appreciation. Psychomusicology: Music, Mind, and Brain, Mind, and Brain. DOI: 10.1037/pmu0000289
  48. Gershman, S. J., & Uchida, N. (2019). Believing in dopamine. Nature Reviews Neuroscience, 20(11), 703714. DOI: 10.1038/s41583-019-0220-7
  49. Gold, B. P., Mas-Herrero, E., Dagher, A., & Zatorre, R. J. (2019). Toward a fuller understanding of reward prediction errors and their role in musical pleasure. Proceedings of the National Academy of Sciences of the United States of America, 116(42), 2081520816. DOI: 10.1073/pnas.1913835116
  50. Gold, B. P., Pearce, M. T., Mas-Herrero, E., Dagher, A., & Zatorre, R. J. (2019). Predictability and uncertainty in the pleasure of music: a reward for learning? The Journal of Neuroscience, 39(47), 93979409. DOI: 10.1523/JNEUROSCI.0428-19.2019
  51. Gómez, F., Thul, E., & Toussaint, G. (2007). An experimental comparison of formal measures of rhythmic syncopation. Proceedings of the International Computer Music Conference, (August), 101104. Retrieved from http://quod.lib.umich.edu/cgi/p/pod/dod-idx/experimental-comparison-of-formal-measures-of-rhythmic.pdf?c=icmc;idno=bbp2372.2007.023%5Cnhttp://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:AN+EXPERIMENTAL+COMPARISON+OF+FORMAL+MEASURES+OF+RHYTHMIC+
  52. Grahn, J. A., & Brett, M. (2007). Rhythm and beat perception in motor areas of the brain. Journal of Cognitive Neuroscience, 19(5), 893906. DOI: 10.1162/jocn.2007.19.5.893
  53. Grahn, J. A., & Brett, M. (2009). Impairment of beat-based rhythm discrimination in Parkinson’s disease. Cortex, 45(1), 5461. DOI: 10.1016/j.cortex.2008.01.005
  54. Grahn, J. A., & Rowe, J. B. (2013). Finding and feeling the musical beat: striatal dissociations between detection and prediction of regularity. Cerebral Cortex (New York, N.Y.: 1991), 23(4), 913921. DOI: 10.1093/cercor/bhs083
  55. Graybiel, A. M., & Grafton, S. T. (2015). The striatum: where skills and habits meet. Cold Spring Harbor Perspectives in Biology, 7(8), 114. DOI: 10.1101/cshperspect.a021691
  56. Grewe, O., Nagel, F., Kopiez, R., & Altenmüller, E. (2007). Listening To Music As A Re-Creative Process: Physiological, Psychological, And Psychoacoustical Correlates Of Chills And Strong Emotions. Music Perception, 24(3), 297314. DOI: 10.1525/mp.2007.24.3.297
  57. Gruber, M. J., Gelman, B. D., & Ranganath, C. (2014). States of Curiosity Modulate Hippocampus-Dependent Learning via the Dopaminergic Circuit. Neuron, 84(2), 486496. DOI: 10.1016/j.neuron.2014.08.060
  58. Gruber, M. J., & Ranganath, C. (2019). How Curiosity Enhances Hippocampus-Dependent Memory: The Prediction, Appraisal, Curiosity, and Exploration (PACE) Framework. Trends in Cognitive Sciences, 23(12), 10141025. DOI: 10.1016/j.tics.2019.10.003
  59. Hansen, N. C., Dietz, M. J., & Vuust, P. (2017). Commentary: Predictions and the brain: How musical sounds become rewarding. Frontiers in Human Neuroscience, 11(168). DOI: 10.1016/j.tics.2014.12.001
  60. Hargreaves, D. J., & North, A. C. (2010). Experimental aesthetics and liking for music. In P. N. Juslin & J. A. Sloboda (Eds.), Handbook of music and emotion: theory, research, applications (pp. 515546). Oxford: Oxford Academic. DOI: 10.1093/acprof:oso/9780199230143.003.0019
  61. Hsu, P., Ready, E. A., & Grahn, J. A. (2022). The effects of Parkinson’s disease, music training, and dance training on beat perception and production abilities. PLoS ONE, 17(3 March), 116. DOI: 10.1371/journal.pone.0264587
  62. Huron, D. (2006). Sweet Anticipation: Music and the Psychology of Expectation. Cambridge, MA: MIT Press. DOI: 10.1525/mp.2007.24.5.511
  63. Jacoby, N., & Mcdermott, J. H. (2017). Integer Ratio Priors on Musical Rhythm Revealed Cross-culturally by Iterated Reproduction. Current Biology, 112. DOI: 10.1016/j.cub.2016.12.031
  64. Jacoby, N., Polak, R., Grahn, J. A., Cameron, D. J., Lee, K. M., Godoy, R., … McDermott, J. H. (2021). Universality and cross-cultural variation in mental representations of music revealed by global comparison of rhythm priors. PsyArXiv Preprint. DOI: 10.31234/osf.io/b879v
  65. Janata, P., Tomic, S. T., & Haberman, J. M. (2012). Sensorimotor coupling in music and the psychology of the groove. Journal of Experimental Psychology. General, 141(1), 5475. DOI: 10.1037/a0024208
  66. Jepma, M., Verdonschot, R. G., van Steenbergen, H., Rombouts, S. A. R. B., & Nieuwenhuis, S. (2012). Neural mechanisms underlying the induction and relief of perceptual curiosity. Frontiers in Behavioral Neuroscience, 6(FEBRUARY 2012), 19. DOI: 10.3389/fnbeh.2012.00005
  67. Juslin, P. N. (2013). From everyday emotions to aesthetic emotions: Towards a unified theory of musical emotions. Physics of Life Reviews, 10(3), 235266. DOI: 10.1016/j.plrev.2013.05.008
  68. Kang, M. J., Hsu, M., Krajbich, I. M., Loewenstein, G., McClure, S. M., Wang, J. T., & Camerer, C. F. (2009). The Wick in the Candle of Learning: Epistemic Curiosity Activates Reward Circuitry and Enhances Memory. Psychological Science, 20(8), 963973. DOI: 10.1111/j.1467-9280.2009.02402.x
  69. Kaplan, T., Cannon, J., Jamone, L., & Pearce, M. (2022). Modeling enculturated bias in entrainment to rhythmic patterns. PLoS Computational Biology, 132. DOI: 10.1371/journal.pcbi.1010579
  70. Kirschner, S., & Tomasello, M. (2009). Joint drumming: social context facilitates synchronization in preschool children. Journal of Experimental Child Psychology, 102(3), 299314. DOI: 10.1016/j.jecp.2008.07.005
  71. Koelsch, S., Vuust, P., & Friston, K. (2019). Predictive Processes and the Peculiar Case of Music. Trends in Cognitive Sciences, 23(1), 6377. DOI: 10.1016/j.tics.2018.10.006
  72. Kokal, I., Engel, A., Kirschner, S., & Keysers, C. (2011). Synchronized drumming enhances activity in the caudate and facilitates prosocial commitment--if the rhythm comes easily. PloS One, 6(11), e27272. DOI: 10.1371/journal.pone.0027272
  73. Kornysheva, K., Cramon, D. Y. Von, Jacobsen, T., & Schubotz, R. I. (2010). Tuning-in to the Beat: Aesthetic Appreciation of Musical Rhythms Correlates with a Premotor Activity Boost. Human Brain Mapping, 31, 4864. DOI: 10.1002/hbm.20844
  74. Krumhansl, C. L., & Zupnick, J. A. (2013). Cascading Reminiscence Bumps in Popular Music. Psychological Science, 24(10), 20572068. DOI: 10.1177/0956797613486486
  75. Kung, S.-J., Chen, J. L., Zatorre, R. J., & Penhune, V. B. (2013). Interacting cortical and basal ganglia networks underlying finding and tapping to the musical beat. Journal of Cognitive Neuroscience, 25(3), 401420. DOI: 10.1162/jocn_a_00325
  76. Laeng, B., Eidet, L. M., Sulutvedt, U., & Panksepp, J. (2016). Music chills: The eye pupil as a mirror to music’s soul. Consciousness and Cognition, 44, 161178. DOI: 10.1016/j.concog.2016.07.009
  77. Large, E. W., & Jones, M. R. (1999). The Dynamics of Attending: How People Track Time-Varying Events. Psychological Review, 106(1), 119159. DOI: 10.1037/0033-295X.106.1.119
  78. Large, E. W., & Kolen, J. F. (1994). Resonance and the perception of musical meter. Connection Science, 6(1), 177208. DOI: 10.1080/09540099408915723
  79. Large, E. W., & Snyder, J. S. (2009). Pulse and meter as neural resonance. Annals of the New York Academy of Sciences, 1169, 4657. DOI: 10.1111/j.1749-6632.2009.04550.x
  80. Lehrdahl, F., & Jackendoff, R. (1983). A generative theory of tonal music. Cambridge, MA: MIT Press.
  81. Loewenstein, G. (1994). The Psychology of Curiosity: A Review and Reinterpretation. Psychological Bulletin, 116(1), 7598. DOI: 10.1037/0033-2909.116.1.75
  82. Longuet-Higgins, H. C., & Lee, C. S. (1984). The Rhythmic Interpretation of Monophonic Music. Music Perception: An Interdisciplinary Journal, 1(4), 424441. DOI: 10.2307/40285271
  83. Loui, P. (2022). New music system reveals spectral contribution to statistical learning. Cognition, 224(July 2021), 105071. DOI: 10.1016/j.cognition.2022.105071
  84. Loui, P., Patterson, S., Sachs, M. E., Leung, Y., Zeng, T., & Przysinda, E. (2017). White matter correlates of musical Anhedonia: Implications for evolution of music. Frontiers in Psychology, 8(SEP), 110. DOI: 10.3389/fpsyg.2017.01664
  85. Lumaca, M., Haumann, N. T., Brattico, E., Grube, M., & Vuust, P. (2019). Weighting of neural prediction error by rhythmic complexity: a predictive coding account using Mismatch Negativity. European Journal of Neuroscience, 49, 15971609. DOI: 10.1111/ejn.14329
  86. Madison, G. (2006). Experiencing Groove Induced by Music: Consistency and Phenomenology. Music Perception, 24(2), 201208. DOI: 10.1525/mp.2006.24.2.201
  87. Madison, G., Gouyon, F., & Ullen, F. (2009). Musical groove is correlated with properties of the audio signal as revealed by computational modelling, depending on musical style. In Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference (pp. 239240).
  88. Madison, G., Gouyon, F., Ullén, F., & Hörnström, K. (2011). Modeling the tendency for music to induce movement in humans: First correlations with low-level audio descriptors across music genres. J. Exp. Psychol. Hum. Percept. Perform, 37, 15781594. DOI: 10.1037/a0024323
  89. Madison, G., & Schiölde, G. (2017). Repeated Listening Increases the Liking for Music Regardless of Its Complexity: Implications for the Appreciation and Aesthetics of Music. Frontiers in Neuroscience, 11(March), 113. DOI: 10.3389/fnins.2017.00147
  90. Martínez-Molina, N., Mas-Herrero, E., Rodríguez-Fornells, A., Zatorre, R. J., & Marco-Pallarés, J. (2016). Neural correlates of specific musical anhedonia. Proceedings of the National Academy of Sciences, E7337E7345. DOI: 10.1073/pnas.1611211113
  91. Martinez-Molina, N., Mas-Herrero, E., Rodríguez-Fornells, A., Zatorre, R. J., & Marco-Pallarés, J. (2019). White matter microstructure reflects individual differences in music reward sensitivity. The Journal of Neuroscience, 39(25), 50185027. DOI: 10.1523/JNEUROSCI.2020-18.2019
  92. Mårup, S. H., Møller, C., & Vuust, P. (2022). Coordination of voice, hands and feet in rhythm and beat performance. Scientific Reports, 12(8046), 112. DOI: 10.1038/s41598-022-11783-8
  93. Marvin, C. B., & Shohamy, D. (2016). Curiosity and Reward: Valence Predicts Choice and Information Prediction Errors Enhance Learning. Journal of Experimental Psychology: General, 145, 266272. DOI: 10.1037/xge0000140
  94. Mas-Herrero, E., Maini, L., Sescousse, G., & Zatorre, R. J. (2021). Common and distinct neural correlates of music and food-induced pleasure: A coordinate-based meta-analysis of neuroimaging studies. Neuroscience and Biobehavioral Reviews, 123(January), 6171. DOI: 10.1016/j.neubiorev.2020.12.008
  95. Mas-Herrero, E., Zatorre, R. J., Rodriguez-Fornells, A., & Marco-Pallarés, J. (2014). Dissociation between musical and monetary reward responses in specific musical anhedonia. Current Biology, 24(6), 699704. DOI: 10.1016/j.cub.2014.01.068
  96. Mather, M., Clewett, D., Sakaki, M., & Harley, C. W. (2016). Norepinephrine ignites local hotspots of neuronal excitation: How arousal amplifies selectivity in perception and memory. Behavioral and Brain Sciences, 39, 175. DOI: 10.1017/S0140525X15000667
  97. Matthews, T. E., Witek, M. A. G., Heggli, O. A., Penhune, V. B., & Vuust, P. (2019). The sensation of groove is affected by the interaction of rhythmic and harmonic complexity. PLoS ONE, 14(1), 117. DOI: 10.1371/journal.pone.0204539
  98. Matthews, T. E., Witek, M. A. G., Lund, T., Vuust, P., & Penhune, V. B. (2020). The sensation of groove engages motor and reward networks. NeuroImage, 214(116768), 112. DOI: 10.1016/j.neuroimage.2020.116768
  99. Matthews, T. E., Witek, M. A. G., Thibodeau, J. L. N., Vuust, P., & Penhune, V. B. (2022). Perceived motor synchrony with the beat is more strongly related to groove than measured synchrony. Music Perception, 39(5), 423442. DOI: 10.1525/mp.2022.39.5.423
  100. Melnikoff, D. E., Carlson, R. W., & Stillman, P. E. (2022). A computational theory of the subjective experience of flow. Nature Communications, 13(1). DOI: 10.1038/s41467-022-29742-2
  101. Mencke, I., Omigie, D., Quiroga-Martinez, D. R., & Brattico, E. (2022). Atonal Music as a Model for Investigating Exploratory Behavior. Frontiers in Neuroscience, 16(June). DOI: 10.3389/fnins.2022.793163
  102. Mencke, I., Omigie, D., Wald-Fuhrmann, M., & Brattico, E. (2019). Atonal music: Can uncertainty lead to pleasure? Frontiers in Neuroscience, 13(JAN), 118. DOI: 10.3389/fnins.2018.00979
  103. Merchant, H., & Yarrow, K. (2016). How the motor system both encodes and influences our sense of time. Current Opinion in Behavioral Sciences, 611. DOI: 10.1016/j.cobeha.2016.01.006
  104. Metcalfe, J., Schwartz, B. L., & Eich, T. S. (2020). Epistemic curiosity and the region of proximal learning. Current Opinion in Behavioral Sciences, 35, 4047. DOI: 10.1016/j.cobeha.2020.06.007
  105. Meyer, L. B. (1956). Emotion and Meaning in Music. Chicago: University of Chicago Press.
  106. Morillon, B., & Baillet, S. (2017). Motor origin of temporal predictions in auditory attention. Proceedings of the National Academy of Sciences, 114(42), E8913E8921. DOI: 10.1073/pnas.1705373114
  107. Morillon, B., Hackett, T. A., Kajikawa, Y., & Schroeder, C. E. (2015). Predictive motor control of sensory dynamics in auditory active sensing. Current Opinion in Neurobiology, 31C, 230238. DOI: 10.1016/j.conb.2014.12.005
  108. Morillon, B., Schroeder, C. E., Wyart, V., & Arnal, L. H. (2016). Temporal Prediction in lieu of Periodic Stimulation. Journal of Neuroscience, 36(8), 23422347. DOI: 10.1523/JNEUROSCI.0836-15.2016
  109. Norgaard, M., Bales, K., & Hansen, N. C. (2023). Linked auditory and motor patterns in the improvisation vocabulary of an artist-level jazz pianist. Cognition, 230, 105308. DOI: 10.1016/j.cognition.2022.105308
  110. O’Connell, S. R., Nave-blodgett, J. E., Wilson, G. E., Hannon, E. E., & Snyder, J. S. (2022). Elements of musical and dance sophistication predict musical groove perception. Frontiers in Psychology, (November), 116. DOI: 10.3389/fpsyg.2022.998321
  111. Omigie, D., Pearce, M. T., Lehongre, K., Hasboun, D., Navarro, V., Adam, C., & Samson, S. (2019). Intracranial Recordings and Computational Modeling of Music Reveal the Time Course of Prediction Error Signaling in Frontal and Temporal Cortices. Journal of Cognitive Neuroscience, 31(6), 855873. DOI: 10.1162/jocn_a_01388
  112. Omigie, D., & Ricci, J. (2022). Accounting for expressions of curiosity and enjoyment during music listening. Psychology of Aesthetics, Creativity and the Arts, 117. DOI: 10.1037/aca0000461
  113. Oudeyer, P. Y., Gottlieb, J., & Lopes, M. (2016). Intrinsic motivation, curiosity, and learning: Theory and applications in educational technologies. Progress in Brain Research (1st ed., Vol. 229). Elsevier B.V. DOI: 10.1016/bs.pbr.2016.05.005
  114. Oudeyer, P. Y., & Kaplan, F. (2007). What is intrinsic motivation? A typology of computational approaches. Frontiers in Neurorobotics, 1(6), 114. DOI: 10.3389/neuro.12.006.2007
  115. Oudeyer, P.-Y., Kaplan, F., & Hafner, V. (2007). Intrinsic Motivation Systems for Autonomous Mental Development. IEEE Transactions on Evolutionary Computation, 11(2), 265286. DOI: 10.4324/9781315009537-6
  116. Palmer, C., & Krumhansl, C. L. (1990). Mental Representations for Musical Meter. Journal of Experimental Psychology: Human Perception and Performance, 16(4), 728741. DOI: 10.1037/0096-1523.16.4.728
  117. Pando-Naude, V., Matthews, T. E., Højlund, A., Jakobsen, S., Østergaard, K., Johnsen, E., … Vuust, P. (2023). Dopamine dysregulation in Parkinson’s disease flattens the pleasurable urge to move to musical rhythms. BioRxiv Preprint, 133. DOI: 10.1101/2023.02.27.530174
  118. Pearce, M. T., & Wiggins, G. A. (2012). Auditory expectation: the information dynamics of music perception and cognition. Topics in Cognitive Science, 4(4), 625652. DOI: 10.1111/j.1756-8765.2012.01214.x
  119. Pearce, M. T., Zaidel, D. W., Vartanian, O., Skov, M., Leder, H., Chatterjee, A., & Nadal, M. (2016). Neuroaesthetics: The Cognitive Neuroscience of Aesthetic Experience. Perspectives on Psychological Science, 11(2), 265279. DOI: 10.1177/1745691615621274
  120. Poeppel, D., & Assaneo, M. F. (2020). Speech rhythms and their neural foundations. Nature Reviews Neuroscience, 21(6), 322334. DOI: 10.1038/s41583-020-0304-4
  121. Pressing, J. (1988). IMPROVISATION: METHODS AND MODELS. In: J. A. Sloboda (Ed.), Generative Processes in Music (pp. 129178). Oxford: Oxford University Press. DOI: 10.1093/acprof:oso/9780198508465.003.0007
  122. Pressing, J. (2002). Black atlantic rhythm: Its computational and transcultural foundations. Music Perception, 19(3), 285310. DOI: 10.1525/jams.2009.62.1.145
  123. Ravreby, I., Shilat, Y., & Yeshurun, Y. (2022). Liking as a balance between synchronization, complexity and novelty. Scientific Reports, 12(3181), 112. DOI: 10.1038/s41598-022-06610-z
  124. Repp, B. H. (2003). Rate Limits in Sensorimotor Synchronization With Auditory and Visual Sequences: The Synchronization Threshold and the Benefits and Costs of Interval Subdivision. Journal of Motor Behavior, 35(4), 355370. DOI: 10.1080/00222890309603156
  125. Ripollés, P., Ferreri, L., Mas-Herrero, E., Alicart, H., Gómez-Andrés, A., Marco-Pallares, J., … Rodriguez-Fornells, A. (2018). Intrinsically regulated learning is modulated by synaptic dopamine signaling. ELife, 7, 123. DOI: 10.7554/eLife.38113
  126. Ripollés, P., Marco-Pallarés, J., Alicart, H., Tempelmann, C., Rodríguez-Fornells, A., & Noesselt, T. (2016). Intrinsic monitoring of learning success facilitates memory encoding via the activation of the SN/VTA-hippocampal loop. ELife, 5(September), 135. DOI: 10.7554/eLife.17441
  127. Runco, M. A., & Jaeger, G. J. (2012). The Standard Definition of Creativity. Creativity Research Journal, 24(1), 9296. DOI: 10.1080/10400419.2012.650092
  128. Ryan, R. M., & Deci, E. L. (2000). Intrinsic and Extrinsic Motivations: Classic Definitions and New Directions. Contemporary Educational Psychology, 25(1), 5467. DOI: 10.1006/ceps.1999.1020
  129. Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A., & Zatorre, R. J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14(2), 257262. DOI: 10.1038/nn.2726
  130. Salimpoor, V. N., van den Bosch, I., Kovacevic, N., McIntosh, A. R., Dagher, A., & Zatorre, R. J. (2013). Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science (New York, N.Y.), 340(6129), 216219. DOI: 10.1126/science.1231059
  131. Salimpoor, V. N., Zald, D. H., Zatorre, R. J., Dagher, A., & McIntosh, A. R. (2015). Predictions and the brain: how musical sounds become rewarding. Trends in Cognitive Sciences, 19(2), 8691. DOI: 10.1016/j.tics.2014.12.001
  132. Savage, P. E., Loui, P., Tarr, B., Schachner, A., Glowacki, L., Mithen, S., & Fitch, W. T. (2021). Music as a coevolved system for social bonding. Behavioral and Brain Sciences, 44. DOI: 10.1017/S0140525X20000333
  133. Schaefer, R. S., Overy, K., & Nelson, P. (2013). Affect and non-uniform characteristics of predictive processing in musical behaviour. Behavioral and Brain Sciences, 36(3), 226227. DOI: 10.1017/S0140525X12002373
  134. Scherer, K. R. (2004). Which Emotions Can be Induced by Music? What Are the Underlying Mechanisms? And How Can We Measure Them? Journal of New Music Research, 33(3), 239251. DOI: 10.1080/0929821042000317822
  135. Schmidhuber, J. (2010). Formal Theory of Creativity & Intrinsic Motivation (1990-2010). IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, 2(3), 118. DOI: 10.1109/TAMD.2010.2056368
  136. Schubotz, R. I. (2007). Prediction of external events with our motor system: towards a new framework. Trends in Cognitive Sciences, 11(5), 211218. DOI: 10.1016/j.tics.2007.02.006
  137. Schubotz, R. I., Friederici, A. D., & von Cramon, D. Y. (2000). Time perception and motor timing: a common cortical and subcortical basis revealed by fMRI. NeuroImage, 11(1), 112. DOI: 10.1006/nimg.1999.0514
  138. Schultz, W. (2016a). Dopamine reward prediction- error signalling: a two-component response. Nature Reviews Neuroscience. DOI: 10.1038/nrn.2015.26
  139. Schultz, W. (2016b). Reward functions of the basal ganglia. Journal of Neural Transmission. DOI: 10.1007/s00702-016-1510-0
  140. Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 15931599. DOI: 10.1126/science.275.5306.1593
  141. Senn, O. (2023). A predictive coding approach to modelling the perceived complexity of popular music drum patterns. Heliyon, 9, e15199. DOI: 10.1016/j.heliyon.2023.e15199
  142. Senn, O., Bechtold, T. A., Hoesl, F., & Kilchenmann, L. (2019). Taste and familiarity affect the experience of groove in popular music. Musicae Scientiae. DOI: 10.1177/1029864919839172
  143. Senn, O., Kilchenmann, L., Bechtold, T., & Hoesl, F. (2018). Groove in drum patterns as a function of both rhythmic properties and listeners’ attitudes. PLoS ONE, 13(6), 133. DOI: 10.1371/journal.pone.0199604
  144. Senn, O., Rose, D., Bechtold, T. A., Kilchenmann, L., Hoesl, F., Jerjen, R., … Alessandri, E. (2019). Preliminaries to a psychological model of musical groove. Frontiers in Psychology, 10(June), 1228. DOI: 10.3389/fpsyg.2019.01228
  145. Sescousse, G., Caldú, X., Segura, B., & Dreher, J. (2013). Processing of primary and secondary rewards: a quantitative meta-analysis and review of human functional neuroimaging studies. Neuroscience & Biobehavioral Reviews, 37(4), 681696. DOI: 10.1016/j.neubiorev.2013.02.002
  146. Shany, O., Singer, N., Gold, B. P., Jacoby, N., Tarrasch, R., Hendler, T., & Granot, R. (2019). Surprise-related activation in the nucleus accumbens interacts with music-induced pleasantness. Social Cognitive and Affective Neuroscience, 112. DOI: 10.1093/scan/nsz019
  147. Silvetti, M., Vassena, E., Abrahamse, E., & Verguts, T. (2018). Dorsal anterior cingulate-midbrain ensemble as a reinforcement meta-learner. PLoS Computational Biology (Vol. 14). DOI: 10.1371/journal.pcbi.1006370
  148. Singh, S., Lewis, R. L., Barto, A. G., & Sorg, J. (2010). Intrinsically motivated reinforcement learning: An Evolutionary Perspective. 70 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, 2(2), 7082. DOI: 10.1109/TAMD.2010.2051031
  149. Sioros, G., Madison, G. S., Cocharro, D., Danielsen, A., & Gouyon, F. (2022). Syncopation and Groove in Polyphonic Music: Patterns Matter. Music Perception, 39(5), 503531. DOI: 10.1525/mp.2022.39.5.503
  150. Sioros, G., Miron, M., Davies, M., Gouyon, F., & Madison, G. (2014). Syncopation creates the sensation of groove in synthesized music examples. Frontiers in psychology, 5(1036), 110. DOI: 10.3389/fpsyg.2014.01036
  151. Skaansar, J. F., Laeng, B., & Danielsen, A. (2019). Microtimin and Mental Effort: Onset Asynchronies in Musical Rhythm Modulate Pupil Size. Music Perception, 37(2), 111133. DOI: 10.1525/mp.2019.37.2.111
  152. Sloboda, J. A. (1991). Music Structure and Emotional Response: Some Empirical Findings. Psychology of Music, 19(2), 110120. DOI: 10.1177/0305735691192002
  153. Smith, K. C., & Cuddy, L. L. (1986). The pleasingness of melodic sequences: Contrasting effects of repetition and rule-familiarity. Psychology of Music, 14(1), 1732. DOI: 10.1177/0305735686141002
  154. Spiech, C., Danielsen, A., Laeng, B., & Endestad, T. (2023). Oscillatory Attention in Groove. PsyArXiv Preprint, 133. DOI: 10.31234/osf.io/298wh
  155. Spiech, C., Hope, M., Câmara, G. S., Sioros, G., Endestad, T., Laeng, B., & Danielsen, A. (2022). Sensorimotor Synchronization Increases Groove. PsyArxiv. DOI: 10.31234/osf.io/fw7mh
  156. Spiech, C., Sioros, G., Endestad, T., Danielsen, A., & Laeng, B. (2022). Pupil drift rate indexes groove ratings. Scientific Reports, 12, 11620. DOI: 10.1038/s41598-022-15763-w
  157. Stefanics, G., Hangya, B., Hernádi, I., Winkler, I., Lakatos, P., & Ulbert, I. (2010). Phase entrainment of human delta oscillations can mediate the effects of expectation on reaction speed. Journal of Neuroscience, 30(41), 1357813585. DOI: 10.1523/JNEUROSCI.0703-10.2010
  158. Stupacher, J. (2019). The experience of flow during sensorimotor synchronization to musical rhythms. Musicae Scientiae, 23(3), 348361. DOI: 10.1177/1029864919836720
  159. Stupacher, J., Hove, M. J., Novembre, G., Schütz-Bosbach, S., & Keller, P. E. (2013). Musical groove modulates motor cortex excitability: A TMS investigation. Brain and Cognition, 82, 127136. DOI: 10.1016/j.bandc.2013.03.003
  160. Stupacher, J., Matthews, T. E., Pando-naude, V., Foster, O., Elst, V., & Vuust, P. (2022). The sweet spot between predictability and surprise: musical groove in brain, body, and social interactions. Frontiers in Psychology, (August), 19. DOI: 10.3389/fpsyg.2022.906190
  161. Stupacher, J., Witek, M. A. G., Vuoskoski, J. K., & Vuust, P. (2020). Cultural Familiarity and Individual Musical Taste Differently Affect Social Bonding when Moving to Music. Scientific Reports, 10(1), 112. DOI: 10.1038/s41598-020-66529-1
  162. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An Introduction. Cambridge, MA: MIT Press. Retrieved from https://books.google.com/books?id=CAFR6IBF4xYC&pgis=1%5Cnhttp://incompleteideas.net/sutton/book/the-book.html%5Cnhttps://www.dropbox.com/s/f4tnuhipchpkgoj/book2012.pdf
  163. Szumowska, E., & Kruglanski, A. W. (2020). Curiosity as end and means. Current Opinion in Behavioral Sciences, 35, 3539. DOI: 10.1016/j.cobeha.2020.06.008
  164. Tal, I., Large, E. W., Rabinovitch, E., Wei, Y., Schroeder, C. E., Poeppel, D., & Zion Golumbic, E. (2017). Neural entrainment to the beat: The “Missing-Pulse” phenomenon. The Journal of Neuroscience, 37(26), 63316341. DOI: 10.1523/JNEUROSCI.2500-16.2017
  165. Teki, S., Grube, M., Kumar, S., & Griffiths, T. D. (2011). Distinct neural substrates of duration-based and beat-based auditory timing. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31(10), 38053812. DOI: 10.1523/JNEUROSCI.5561-10.2011
  166. Ten, A., Kaushik, P., Oudeyer, P. Y., & Gottlieb, J. (2021). Humans monitor learning progress in curiosity-driven exploration. Nature Communications, 12(1), 110. DOI: 10.1038/s41467-021-26196-w
  167. Thaut, M. H. (2003). Neural Basis of Rhythmic timing networks. Annals of the New York Academy of Sciences. DOI: 10.1196/annals.1284.044
  168. Tomassini, A., Ruge, D., Galea, J. M., Penny, W., & Bestmann, S. (2016). The Role of Dopamine in Temporal Uncertainty. Journal of Cognitive Neuroscience, 28(1), 96110. DOI: 10.1162/jocn_a_00880
  169. Van de Cruys, S. (2017). Affective Value in the Predictive Mind. Open MIND, 121. DOI: 10.15502/9783958573253
  170. Vikene, K., Skeie, G. O., & Specht, K. (2019). Subjective judgments of rhythmic complexity in Parkinson’s disease: Higher baseline, preserved relative ability, and modulated by tempo. PLoS ONE, 14(9), e0221752. DOI: 10.1371/journal.pone.0221752
  171. Vuust, P., Heggli, O. A., Friston, K. J., & Kringelbach, M. L. (2022). Music in the brain. Nature Reviews Neuroscience, 23(5), 287305. DOI: 10.1038/s41583-022-00578-5
  172. Vuust, P., Pallesen, K. J., Bailey, C., van Zuijen, T. L., Gjedde, A., Roepstorff, A., & Østergaard, L. (2005). To musicians, the message is in the meter: Pre-attentive neuronal responses to incongruent rhythm are left-lateralized in musicians. NeuroImage, 24(2), 560564. DOI: 10.1016/j.neuroimage.2004.08.039
  173. Vuust, P., Witek, M. A. G., Dietz, M., & Kringelbach, M. L. (2018). Now You Hear It: A predictive coding model for understanding rhythmic incongruity. Annals of the New York Academy of Sciences, 1423(1), 1929. DOI: 10.1111/nyas.13622
  174. Vuust, P., & Witek, M. A. G. (2014). Rhythmic complexity and predictive coding: A novel approach to modeling rhythm and meter perception in music. Frontiers in Psychology, 5(1111), 114. DOI: 10.3389/fpsyg.2014.01111
  175. Vuvan, D. T., Simon, E., Baker, D. J., Monzingo, E., & Elliott, E. M. (2020). Musical training mediates the relation between working memory capacity and preference for musical complexity. Memory and Cognition, 48(6), 972981. DOI: 10.3758/s13421-020-01031-7
  176. Wade, S., & Kidd, C. (2019). The role of prior knowledge and curiosity in learning. Psychonomic Bulletin and Review, 26(4), 13771387. DOI: 10.3758/s13423-019-01598-6
  177. Wilhelm, B., Wilhelm, H., & Lüdtke, H. (1999). Pupillography: Principles and applications in basic and clinical research. In Pupillography: Principles, methods and applications, (pp. 111).
  178. Witek, M. A. G. (2009). Groove experience: Emotional and physiological responses to groove-based music. In J. Louhivuori, T. Eerola, S. Saarikallio, T. Himberg, & P.-S. Eerola (Eds.), Proceedings of the 7th Triennial Conference of European Society for the Cognitive Sciences of Music (ESCOM 2009) (pp. 573582). Jyväskylä, Finland.
  179. Witek, M. A. G. (2019). Feeling at one: Socio-affective distribution, vibe, and dance-music consciousness. In Music and Consciousness 2: Worlds, Practices, Modalities (pp. 125). Oxford University Press. DOI: 10.1093/oso/9780198804352.001.0001
  180. Witek, M. A. G., Clarke, E. F., Wallentin, M., Kringelbach, M. L., & Vuust, P. (2014). Syncopation, body-movement and pleasure in groove music. PloS One, 9(4), 112. DOI: 10.1371/journal.pone.0094446
  181. Zhao, T. C., Gloria Lam, H. T., Sohi, H., & Kuhl, P. K. (2017). Neural Processing of Musical Meter in Musicians and Non-musicians. Neuropsychologia. DOI: 10.1016/j.neuropsychologia.2017.10.007
DOI: https://doi.org/10.5334/joc.320 | Journal eISSN: 2514-4820
Language: English
Submitted on: Dec 9, 2022
|
Accepted on: Aug 17, 2023
|
Published on: Sep 13, 2023
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Tomas E. Matthews, Jan Stupacher, Peter Vuust, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.