References
- Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255–278. DOI: 10.1016/j.jml.2012.11.001
- Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. DOI: 10.18637/jss.v067.i01
- Bialystok, E., Craik, F. I. M., & Luk, G. (2012). Bilingualism: consequences for mind and brain. Trends in Cognitive Sciences, 16(4), 240–250. DOI: 10.1016/j.tics.2012.03.001
- Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S. J., & Munafò, M. R. (2013). Power failure: why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14(5), 365–376. DOI: 10.1038/nrn3475
- Chein, J. M., & Schneider, W. (2012). The brain’s learning and control architecture. Current Directions in Psychological Science, 21(2), 78–84. DOI: 10.1177/0963721411434977
- Chen, Y., Peruggia, M., & Van Zandt, T. (2022). Mutual interference in working memory updating: A hierarchical Bayesian model. Journal of Mathematical Psychology, 111, 102706. DOI: 10.1016/j.jmp.2022.102706
- Cousineau, D. (2005). Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson’s method. Tutorials in Quantitative Methods for Psychology, 1(1), 42–45. DOI: 10.20982/tqmp.01.1.p042
- Danielmeier, C., & Ullsperger, M. (2011). Post-error adjustments. Frontiers in Psychology, 2, 233. DOI: 10.3389/fpsyg.2011.00233
- Dutilh, G., Krypotos, A. M., & Wagenmakers, E. J. (2011). Task-related versus stimulus-specific practice. Experimental Psychology, 58(6), 434–442. DOI: 10.1027/1618-3169/a000111
- Dutilh, G., Vandekerckhove, J., Tuerlinckx, F., & Wagenmakers, E. J. (2009). A diffusion model decomposition of the practice effect. Psychonomic Bulletin & Review, 16(6), 1026–1036. DOI: 10.3758/16.6.1026
- Edwards, J. D., Fausto, B. A., Tetlow, A. M., Corona, R. T., & Valdes, E. G. (2018). Systematic review and meta-analyses of useful field of view cognitive training. Neuroscience & Biobehavioral Reviews, 84, 72–91. DOI: 10.1016/j.neubiorev.2017.11.004
- Edwards, J. D., Xu, H., Clark, D. O., Guey, L. T., Ross, L. A., & Unverzagt, F. W. (2017). Speed of processing training results in lower risk of dementia. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 3(4), 603–611. DOI: 10.1016/j.trci.2017.09.002
- Heathcote, A., Brown, S., & Mewhort, D. J. (2000). The power law repealed: The case for an exponential law of practice. Psychonomic Bulletin & Review, 7(2), 185–207. DOI: 10.3758/BF03212979
- Heathcote, A., Lin, Y. S., Reynolds, A., Strickland, L., Gretton, M., & Matzke, D. (2019). Dynamic models of choice. Behavior Research Methods, 51, 961–985. DOI: 10.3758/s13428-018-1067-y
- Heathcote, A., Loft, S., & Remington, R. W. (2015). Slow Down and Remember to Remember! A Delay Theory of Prospective Memory Costs. Psychological Review, 122(2), 376–410. DOI: 10.1037/a0038952
- Kail, R., & Salthouse, T. A. (1994). Processing speed as a mental capacity. Acta Psychologica, 86(2–3), 199–225. DOI: 10.1016/0001-6918(94)90003-5
- Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. (2017). lmerTest package: tests in linear mixed effects models. Journal of Statistical Software, 82, 1–26. DOI: 10.18637/jss.v082.i13
- Lerche, V., von Krause, M., Voss, A., Frischkorn, G. T., Schubert, A.-L., & Hagemann, D. (2020). Diffusion modeling and intelligence: Drift rates show both domain-general and domain-specific relations with intelligence. Journal of Experimental Psychology: General, 149(12), 2207–2249. DOI: 10.1037/xge0000774
- Lerche, V., Voss, A., & Nagler, M. (2017). How many trials are required for parameter estimation in diffusion modeling? A comparison of different optimization criteria. Behavior Research Methods, 49(2), 513–537. DOI: 10.3758/s13428-016-0740-2
- Leys, C., Ley, C., Klein, O., Bernard, P., & Licata, L. (2013). Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. Journal of Experimental Social Psychology, 49(4), 764–766. DOI: 10.1016/j.jesp.2013.03.013
- Liu, C. C., & Watanabe, T. (2012). Accounting for speed-accuracy tradeoff in perceptual learning. Vision Research, 61, 107–114. DOI: 10.1016/j.visres.2011.09.007
- Logan, G. D. (1992). Shapes of reaction-time distributions and shapes of learning curves: a test of the instance theory of automaticity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(5), 883–914. DOI: 10.1037/0278-7393.18.5.883
- Martinez, A., & Benavente, R. (1998). The AR face database. CVC Technical Report, 24.
- Matuschek, H., Kliegl, R., Vasishth, S., Baayen, H., & Bates, D. (2017). Balancing Type I error and power in linear mixed models. Journal of Memory and Language, 94, 305–315. DOI: 10.1016/j.jml.2017.01.001
- Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures. Psychological Bulletin, 105(1), 156–166. DOI: 10.1037/0033-2909.105.1.156
- Morey, R. D. (2008). Confidence intervals from normalized data: A correction to Cousineau (2005). Tutorials in Quantitative Methods for Psychology, 4(2), 61–64. DOI: 10.20982/tqmp.04.2.p061
- Newell, A., & Rosenbloom, P. S. (1981).
Mechanisms of skill acquisition and the law of practice . In R. J. Anderson (Ed.), Cognitive skills and their acquisition (pp. 1–55). Erlbaum. - Pashler, H., & Baylis, G. C. (1991). Procedural learning: I. Locus of practice effects in speeded choice tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17(1), 20–32. DOI: 10.1037/0278-7393.17.1.20
- Petrov, A. A., Van Horn, N. M., & Ratcliff, R. (2011). Dissociable perceptual-learning mechanisms revealed by diffusion-model analysis. Psychonomic Bulletin & Review, 18(3), 490–497. DOI: 10.3758/s13423-011-0079-8
- R Core Team. (2022).
R: A language and environment for statistical computing . Vienna, Austria: R Foundation for Statistical Computing.https://www.R-project.org/ - Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59–108. DOI: 10.1037/0033-295X.85.2.59
- Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: theory and data for two-choice decision tasks. Neural Computation, 20(4), 873–922. DOI: 10.1162/neco.2008.12-06-420
- Ratcliff, R., Thapar, A., & McKoon, G. (2006). Aging, practice, and perceptual tasks: a diffusion model analysis. Psychology and Aging, 21(2), 353–371. DOI: 10.1037/0882-7974.21.2.353
- Salthouse, T. A., & Kail, R. (1983).
Memory development throughout the life span: The role of processing rate . Life-span Development and Behavior, 5, 89–116. San Diego, CA: Academic Press. - Schmidt, R. A., & Bjork, R. A. (1992). New conceptualizations of practice: Common principles in three paradigms suggest new concepts for training. Psychological Science, 3(4), 207–218. DOI: 10.1111/j.1467-9280.1992.tb00029.x
- Schmiedek, F., Lövdén, M., & Lindenberger, U. (2010). Hundred days of cognitive training enhance broad cognitive abilities in adulthood: Findings from the COGITO study. Frontiers in Aging Neuroscience, 2, 27. DOI: 10.3389/fnagi.2010.00027
- Schmiedek, F., Lövdén, M., Ratcliff, R., & Lindenberger, U. (2022). Practice-related changes in perceptual evidence accumulation correlate with changes in working memory. Journal of Experimental Psychology: General. DOI: 10.1037/xge0001290
- Schmiedek, F., Oberauer, K., Wilhelm, O., Süß, H.-M., & Wittmann, W. W. (2007). Individual differences in components of reaction time distributions and their relations to working memory and intelligence. Journal of Experimental Psychology: General, 136(3), 414–429. DOI: 10.1037/0096-3445.136.3.414
- Schönbrodt, F. D., & Perugini, M. (2013). At what sample size do correlations stabilize? Journal of Research in Personality, 47(5), 609–612. DOI: 10.1016/j.jrp.2013.05.009
- Schouten, J., & Bekker, J. (1967). Reaction time and accuracy. Acta Psychologica, 27, 143–153. DOI: 10.1016/0001-6918(67)90054-6
- Sheppard, L. D., & Vernon, P. A. (2008). Intelligence and speed of information-processing: A review of 50 years of research. Personality and Individual Differences, 44(3), 535–551. DOI: 10.1016/j.paid.2007.09.015
- Shipstead, Z., Redick, T. S., & Engle, R. W. (2012). Is working memory training effective? Psychological Bulletin, 138(4), 628–654. DOI: 10.1037/a0027473
- Simons, D. J., Boot, W. R., Charness, N., Gathercole, S. E., Chabris, C. F., Hambrick, D. Z., & Stine-Morrow, E. A. (2016). Do “brain-training” programs work? Psychological Science in the Public Interest, 17(3), 103–186. DOI: 10.1177/1529100616661983
- Stafford, T., Pirrone, A., Croucher, M., & Krystalli, A. (2020). Quantifying the benefits of using decision models with response time and accuracy data. Behavior Research Methods, 52, 2142–2155. DOI: 10.3758/s13428-020-01372-w
- Strobach, T., Liepelt, R., Pashler, H., Frensch, P. A., & Schubert, T. (2013). Effects of extensive dual-task practice on processing stages in simultaneous choice tasks. Attention, Perception & Psychophysics, 75(5), 900–920. DOI: 10.3758/s13414-013-0451-z
- van Ravenzwaaij, D., Boekel, W., Forstmann, B. U., Ratcliff, R., & Wagenmakers, E. J. (2014). Action video games do not improve the speed of information processing in simple perceptual tasks. Journal of Experimental Psychology: General, 143(5), 1794–1805. DOI: 10.1037/a0036923
- von Bastian, C. C., Belleville, S., Udale, R. C., Reinhartz, A., Essounni, M., & Strobach, T. (2022). Mechanisms underlying training-induced cognitive change. Nature Reviews Psychology, 1(1), 30–41. DOI: 10.1038/s44159-021-00001-3
- von Bastian, C. C., Guye, S., De Simoni, C., Bunting, M., Novick, J., Dougherty, M., & Engle, R. (2019). How strong is the evidence for the effectiveness of working memory training. Cognitive and working memory training: Perspectives from psychology, neuroscience, and human development, 58, 1–23. DOI: 10.1093/oso/9780199974467.003.0004
- von Bastian, C. C., Locher, A., & Ruflin, M. (2013). Tatool: A Java-based open-source programming framework for psychological studies. Behavior Research Methods, 45, 108–115. DOI: 10.3758/s13428-012-0224-y
- von Bastian, C. C., & Oberauer, K. (2013). Distinct transfer effects of training different facets of working memory capacity. Journal of Memory and Language, 69(1), 36–58. DOI: 10.1016/j.jml.2013.02.002
- von Bastian, C. C., Reinhartz, A., Udale, R. C., Gregoire, S., Essounni, M., Belleville, S., & Strobach, T. (2022). Mechanisms of processing speed training and transfer effects across the adult lifespan: protocol of a multi-site cognitive training study. BMC Psychology, 10(1), 168. DOI: 10.1186/s40359-022-00877-7
- Voss, A., Nagler, M., & Lerche, V. (2013). Diffusion models in experimental psychology: a practical introduction. Experimental Psychology, 60(6), 385–402. DOI: 10.1027/1618-3169/a000218
- Voss, A., & Voss, J. (2007). Fast-dm: A free program for efficient diffusion model analysis. Behavior Research Methods, 39(4), 767–775. DOI: 10.3758/BF03192967
- Voss, A., & Voss, J. (2008). A fast numerical algorithm for the estimation of diffusion model parameters. Journal of Mathematical Psychology, 52(1), 1–9. DOI: 10.1016/j.jmp.2007.09.005
- Voss, A., Voss, J., & Lerche, V. (2015). Assessing cognitive processes with diffusion model analyses: A tutorial based on fast-dm-30. Frontiers in Psychology, 6, 336. DOI: 10.3389/fpsyg.2015.00336
- Wiecki, T. V., Sofer, I., & Frank, M. J. (2013). HDDM: Hierarchical Bayesian estimation of the drift-diffusion model in Python. Frontiers in Neuroinformatics, 7. DOI: 10.3389/fninf.2013.00014
- Wood, C. C., & Jennings, J. R. (1976). Speed-accuracy tradeoff functions in choice reaction time: Experimental designs and computational procedures. Perception & Psychophysics, 19, 92–102. DOI: 10.3758/BF03199392
- Zhang, J., & Rowe, J. B. (2014). Dissociable mechanisms of speed-accuracy tradeoff during visual perceptual learning are revealed by a hierarchical drift-diffusion model. Frontiers in Neuroscience, 8, 69. DOI: 10.3389/fnins.2014.00069
