References
- Abuhamdeh, S., & Csikszentmihalyi, M. (2012). The Importance of Challenge for the Enjoyment of Intrinsically Motivated, Goal-Directed Activities. Personality and Social Psychology Bulletin, 38(3), 317–330. DOI: 10.1177/0146167211427147
- Alexander, G., DeLong, M. R., & Strick, P. L. (1986). Parallel Organization of Functionally Segregated Circuits Linking Basal Ganglia and Cortex. Annual Review of Neuroscience, 9(1), 357–381. DOI: 10.1146/annurev.neuro.9.1.357
- Barto, A. G., & Şimşek, Ö. (2005). Intrinsic motivation for reinforcement learning systems. Proceedings of the Thirteenth Yale Workshop on Adaptive and Learning Systems, 113–118.
- Belfi, A. M., Kasdan, A., Rowland, J., Vessel, E. A., Starr, G. G., & Poeppel, D. (2018). Rapid Timing of Musical Aesthetic Judgments. Journal of Experimental Psychology: General, 147(10), 1531–1543. DOI: 10.1037/xge0000474.supp
- Belfi, A. M., & Loui, P. (2020). Musical anhedonia and rewards of music listening: current advances and a proposed model. Annals of the New York Academy of Sciences, 1464(1), 99–114. DOI: 10.1111/nyas.14241
- Bengtsson, S. L., Ullen, F., Henrik Ehrsson, H., Hashimoto, T., Kito, T., Naito, E., … Sadato, N. (2009). Listening to rhythms activates motor and premotor cortices. Cortex, 45(1), 62–71. DOI: 10.1016/j.cortex.2008.07.002
- Berlyne, D. E. (1971). Aesthetics and Psychobiology. East Norwalk, CT: Appleton-Century-Crofts.
- Berridge, K. C., & Kringelbach, M. L. (2015). Pleasure Systems in the Brain. Neuron, 86(3), 646–664. DOI: 10.1016/j.neuron.2015.02.018
- Bianco, R., Gold, B. P., Johnson, A. P., & Penhune, V. B. (2019). Music predictability and liking enhance pupil dilation and promote motor learning in non-musicians. Scientific Reports, 9(1), 1–12. DOI: 10.1038/s41598-019-53510-w
- Bianco, R., Ptasczynski, L. E., & Omigie, D. (2020). Pupil responses to pitch deviants reflect predictability of melodic sequences. Brain and Cognition, 138(July 2019), 103621. DOI: 10.1016/j.bandc.2019.103621
- Blood, A. J., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 11818–11823. DOI: 10.1073/pnas.191355898
- Blood, A. J., Zatorre, R. J., Bermudez, P., & Evans, A. C. (1999). Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nature Neuroscience, 2(4), 382–387. DOI: 10.1038/7299
- Bowling, D. L., Ancochea, P. G., Hove, M. J., Fitch, W. T., & Madison, G. (2019). Pupillometry of Groove: Evidence for Noradrenergic Arousal in the Link Between Music and Movement. Frontiers in Neuroscience, 12, 1–12. DOI: 10.3389/fnins.2018.01039
- Brattico, E., Bogert, B., & Jacobsen, T. (2013). Toward a neural chronometry for the aesthetic experience of music. Frontiers in Psychology, 4(MAY), 1–21. DOI: 10.3389/fpsyg.2013.00206
- Brattico, P., Brattico, E., & Vuust, P. (2017). Global Sensory Qualities and Aesthetic Experience in Music. Frontiers in Neuroscience, 11(April), 1–13. DOI: 10.3389/fnins.2017.00159
- Brielmann, A. A. (2022). Top-down processes in art experience. In The Routledge International Handbook of Neuroaesthetics (pp. 461–474). DOI: 10.4324/9781003008675-27
- Brielmann, A. A., Berentelg, M., & Dayan, P. (2023). Modeling individual aesthetic judgments over time. Preprint, 1–24. DOI: 10.31234/osf.io/b8rg5
- Brielmann, A. A., & Dayan, P. (2022). A computational model of aesthetic value. Psychological Review, 129(6), 1319–1337. DOI: 10.1037/rev0000337
- Bromberg-Martin, E. S., & Hikosaka, O. (2009). Midbrain dopamine neurons signal preference for advance information about upcoming rewards. Neuron, 63(1), 119–126. DOI: 10.1016/j.neuron.2009.06.009
- Burger, B., Thompson, M. R., Luck, G., Saarikallio, S. H., & Toiviainen, P. (2014). Hunting for the beat in the body: On period and phase locking in music- induced movement. Frontiers in Human Neuroscience, 8(903), 1–16. DOI: 10.3389/fnhum.2014.00903
- Cameron, D. J., Pickett, K. A., Earhart, G. M., & Grahn, J. A. (2016). The Effect of Dopaminergic Medication on Beat-Based Auditory Timing in Parkinson’s Disease. Frontiers in Neurology, 7(19), 1–8. DOI: 10.3389/fpls.2015.00830
- Câmara, G. S., & Danielsen, A. (2018).
Groove . In A. Rehding & S. Rings (Eds.), The Oxford Handbook of Critical Concepts in Music Theory (pp. 271–294). Oxford: Oxford University Press. DOI: 10.1093/oxfordhb/9780190454746.013.17 - Cannon, J. J., & Patel, A. D. (2020). How Beat Perception Co-opts Motor Neurophysiology. Trends in Cognitive Sciences, 25(2), 137–150. DOI: 10.1016/j.tics.2020.11.002
- Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008). Listening to musical rhythms recruits motor regions of the brain. Cerebral Cortex, 18(12), 2844–2854. DOI: 10.1093/cercor/bhn042
- Cheung, V. K. M., Harrison, P. M. C., Meyer, L., Pearce, M. T., Haynes, J.-D., & Koelsch, S. (2019). Uncertainty and Surprise Jointly Predict Musical Pleasure and Amygdala, Hippocampus, and Auditory Cortex Activity. Current Biology, 1–9. DOI: 10.1016/j.cub.2019.09.067
- Chmiel, A., & Schubert, E. (2017). Back to the inverted-U for music preference: A review of the literature. Psychology of Music, 45(6), 886–909. DOI: 10.1177/0305735617697507
- Cirelli, L. K., Einarson, K. M., & Trainor, L. J. (2014). Interpersonal synchrony increases prosocial behavior in infants. Developmental Science, 17(6), 1003–1011. DOI: 10.1111/desc.12193
- Clemente, A., Pearce, M. T., & Nadal, M. (2022). Musical aesthetic sensitivity. Psychology of Aesthetics, Creativity, and the Arts, 16(1), 58. DOI: 10.1037/aca0000381
- Csikszentmihalyi, M. (1990). Flow: The Psychology of Optimal Experience. New York: Harper and Row. Retrieved from
http://journals.aom.org/doi/10.5465/amr.1991.4279513%0Ahttps://www.tandfonline.com/doi/full/10.1080/00222216.1992.11969876%0Ahttps://www.cambridge.org/core/product/identifier/9780511621956/type/book - Dauer, W., & Przedborski, S. (2003). Parkinson’s Disease: Mechanisms and Models. Neuron, 39, 889–909. DOI: 10.1017/CCOL9780521851282.008
- De Fleurian, R., Harrison, P. M. C., Pearce, M. T., & Quiroga-Martinez, D. R. (2019). Reward prediction tells us less than expected about musical pleasure. Proceedings of the National Academy of Sciences of the United States of America, 116(42), 20813–20814. DOI: 10.1073/pnas.1913244116
- Dubey, R., & Griffiths, T. L. (2020). Reconciling Novelty and Complexity through a Rational Analysis of Curiosity. Psychological Research, 127(3), 455. DOI: 10.1037/rev0000175
- Duman, D., Snape, N., Danso, A., Toiviainen, P., & Luck, G. (2023). Groove as a multidimensional participatory experience. Psychology of Music, 0(0). DOI: 10.1177/03057356231165327
- Engeser, S., & Rheinberg, F. (2008). Flow, performance and moderators of challenge-skill balance. Motivation and Emotion, 32(3), 158–172. DOI: 10.1007/s11031-008-9102-4
- Fasano, M. C., Glerean, E., Gold, B. P., Sheng, D., Sams, M., Vuust, P., … Brattico, E. (2020). Inter-subject Similarity of Brain Activity in Expert Musicians After Multimodal Learning: A Behavioral and Neuroimaging Study on Learning to Play a Piano Sonata. Neuroscience, 441, 102–116. DOI: 10.1016/j.neuroscience.2020.06.015
- Ferreri, L., Mas-Herrero, E., Cardona, G., Zatorre, R. J., Antonijoan, R. M., Valle, M., … Rodriguez-Fornells, A. (2021). Dopamine modulations of reward-driven music memory consolidation. Annals of the New York Academy of Sciences, 1–14. DOI: 10.1111/nyas.14656
- Ferreri, L., Mas-herrero, E., Zatorre, R. J., Ripollés, P., Gomez-andres, A., & Alicart, H. (2019). Dopamine modulates the reward experiences elicited by music. PNAS, 116 (9) 37(9), 3793–3798. DOI: 10.1073/pnas.1811878116
- Ferreri, L., & Rodriguez-Fornells, A. (2017). Music-related reward responses predict episodic memory performance. Experimental Brain Research, 235(12), 3721–3731. DOI: 10.1007/s00221-017-5095-0
- Ferreri, L., & Rodriguez-fornells, A. (2022). Memory modulations through musical pleasure. Annals of the New York Academy of Sciences, 1–6. DOI: 10.1111/nyas.14867
- Fitch, W. T., & Rosenfeld, A. J. (2007). Perception and production of syncopated rhythms. Music Perception, 25(1), 43–58. DOI: 10.1525/mp.2007.25.1.43
- Fiveash, A., Ferreri, L., Bouwer, F. L., Kösem, S., Moghimi, S., Ravignani, A., … Tillmann, B. (2023). Can rhythm-mediated reward boost learning, memory, and social connection? Perspectives for future research. Neuroscience & Biobehavioral Reviews. DOI: 10.1016/j.neubiorev.2023.105153
- Forest, T. A., Siegelman, N., & Finn, A. S. (2021). Attention shifts to more complex structure with experience. PsyArxiv. DOI: 10.31234/osf.io/kr5a9
- Foster Vander Elst, O., Vuust, P., & Kringelbach, M. L. (2021). Sweet anticipation and positive emotions in music, groove, and dance. Current Opinion in Behavioral Sciences, 39, 79–84. DOI: 10.1016/j.cobeha.2021.02.016
- Franěk, M., Radil, T., Indra, M., & Lánsky, P. (1987). Following complex rhythmical acoustical patterns by tapping. International Journal of Psychophysiology, 5(3), 187–192. DOI: 10.1016/0167-8760(87)90005-5
- Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138. DOI: 10.1038/nrn2787
- Friston, K., Schwartenbeck, P., FitzGerald, T., Moutoussis, M., Behrens, T., & Dolan, R. J. (2014). The anatomy of choice: Dopamine and decision-making. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1655). DOI: 10.1098/rstb.2013.0481
- Galvan, J., & Omigie, D. (2022). Individual Differences in the Expression and Experience of Curiosity Are Reflected in Patterns of Music Preferences and Appreciation. Psychomusicology: Music, Mind, and Brain, Mind, and Brain. DOI: 10.1037/pmu0000289
- Gershman, S. J., & Uchida, N. (2019). Believing in dopamine. Nature Reviews Neuroscience, 20(11), 703–714. DOI: 10.1038/s41583-019-0220-7
- Gold, B. P., Mas-Herrero, E., Dagher, A., & Zatorre, R. J. (2019). Toward a fuller understanding of reward prediction errors and their role in musical pleasure. Proceedings of the National Academy of Sciences of the United States of America, 116(42), 20815–20816. DOI: 10.1073/pnas.1913835116
- Gold, B. P., Pearce, M. T., Mas-Herrero, E., Dagher, A., & Zatorre, R. J. (2019). Predictability and uncertainty in the pleasure of music: a reward for learning? The Journal of Neuroscience, 39(47), 9397–9409. DOI: 10.1523/JNEUROSCI.0428-19.2019
- Gómez, F., Thul, E., & Toussaint, G. (2007). An experimental comparison of formal measures of rhythmic syncopation. Proceedings of the International Computer Music Conference, (
August ), 101–104. Retrieved fromhttp://quod.lib.umich.edu/cgi/p/pod/dod-idx/experimental-comparison-of-formal-measures-of-rhythmic.pdf?c=icmc;idno=bbp2372.2007.023%5Cnhttp://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:AN+EXPERIMENTAL+COMPARISON+OF+FORMAL+MEASURES+OF+RHYTHMIC+ - Grahn, J. A., & Brett, M. (2007). Rhythm and beat perception in motor areas of the brain. Journal of Cognitive Neuroscience, 19(5), 893–906. DOI: 10.1162/jocn.2007.19.5.893
- Grahn, J. A., & Brett, M. (2009). Impairment of beat-based rhythm discrimination in Parkinson’s disease. Cortex, 45(1), 54–61. DOI: 10.1016/j.cortex.2008.01.005
- Grahn, J. A., & Rowe, J. B. (2013). Finding and feeling the musical beat: striatal dissociations between detection and prediction of regularity. Cerebral Cortex (New York, N.Y.: 1991), 23(4), 913–921. DOI: 10.1093/cercor/bhs083
- Graybiel, A. M., & Grafton, S. T. (2015). The striatum: where skills and habits meet. Cold Spring Harbor Perspectives in Biology, 7(8), 1–14. DOI: 10.1101/cshperspect.a021691
- Grewe, O., Nagel, F., Kopiez, R., & Altenmüller, E. (2007). Listening To Music As A Re-Creative Process: Physiological, Psychological, And Psychoacoustical Correlates Of Chills And Strong Emotions. Music Perception, 24(3), 297–314. DOI: 10.1525/mp.2007.24.3.297
- Gruber, M. J., Gelman, B. D., & Ranganath, C. (2014). States of Curiosity Modulate Hippocampus-Dependent Learning via the Dopaminergic Circuit. Neuron, 84(2), 486–496. DOI: 10.1016/j.neuron.2014.08.060
- Gruber, M. J., & Ranganath, C. (2019). How Curiosity Enhances Hippocampus-Dependent Memory: The Prediction, Appraisal, Curiosity, and Exploration (PACE) Framework. Trends in Cognitive Sciences, 23(12), 1014–1025. DOI: 10.1016/j.tics.2019.10.003
- Hansen, N. C., Dietz, M. J., & Vuust, P. (2017). Commentary: Predictions and the brain: How musical sounds become rewarding. Frontiers in Human Neuroscience, 11(168). DOI: 10.1016/j.tics.2014.12.001
- Hargreaves, D. J., & North, A. C. (2010).
Experimental aesthetics and liking for music . In P. N. Juslin & J. A. Sloboda (Eds.), Handbook of music and emotion: theory, research, applications (pp. 515–546). Oxford: Oxford Academic. DOI: 10.1093/acprof:oso/9780199230143.003.0019 - Hsu, P., Ready, E. A., & Grahn, J. A. (2022). The effects of Parkinson’s disease, music training, and dance training on beat perception and production abilities. PLoS ONE, 17(3 March), 1–16. DOI: 10.1371/journal.pone.0264587
- Huron, D. (2006). Sweet Anticipation: Music and the Psychology of Expectation. Cambridge, MA: MIT Press. DOI: 10.1525/mp.2007.24.5.511
- Jacoby, N., & Mcdermott, J. H. (2017). Integer Ratio Priors on Musical Rhythm Revealed Cross-culturally by Iterated Reproduction. Current Biology, 1–12. DOI: 10.1016/j.cub.2016.12.031
- Jacoby, N., Polak, R., Grahn, J. A., Cameron, D. J., Lee, K. M., Godoy, R., … McDermott, J. H. (2021). Universality and cross-cultural variation in mental representations of music revealed by global comparison of rhythm priors. PsyArXiv Preprint. DOI: 10.31234/osf.io/b879v
- Janata, P., Tomic, S. T., & Haberman, J. M. (2012). Sensorimotor coupling in music and the psychology of the groove. Journal of Experimental Psychology. General, 141(1), 54–75. DOI: 10.1037/a0024208
- Jepma, M., Verdonschot, R. G., van Steenbergen, H., Rombouts, S. A. R. B., & Nieuwenhuis, S. (2012). Neural mechanisms underlying the induction and relief of perceptual curiosity. Frontiers in Behavioral Neuroscience, 6(FEBRUARY 2012), 1–9. DOI: 10.3389/fnbeh.2012.00005
- Juslin, P. N. (2013). From everyday emotions to aesthetic emotions: Towards a unified theory of musical emotions. Physics of Life Reviews, 10(3), 235–266. DOI: 10.1016/j.plrev.2013.05.008
- Kang, M. J., Hsu, M., Krajbich, I. M., Loewenstein, G., McClure, S. M., Wang, J. T., & Camerer, C. F. (2009). The Wick in the Candle of Learning: Epistemic Curiosity Activates Reward Circuitry and Enhances Memory. Psychological Science, 20(8), 963–973. DOI: 10.1111/j.1467-9280.2009.02402.x
- Kaplan, T., Cannon, J., Jamone, L., & Pearce, M. (2022). Modeling enculturated bias in entrainment to rhythmic patterns. PLoS Computational Biology, 1–32. DOI: 10.1371/journal.pcbi.1010579
- Kirschner, S., & Tomasello, M. (2009). Joint drumming: social context facilitates synchronization in preschool children. Journal of Experimental Child Psychology, 102(3), 299–314. DOI: 10.1016/j.jecp.2008.07.005
- Koelsch, S., Vuust, P., & Friston, K. (2019). Predictive Processes and the Peculiar Case of Music. Trends in Cognitive Sciences, 23(1), 63–77. DOI: 10.1016/j.tics.2018.10.006
- Kokal, I., Engel, A., Kirschner, S., & Keysers, C. (2011). Synchronized drumming enhances activity in the caudate and facilitates prosocial commitment--if the rhythm comes easily. PloS One, 6(11),
e27272 . DOI: 10.1371/journal.pone.0027272 - Kornysheva, K., Cramon, D. Y. Von, Jacobsen, T., & Schubotz, R. I. (2010). Tuning-in to the Beat: Aesthetic Appreciation of Musical Rhythms Correlates with a Premotor Activity Boost. Human Brain Mapping, 31, 48–64. DOI: 10.1002/hbm.20844
- Krumhansl, C. L., & Zupnick, J. A. (2013). Cascading Reminiscence Bumps in Popular Music. Psychological Science, 24(10), 2057–2068. DOI: 10.1177/0956797613486486
- Kung, S.-J., Chen, J. L., Zatorre, R. J., & Penhune, V. B. (2013). Interacting cortical and basal ganglia networks underlying finding and tapping to the musical beat. Journal of Cognitive Neuroscience, 25(3), 401–420. DOI: 10.1162/jocn_a_00325
- Laeng, B., Eidet, L. M., Sulutvedt, U., & Panksepp, J. (2016). Music chills: The eye pupil as a mirror to music’s soul. Consciousness and Cognition, 44, 161–178. DOI: 10.1016/j.concog.2016.07.009
- Large, E. W., & Jones, M. R. (1999). The Dynamics of Attending: How People Track Time-Varying Events. Psychological Review, 106(1), 119–159. DOI: 10.1037/0033-295X.106.1.119
- Large, E. W., & Kolen, J. F. (1994). Resonance and the perception of musical meter. Connection Science, 6(1), 177–208. DOI: 10.1080/09540099408915723
- Large, E. W., & Snyder, J. S. (2009). Pulse and meter as neural resonance. Annals of the New York Academy of Sciences, 1169, 46–57. DOI: 10.1111/j.1749-6632.2009.04550.x
- Lehrdahl, F., & Jackendoff, R. (1983).
A generative theory of tonal music . Cambridge, MA: MIT Press. - Loewenstein, G. (1994). The Psychology of Curiosity: A Review and Reinterpretation. Psychological Bulletin, 116(1), 75–98. DOI: 10.1037/0033-2909.116.1.75
- Longuet-Higgins, H. C., & Lee, C. S. (1984). The Rhythmic Interpretation of Monophonic Music. Music Perception: An Interdisciplinary Journal, 1(4), 424–441. DOI: 10.2307/40285271
- Loui, P. (2022). New music system reveals spectral contribution to statistical learning. Cognition, 224(July 2021), 105071. DOI: 10.1016/j.cognition.2022.105071
- Loui, P., Patterson, S., Sachs, M. E., Leung, Y., Zeng, T., & Przysinda, E. (2017). White matter correlates of musical Anhedonia: Implications for evolution of music. Frontiers in Psychology, 8(SEP), 1–10. DOI: 10.3389/fpsyg.2017.01664
- Lumaca, M., Haumann, N. T., Brattico, E., Grube, M., & Vuust, P. (2019). Weighting of neural prediction error by rhythmic complexity: a predictive coding account using Mismatch Negativity. European Journal of Neuroscience, 49, 1597–1609. DOI: 10.1111/ejn.14329
- Madison, G. (2006). Experiencing Groove Induced by Music: Consistency and Phenomenology. Music Perception, 24(2), 201–208. DOI: 10.1525/mp.2006.24.2.201
- Madison, G., Gouyon, F., & Ullen, F. (2009). Musical groove is correlated with properties of the audio signal as revealed by computational modelling, depending on musical style. In Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference (pp. 239–240).
- Madison, G., Gouyon, F., Ullén, F., & Hörnström, K. (2011). Modeling the tendency for music to induce movement in humans: First correlations with low-level audio descriptors across music genres. J. Exp. Psychol. Hum. Percept. Perform, 37, 1578–1594. DOI: 10.1037/a0024323
- Madison, G., & Schiölde, G. (2017). Repeated Listening Increases the Liking for Music Regardless of Its Complexity: Implications for the Appreciation and Aesthetics of Music. Frontiers in Neuroscience, 11(March), 1–13. DOI: 10.3389/fnins.2017.00147
- Martínez-Molina, N., Mas-Herrero, E., Rodríguez-Fornells, A., Zatorre, R. J., & Marco-Pallarés, J. (2016). Neural correlates of specific musical anhedonia. Proceedings of the National Academy of Sciences, E7337–E7345. DOI: 10.1073/pnas.1611211113
- Martinez-Molina, N., Mas-Herrero, E., Rodríguez-Fornells, A., Zatorre, R. J., & Marco-Pallarés, J. (2019). White matter microstructure reflects individual differences in music reward sensitivity. The Journal of Neuroscience, 39(25), 5018–5027. DOI: 10.1523/JNEUROSCI.2020-18.2019
- Mårup, S. H., Møller, C., & Vuust, P. (2022). Coordination of voice, hands and feet in rhythm and beat performance. Scientific Reports, 12(8046), 1–12. DOI: 10.1038/s41598-022-11783-8
- Marvin, C. B., & Shohamy, D. (2016). Curiosity and Reward: Valence Predicts Choice and Information Prediction Errors Enhance Learning. Journal of Experimental Psychology: General, 145, 266–272. DOI: 10.1037/xge0000140
- Mas-Herrero, E., Maini, L., Sescousse, G., & Zatorre, R. J. (2021). Common and distinct neural correlates of music and food-induced pleasure: A coordinate-based meta-analysis of neuroimaging studies. Neuroscience and Biobehavioral Reviews, 123(January), 61–71. DOI: 10.1016/j.neubiorev.2020.12.008
- Mas-Herrero, E., Zatorre, R. J., Rodriguez-Fornells, A., & Marco-Pallarés, J. (2014). Dissociation between musical and monetary reward responses in specific musical anhedonia. Current Biology, 24(6), 699–704. DOI: 10.1016/j.cub.2014.01.068
- Mather, M., Clewett, D., Sakaki, M., & Harley, C. W. (2016). Norepinephrine ignites local hotspots of neuronal excitation: How arousal amplifies selectivity in perception and memory. Behavioral and Brain Sciences, 39, 1–75. DOI: 10.1017/S0140525X15000667
- Matthews, T. E., Witek, M. A. G., Heggli, O. A., Penhune, V. B., & Vuust, P. (2019). The sensation of groove is affected by the interaction of rhythmic and harmonic complexity. PLoS ONE, 14(1), 1–17. DOI: 10.1371/journal.pone.0204539
- Matthews, T. E., Witek, M. A. G., Lund, T., Vuust, P., & Penhune, V. B. (2020). The sensation of groove engages motor and reward networks. NeuroImage, 214(116768), 1–12. DOI: 10.1016/j.neuroimage.2020.116768
- Matthews, T. E., Witek, M. A. G., Thibodeau, J. L. N., Vuust, P., & Penhune, V. B. (2022). Perceived motor synchrony with the beat is more strongly related to groove than measured synchrony. Music Perception, 39(5), 423–442. DOI: 10.1525/mp.2022.39.5.423
- Melnikoff, D. E., Carlson, R. W., & Stillman, P. E. (2022). A computational theory of the subjective experience of flow. Nature Communications, 13(1). DOI: 10.1038/s41467-022-29742-2
- Mencke, I., Omigie, D., Quiroga-Martinez, D. R., & Brattico, E. (2022). Atonal Music as a Model for Investigating Exploratory Behavior. Frontiers in Neuroscience, 16(June). DOI: 10.3389/fnins.2022.793163
- Mencke, I., Omigie, D., Wald-Fuhrmann, M., & Brattico, E. (2019). Atonal music: Can uncertainty lead to pleasure? Frontiers in Neuroscience, 13(JAN), 1–18. DOI: 10.3389/fnins.2018.00979
- Merchant, H., & Yarrow, K. (2016). How the motor system both encodes and influences our sense of time. Current Opinion in Behavioral Sciences, 6–11. DOI: 10.1016/j.cobeha.2016.01.006
- Metcalfe, J., Schwartz, B. L., & Eich, T. S. (2020). Epistemic curiosity and the region of proximal learning. Current Opinion in Behavioral Sciences, 35, 40–47. DOI: 10.1016/j.cobeha.2020.06.007
- Meyer, L. B. (1956). Emotion and Meaning in Music. Chicago: University of Chicago Press.
- Morillon, B., & Baillet, S. (2017). Motor origin of temporal predictions in auditory attention. Proceedings of the National Academy of Sciences, 114(42), E8913–E8921. DOI: 10.1073/pnas.1705373114
- Morillon, B., Hackett, T. A., Kajikawa, Y., & Schroeder, C. E. (2015). Predictive motor control of sensory dynamics in auditory active sensing. Current Opinion in Neurobiology, 31C, 230–238. DOI: 10.1016/j.conb.2014.12.005
- Morillon, B., Schroeder, C. E., Wyart, V., & Arnal, L. H. (2016). Temporal Prediction in lieu of Periodic Stimulation. Journal of Neuroscience, 36(8), 2342–2347. DOI: 10.1523/JNEUROSCI.0836-15.2016
- Norgaard, M., Bales, K., & Hansen, N. C. (2023). Linked auditory and motor patterns in the improvisation vocabulary of an artist-level jazz pianist. Cognition, 230, 105308. DOI: 10.1016/j.cognition.2022.105308
- O’Connell, S. R., Nave-blodgett, J. E., Wilson, G. E., Hannon, E. E., & Snyder, J. S. (2022). Elements of musical and dance sophistication predict musical groove perception. Frontiers in Psychology, (November), 1–16. DOI: 10.3389/fpsyg.2022.998321
- Omigie, D., Pearce, M. T., Lehongre, K., Hasboun, D., Navarro, V., Adam, C., & Samson, S. (2019). Intracranial Recordings and Computational Modeling of Music Reveal the Time Course of Prediction Error Signaling in Frontal and Temporal Cortices. Journal of Cognitive Neuroscience, 31(6), 855–873. DOI: 10.1162/jocn_a_01388
- Omigie, D., & Ricci, J. (2022). Accounting for expressions of curiosity and enjoyment during music listening. Psychology of Aesthetics, Creativity and the Arts, 1–17. DOI: 10.1037/aca0000461
- Oudeyer, P. Y., Gottlieb, J., & Lopes, M. (2016). Intrinsic motivation, curiosity, and learning: Theory and applications in educational technologies. Progress in Brain Research (1st ed., Vol. 229). Elsevier B.V. DOI: 10.1016/bs.pbr.2016.05.005
- Oudeyer, P. Y., & Kaplan, F. (2007). What is intrinsic motivation? A typology of computational approaches. Frontiers in Neurorobotics, 1(6), 1–14. DOI: 10.3389/neuro.12.006.2007
- Oudeyer, P.-Y., Kaplan, F., & Hafner, V. (2007). Intrinsic Motivation Systems for Autonomous Mental Development. IEEE Transactions on Evolutionary Computation, 11(2), 265–286. DOI: 10.4324/9781315009537-6
- Palmer, C., & Krumhansl, C. L. (1990). Mental Representations for Musical Meter. Journal of Experimental Psychology: Human Perception and Performance, 16(4), 728–741. DOI: 10.1037/0096-1523.16.4.728
- Pando-Naude, V., Matthews, T. E., Højlund, A., Jakobsen, S., Østergaard, K., Johnsen, E., … Vuust, P. (2023). Dopamine dysregulation in Parkinson’s disease flattens the pleasurable urge to move to musical rhythms. BioRxiv Preprint, 1–33. DOI: 10.1101/2023.02.27.530174
- Pearce, M. T., & Wiggins, G. A. (2012). Auditory expectation: the information dynamics of music perception and cognition. Topics in Cognitive Science, 4(4), 625–652. DOI: 10.1111/j.1756-8765.2012.01214.x
- Pearce, M. T., Zaidel, D. W., Vartanian, O., Skov, M., Leder, H., Chatterjee, A., & Nadal, M. (2016). Neuroaesthetics: The Cognitive Neuroscience of Aesthetic Experience. Perspectives on Psychological Science, 11(2), 265–279. DOI: 10.1177/1745691615621274
- Poeppel, D., & Assaneo, M. F. (2020). Speech rhythms and their neural foundations. Nature Reviews Neuroscience, 21(6), 322–334. DOI: 10.1038/s41583-020-0304-4
- Pressing, J. (1988).
IMPROVISATION: METHODS AND MODELS . In: J. A. Sloboda (Ed.), Generative Processes in Music (pp. 129–178). Oxford: Oxford University Press. DOI: 10.1093/acprof:oso/9780198508465.003.0007 - Pressing, J. (2002). Black atlantic rhythm: Its computational and transcultural foundations. Music Perception, 19(3), 285–310. DOI: 10.1525/jams.2009.62.1.145
- Ravreby, I., Shilat, Y., & Yeshurun, Y. (2022). Liking as a balance between synchronization, complexity and novelty. Scientific Reports, 12(3181), 1–12. DOI: 10.1038/s41598-022-06610-z
- Repp, B. H. (2003). Rate Limits in Sensorimotor Synchronization With Auditory and Visual Sequences: The Synchronization Threshold and the Benefits and Costs of Interval Subdivision. Journal of Motor Behavior, 35(4), 355–370. DOI: 10.1080/00222890309603156
- Ripollés, P., Ferreri, L., Mas-Herrero, E., Alicart, H., Gómez-Andrés, A., Marco-Pallares, J., … Rodriguez-Fornells, A. (2018). Intrinsically regulated learning is modulated by synaptic dopamine signaling. ELife, 7, 1–23. DOI: 10.7554/eLife.38113
- Ripollés, P., Marco-Pallarés, J., Alicart, H., Tempelmann, C., Rodríguez-Fornells, A., & Noesselt, T. (2016). Intrinsic monitoring of learning success facilitates memory encoding via the activation of the SN/VTA-hippocampal loop. ELife, 5(September), 1–35. DOI: 10.7554/eLife.17441
- Runco, M. A., & Jaeger, G. J. (2012). The Standard Definition of Creativity. Creativity Research Journal, 24(1), 92–96. DOI: 10.1080/10400419.2012.650092
- Ryan, R. M., & Deci, E. L. (2000). Intrinsic and Extrinsic Motivations: Classic Definitions and New Directions. Contemporary Educational Psychology, 25(1), 54–67. DOI: 10.1006/ceps.1999.1020
- Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A., & Zatorre, R. J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14(2), 257–262. DOI: 10.1038/nn.2726
- Salimpoor, V. N., van den Bosch, I., Kovacevic, N., McIntosh, A. R., Dagher, A., & Zatorre, R. J. (2013). Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science (New York, N.Y.), 340(6129), 216–219. DOI: 10.1126/science.1231059
- Salimpoor, V. N., Zald, D. H., Zatorre, R. J., Dagher, A., & McIntosh, A. R. (2015). Predictions and the brain: how musical sounds become rewarding. Trends in Cognitive Sciences, 19(2), 86–91. DOI: 10.1016/j.tics.2014.12.001
- Savage, P. E., Loui, P., Tarr, B., Schachner, A., Glowacki, L., Mithen, S., & Fitch, W. T. (2021). Music as a coevolved system for social bonding. Behavioral and Brain Sciences, 44. DOI: 10.1017/S0140525X20000333
- Schaefer, R. S., Overy, K., & Nelson, P. (2013). Affect and non-uniform characteristics of predictive processing in musical behaviour. Behavioral and Brain Sciences, 36(3), 226–227. DOI: 10.1017/S0140525X12002373
- Scherer, K. R. (2004). Which Emotions Can be Induced by Music? What Are the Underlying Mechanisms? And How Can We Measure Them? Journal of New Music Research, 33(3), 239–251. DOI: 10.1080/0929821042000317822
- Schmidhuber, J. (2010). Formal Theory of Creativity & Intrinsic Motivation (1990-2010). IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, 2(3), 1–18. DOI: 10.1109/TAMD.2010.2056368
- Schubotz, R. I. (2007). Prediction of external events with our motor system: towards a new framework. Trends in Cognitive Sciences, 11(5), 211–218. DOI: 10.1016/j.tics.2007.02.006
- Schubotz, R. I., Friederici, A. D., & von Cramon, D. Y. (2000). Time perception and motor timing: a common cortical and subcortical basis revealed by fMRI. NeuroImage, 11(1), 1–12. DOI: 10.1006/nimg.1999.0514
- Schultz, W. (2016a). Dopamine reward prediction- error signalling: a two-component response. Nature Reviews Neuroscience. DOI: 10.1038/nrn.2015.26
- Schultz, W. (2016b). Reward functions of the basal ganglia. Journal of Neural Transmission. DOI: 10.1007/s00702-016-1510-0
- Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–1599. DOI: 10.1126/science.275.5306.1593
- Senn, O. (2023). A predictive coding approach to modelling the perceived complexity of popular music drum patterns. Heliyon, 9,
e15199 . DOI: 10.1016/j.heliyon.2023.e15199 - Senn, O., Bechtold, T. A., Hoesl, F., & Kilchenmann, L. (2019). Taste and familiarity affect the experience of groove in popular music. Musicae Scientiae. DOI: 10.1177/1029864919839172
- Senn, O., Kilchenmann, L., Bechtold, T., & Hoesl, F. (2018). Groove in drum patterns as a function of both rhythmic properties and listeners’ attitudes. PLoS ONE, 13(6), 1–33. DOI: 10.1371/journal.pone.0199604
- Senn, O., Rose, D., Bechtold, T. A., Kilchenmann, L., Hoesl, F., Jerjen, R., … Alessandri, E. (2019). Preliminaries to a psychological model of musical groove. Frontiers in Psychology, 10(June), 1228. DOI: 10.3389/fpsyg.2019.01228
- Sescousse, G., Caldú, X., Segura, B., & Dreher, J. (2013). Processing of primary and secondary rewards: a quantitative meta-analysis and review of human functional neuroimaging studies. Neuroscience & Biobehavioral Reviews, 37(4), 681–696. DOI: 10.1016/j.neubiorev.2013.02.002
- Shany, O., Singer, N., Gold, B. P., Jacoby, N., Tarrasch, R., Hendler, T., & Granot, R. (2019). Surprise-related activation in the nucleus accumbens interacts with music-induced pleasantness. Social Cognitive and Affective Neuroscience, 1–12. DOI: 10.1093/scan/nsz019
- Silvetti, M., Vassena, E., Abrahamse, E., & Verguts, T. (2018). Dorsal anterior cingulate-midbrain ensemble as a reinforcement meta-learner. PLoS Computational Biology (Vol. 14). DOI: 10.1371/journal.pcbi.1006370
- Singh, S., Lewis, R. L., Barto, A. G., & Sorg, J. (2010). Intrinsically motivated reinforcement learning: An Evolutionary Perspective. 70 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, 2(2), 70–82. DOI: 10.1109/TAMD.2010.2051031
- Sioros, G., Madison, G. S., Cocharro, D., Danielsen, A., & Gouyon, F. (2022). Syncopation and Groove in Polyphonic Music: Patterns Matter. Music Perception, 39(5), 503–531. DOI: 10.1525/mp.2022.39.5.503
- Sioros, G., Miron, M., Davies, M., Gouyon, F., & Madison, G. (2014). Syncopation creates the sensation of groove in synthesized music examples. Frontiers in psychology, 5(1036), 1–10. DOI: 10.3389/fpsyg.2014.01036
- Skaansar, J. F., Laeng, B., & Danielsen, A. (2019). Microtimin and Mental Effort: Onset Asynchronies in Musical Rhythm Modulate Pupil Size. Music Perception, 37(2), 111–133. DOI: 10.1525/mp.2019.37.2.111
- Sloboda, J. A. (1991). Music Structure and Emotional Response: Some Empirical Findings. Psychology of Music, 19(2), 110–120. DOI: 10.1177/0305735691192002
- Smith, K. C., & Cuddy, L. L. (1986). The pleasingness of melodic sequences: Contrasting effects of repetition and rule-familiarity. Psychology of Music, 14(1), 17–32. DOI: 10.1177/0305735686141002
- Spiech, C., Danielsen, A., Laeng, B., & Endestad, T. (2023). Oscillatory Attention in Groove. PsyArXiv Preprint, 1–33. DOI: 10.31234/osf.io/298wh
- Spiech, C., Hope, M., Câmara, G. S., Sioros, G., Endestad, T., Laeng, B., & Danielsen, A. (2022). Sensorimotor Synchronization Increases Groove. PsyArxiv. DOI: 10.31234/osf.io/fw7mh
- Spiech, C., Sioros, G., Endestad, T., Danielsen, A., & Laeng, B. (2022). Pupil drift rate indexes groove ratings. Scientific Reports, 12, 11620. DOI: 10.1038/s41598-022-15763-w
- Stefanics, G., Hangya, B., Hernádi, I., Winkler, I., Lakatos, P., & Ulbert, I. (2010). Phase entrainment of human delta oscillations can mediate the effects of expectation on reaction speed. Journal of Neuroscience, 30(41), 13578–13585. DOI: 10.1523/JNEUROSCI.0703-10.2010
- Stupacher, J. (2019). The experience of flow during sensorimotor synchronization to musical rhythms. Musicae Scientiae, 23(3), 348–361. DOI: 10.1177/1029864919836720
- Stupacher, J., Hove, M. J., Novembre, G., Schütz-Bosbach, S., & Keller, P. E. (2013). Musical groove modulates motor cortex excitability: A TMS investigation. Brain and Cognition, 82, 127–136. DOI: 10.1016/j.bandc.2013.03.003
- Stupacher, J., Matthews, T. E., Pando-naude, V., Foster, O., Elst, V., & Vuust, P. (2022). The sweet spot between predictability and surprise: musical groove in brain, body, and social interactions. Frontiers in Psychology, (August), 1–9. DOI: 10.3389/fpsyg.2022.906190
- Stupacher, J., Witek, M. A. G., Vuoskoski, J. K., & Vuust, P. (2020). Cultural Familiarity and Individual Musical Taste Differently Affect Social Bonding when Moving to Music. Scientific Reports, 10(1), 1–12. DOI: 10.1038/s41598-020-66529-1
- Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An Introduction. Cambridge, MA: MIT Press. Retrieved from
https://books.google.com/books?id=CAFR6IBF4xYC&pgis=1%5Cnhttp://incompleteideas.net/sutton/book/the-book.html%5Cnhttps://www.dropbox.com/s/f4tnuhipchpkgoj/book2012.pdf - Szumowska, E., & Kruglanski, A. W. (2020). Curiosity as end and means. Current Opinion in Behavioral Sciences, 35, 35–39. DOI: 10.1016/j.cobeha.2020.06.008
- Tal, I., Large, E. W., Rabinovitch, E., Wei, Y., Schroeder, C. E., Poeppel, D., & Zion Golumbic, E. (2017). Neural entrainment to the beat: The “Missing-Pulse” phenomenon. The Journal of Neuroscience, 37(26), 6331–6341. DOI: 10.1523/JNEUROSCI.2500-16.2017
- Teki, S., Grube, M., Kumar, S., & Griffiths, T. D. (2011). Distinct neural substrates of duration-based and beat-based auditory timing. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31(10), 3805–3812. DOI: 10.1523/JNEUROSCI.5561-10.2011
- Ten, A., Kaushik, P., Oudeyer, P. Y., & Gottlieb, J. (2021). Humans monitor learning progress in curiosity-driven exploration. Nature Communications, 12(1), 1–10. DOI: 10.1038/s41467-021-26196-w
- Thaut, M. H. (2003). Neural Basis of Rhythmic timing networks. Annals of the New York Academy of Sciences. DOI: 10.1196/annals.1284.044
- Tomassini, A., Ruge, D., Galea, J. M., Penny, W., & Bestmann, S. (2016). The Role of Dopamine in Temporal Uncertainty. Journal of Cognitive Neuroscience, 28(1), 96–110. DOI: 10.1162/jocn_a_00880
- Van de Cruys, S. (2017). Affective Value in the Predictive Mind. Open MIND, 1–21. DOI: 10.15502/9783958573253
- Vikene, K., Skeie, G. O., & Specht, K. (2019). Subjective judgments of rhythmic complexity in Parkinson’s disease: Higher baseline, preserved relative ability, and modulated by tempo. PLoS ONE, 14(9),
e0221752 . DOI: 10.1371/journal.pone.0221752 - Vuust, P., Heggli, O. A., Friston, K. J., & Kringelbach, M. L. (2022). Music in the brain. Nature Reviews Neuroscience, 23(5), 287–305. DOI: 10.1038/s41583-022-00578-5
- Vuust, P., Pallesen, K. J., Bailey, C., van Zuijen, T. L., Gjedde, A., Roepstorff, A., & Østergaard, L. (2005). To musicians, the message is in the meter: Pre-attentive neuronal responses to incongruent rhythm are left-lateralized in musicians. NeuroImage, 24(2), 560–564. DOI: 10.1016/j.neuroimage.2004.08.039
- Vuust, P., Witek, M. A. G., Dietz, M., & Kringelbach, M. L. (2018). Now You Hear It: A predictive coding model for understanding rhythmic incongruity. Annals of the New York Academy of Sciences, 1423(1), 19–29. DOI: 10.1111/nyas.13622
- Vuust, P., & Witek, M. A. G. (2014). Rhythmic complexity and predictive coding: A novel approach to modeling rhythm and meter perception in music. Frontiers in Psychology, 5(1111), 1–14. DOI: 10.3389/fpsyg.2014.01111
- Vuvan, D. T., Simon, E., Baker, D. J., Monzingo, E., & Elliott, E. M. (2020). Musical training mediates the relation between working memory capacity and preference for musical complexity. Memory and Cognition, 48(6), 972–981. DOI: 10.3758/s13421-020-01031-7
- Wade, S., & Kidd, C. (2019). The role of prior knowledge and curiosity in learning. Psychonomic Bulletin and Review, 26(4), 1377–1387. DOI: 10.3758/s13423-019-01598-6
- Wilhelm, B., Wilhelm, H., & Lüdtke, H. (1999). Pupillography: Principles and applications in basic and clinical research. In Pupillography: Principles, methods and applications, (pp. 1–11).
- Witek, M. A. G. (2009). Groove experience: Emotional and physiological responses to groove-based music. In J. Louhivuori, T. Eerola, S. Saarikallio, T. Himberg, & P.-S. Eerola (Eds.), Proceedings of the 7th Triennial Conference of European Society for the Cognitive Sciences of Music (ESCOM 2009) (pp. 573–582). Jyväskylä, Finland.
- Witek, M. A. G. (2019).
Feeling at one: Socio-affective distribution, vibe, and dance-music consciousness . In Music and Consciousness 2: Worlds, Practices, Modalities (pp. 1–25). Oxford University Press. DOI: 10.1093/oso/9780198804352.001.0001 - Witek, M. A. G., Clarke, E. F., Wallentin, M., Kringelbach, M. L., & Vuust, P. (2014). Syncopation, body-movement and pleasure in groove music. PloS One, 9(4), 1–12. DOI: 10.1371/journal.pone.0094446
- Zhao, T. C., Gloria Lam, H. T., Sohi, H., & Kuhl, P. K. (2017). Neural Processing of Musical Meter in Musicians and Non-musicians. Neuropsychologia. DOI: 10.1016/j.neuropsychologia.2017.10.007
