Have a personal or library account? Click to login
Individual Differences in Holistic and Compositional Language Processing Cover

Individual Differences in Holistic and Compositional Language Processing

By: Kyla McConnell  
Open Access
|Jun 2023

References

  1. Abbot-Smith, K., & Tomasello, M. (2006). Exemplar-learning and schematization in a usage-based account of syntactic acquisition. The Linguistic Review, 23(3). DOI: 10.1515/TLR.2006.011
  2. Alday, P. (2023). palday/JellyMe4.jl: V1.0.1 (v1.0.1). Zenodo. DOI: 10.5281/ZENODO.7902077
  3. Arnon, I. (2009). Starting big: The role of multiword phrases in language learning and use [Ph.D.]. Stanford University.
  4. Arnon, I., & Snider, N. (2010). More than words: Frequency effects for multi-word phrases. Journal of Memory and Language, 62(1), 6782. DOI: 10.1016/j.jml.2009.09.005
  5. Aslin, R. N. (2017). Statistical learning: A powerful mechanism that operates by mere exposure. Wiley Interdisciplinary Reviews: Cognitive Science, 8(1–2), e1373. DOI: 10.1002/wcs.1373
  6. Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4), 390412. DOI: 10.1016/j.jml.2007.12.005
  7. Baddeley, A. (1992). Working memory. Science, 255(5044), 556559. DOI: 10.1126/science.1736359
  8. Baddeley, A. (2012). Working Memory: Theories, Models, and Controversies. Annual Review of Psychology, 63(1), 129. DOI: 10.1146/annurev-psych-120710-100422
  9. Bates, D., Alday, P., Kleinschmidt, D., Calderón, J. B. S., Likan Zhan Noack, A., Arslan, A., Bouchet-Valat, M., Kelman, T., Baldassari, A., Ehinger, B., Karrasch, D., Saba, E., Quinn, J., Hatherly, M., Piibeleht, M., Mogensen, P. K., Babayan, S., & Gagnon, Y. L. (2021). JuliaStats/MixedModels.jl: V3.4.1 (v3.4.1). Zenodo. DOI: 10.5281/ZENODO.4613347
  10. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1). DOI: 10.18637/jss.v067.i01
  11. Behrens, H., & Pfänder, S. (Eds.) (2016). Experience Counts: Frequency Effects in Language. De Gruyter. DOI: 10.1515/9783110346916
  12. Behrmann, M., Richler, J. J., Avidan, G., & Kimchi, R. (2014). Holistic Face Perception (J. Wagemans, Ed.). Oxford University Press. DOI: 10.1093/oxfordhb/9780199686858.013.010
  13. Bellgrove, M. A., Vance, A., & Bradshaw, J. L. (2003). Local–global processing in early-onset schizophrenia: Evidence for an impairment in shifting the spatial scale of attention. Brain and Cognition, 51(1), 4865. DOI: 10.1016/S0278-2626(02)00509-2
  14. Blumenthal-Dramé, A. (2017). Entrenchment from a psycholinguistic and neurolinguistic perspective. H.-J. Schmid (Ed.), Entrenchment and the Psychology of Language Learning: How We Reorganize and Adapt Linguistic Knowledge. De Gruyter Mouton. DOI: 10.1037/15969-007
  15. Blumenthal-Dramé, A., Glauche, V., Bormann, T., Weiller, C., Musso, M., & Kortmann, B. (2017). Frequency and Chunking in Derived Words: A Parametric fMRI Study. Journal of Cognitive Neuroscience, 29(7), 11621177. DOI: 10.1162/jocn_a_01120
  16. Boston, M. F., Hale, J., Kliegl, R., Patil, U., & Vasishth, S. (2008). Parsing costs as predictors of reading difficulty: An evaluation using the Potsdam Sentence Corpus. Journal of Eye Movement Research, 2(1). DOI: 10.16910/jemr.2.1.1
  17. Butterfuss, R., & Kendeou, P. (2018). The Role of Executive Functions in Reading Comprehension. Educational Psychology Review, 30(3), 801826. DOI: 10.1007/s10648-017-9422-6
  18. Bybee, J. L. (2010). Language, usage and cognition. Cambridge University Press. DOI: 10.1017/CBO9780511750526
  19. Cain, K. (2006). Individual differences in children’s memory and reading comprehension: An investigation of semantic and inhibitory deficits. Memory, 14(5), 553569. DOI: 10.1080/09658210600624481
  20. Carrol, G., & Conklin, K. (2020). Is All Formulaic Language Created Equal? Unpacking the Processing Advantage for Different Types of Formulaic Sequences. Language and Speech, 63(1), 95122. DOI: 10.1177/0023830918823230
  21. Cepeda, N. J., Blackwell, K. A., & Munakata, Y. (2013). Speed isn’t everything: Complex processing speed measures mask individual differences and developmental changes in executive control. Developmental Science, 16(2), 269286. DOI: 10.1111/desc.12024
  22. Chamberlain, R., Van der Hallen, R., Huygelier, H., Van de Cruys, S., & Wagemans, J. (2017). Local-global processing bias is not a unitary individual difference in visual processing. Vision Research, 141, 247257. DOI: 10.1016/j.visres.2017.01.008
  23. Chua, K.-W., & Gauthier, I. (2020). Domain-specific experience determines individual differences in holistic processing. Journal of Experimental Psychology: General, 149(1), 3141. DOI: 10.1037/xge0000628
  24. Conklin, K., & Schmitt, N. (2012). The Processing of Formulaic Language. Annual Review of Applied Linguistics, 32, 4561. DOI: 10.1017/S0267190512000074
  25. Dąbrowska, E. (2018). Experience, aptitude and individual differences in native language ultimate attainment. Cognition, 178, 222235. DOI: 10.1016/j.cognition.2018.05.018
  26. Dąbrowska, E. (2019). Experience, Aptitude, and Individual Differences in Linguistic Attainment: A Comparison of Native and Nonnative Speakers: Experience, Aptitude, and Individual Differences. Language Learning, 69, 72100. DOI: 10.1111/lang.12323
  27. Damer, E., & Bradley, P. (2018). Prolific. https://prolific.ac
  28. Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19(4), 450466. DOI: 10.1016/S0022-5371(80)90312-6
  29. Davies, M. (2008). The Corpus of Contemporary American English (COCA). https://www.english-corpora.org/coca/
  30. De Beni, R., & Palladino, P. (2000). Intrusion errors in working memory tasks. Learning and Individual Differences, 12(2), 131143. DOI: 10.1016/S1041-6080(01)00033-4
  31. de Leeuw, J. R. (2015). jsPsych: A JavaScript library for creating behavioral experiments in a Web browser. Behavior Research Methods, 47(1), 112. DOI: 10.3758/s13428-014-0458-y
  32. Demberg, V., & Keller, F. (2008). Data from eye-tracking corpora as evidence for theories of syntactic processing complexity. Cognition, 109(2), 193210. DOI: 10.1016/j.cognition.2008.07.008
  33. DeYoung, C. G., Hirsh, J. B., Shane, M. S., Papademetris, X., Rajeevan, N., & Gray, J. R. (2010). Testing Predictions From Personality Neuroscience: Brain Structure and the Big Five. Psychological Science, 21(6), 820828. DOI: 10.1177/0956797610370159
  34. DeYoung, C. G., Peterson, J. B., & Higgins, D. M. (2002). Higher-order factors of the Big Five predict conformity: Are there neuroses of health? Personality and Individual Differences, 33(4), 533552. DOI: 10.1016/S0191-8869(01)00171-4
  35. Divjak, D. (2019). Frequency in Language: Memory, Attention and Learning (1st ed.). Cambridge University Press. DOI: 10.1017/9781316084410
  36. Drummond, A. (2016). Ibex Farm (0.3.7). http://spellout.net/ibexfarm/
  37. Eckert, M. (2010). Age-related changes in processing speed: Unique contributions of cerebellar and prefrontal cortex. Frontiers in Human Neuroscience. DOI: 10.3389/neuro.09.010.2010
  38. Edmonds, A. (2013). Une approche psycholinguistique des phénomènes phraséologiques: Le cas des expressions conventionnelles. Langages, 189(1), 121. DOI: 10.3917/lang.189.0121
  39. Ferreira, F., & Chantavarin, S. (2018). Integration and Prediction in Language Processing: A Synthesis of Old and New. Current Directions in Psychological Science, 27(6), 443448. DOI: 10.1177/0963721418794491
  40. Finkel, D., Reynolds, C. A., McArdle, J. J., & Pedersen, N. L. (2005). The Longitudinal Relationship between Processing Speed and Cognitive Ability: Genetic and Environmental Influences. Behavior Genetics, 35(5), 535549. DOI: 10.1007/s10519-005-3281-5
  41. Friedman, N. P., & Miyake, A. (2004a). The Relations Among Inhibition and Interference Control Functions: A Latent-Variable Analysis. Journal of Experimental Psychology: General, 133(1), 101135. DOI: 10.1037/0096-3445.133.1.101
  42. Friedman, N. P., & Miyake, A. (2004b). The reading span test and its predictive power for reading comprehension ability. Journal of Memory and Language, 51(1), 136158. DOI: 10.1016/j.jml.2004.03.008
  43. Frisson, S., Rayner, K., & Pickering, M. J. (2005). Effects of Contextual Predictability and Transitional Probability on Eye Movements During Reading. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(5), 862877. DOI: 10.1037/0278-7393.31.5.862
  44. Gernsbacher, M. A. (1993). Less Skilled Readers Have Less Efficient Suppression Mechanisms. Psychological Science, 4(5), 294298. DOI: 10.1111/j.1467-9280.1993.tb00567.x
  45. Gernsbacher, M. A., & Robertson, R. R. W. (1995). Reading Skill and Suppression Revisited. Psychological Science, 6(3), 165169. DOI: 10.1111/j.1467-9280.1995.tb00326.x
  46. Gobet, F., & Clarkson, G. (2004). Chunks in expert memory: Evidence for the magical number four … or is it two? Memory, 12(6), 732747. DOI: 10.1080/09658210344000530
  47. Gobet, F., Lloyd-Kelly, M., & Lane, P. C. R. (2016). What’s in a Name? The Multiple Meanings of “Chunk” and “Chunking.” Frontiers in Psychology, 7. DOI: 10.3389/fpsyg.2016.00102
  48. Goldberg, A., & Suttle, L. (2010). Construction grammar. WIREs Cognitive Science, 1(4), 468477. DOI: 10.1002/wcs.22
  49. Goldberg, L. R. (1990). An Alternative “Description of Personality”: The Big-Five Factor Structure. Journal of Personality and Social Psychology, 59(6). DOI: 10.1037/0022-3514.59.6.1216
  50. Grey, S., Williams, J. N., & Rebuschat, P. (2015). Individual differences in incidental language learning: Phonological working memory, learning styles, and personality. Learning and Individual Differences, 38, 4453. DOI: 10.1016/j.lindif.2015.01.019
  51. Gries, S. T., & Divjak, D. (2012). Frequency Effects in Language Learning and Processing. Walter de Gruyter. DOI: 10.1515/9783110274059
  52. Hale, J. (2016). Information-theoretical Complexity Metrics: Information-theoretical complexity metrics. Language and Linguistics Compass, 10(9), 397412. DOI: 10.1111/lnc3.12196
  53. Hay, J., & Baayen, H. (2002). Parsing and productivity. G. Booij & J. Van Marle (Eds.), Yearbook of Morphology 2001 (pp. 203235). Springer Netherlands. DOI: 10.1007/978-94-017-3726-5_8
  54. Hay, J., & Baayen, R. (2005). Shifting paradigms: Gradient structure in morphology. Trends in Cognitive Sciences, 9(7), 342348. DOI: 10.1016/j.tics.2005.04.002
  55. Heo, M., & Leon, A. C. (2010). Sample Sizes Required to Detect Two-Way and Three-Way Interactions Involving Slope Differences in Mixed-Effects Linear Models. Journal of Biopharmaceutical Statistics, 20(4), 787802. DOI: 10.1080/10543401003618819
  56. Hilbig, B. E. (2016). Reaction time effects in lab- versus Web-based research: Experimental evidence. Behavior Research Methods, 48(4), 17181724. DOI: 10.3758/s13428-015-0678-9
  57. Hilpert, M. (2014). Construction grammar and its application to English. Edinburgh University Press.
  58. Hintz, F., Jongman, S. R., Dijkhuis, M., van ’t Hoff, V., McQueen, J. M., & Meyer, A. S. (2020). Shared lexical access processes in speaking and listening? An individual differences study. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(6), 10481063. DOI: 10.1037/xlm0000768
  59. Hubert Lyall, I., & Järvikivi, J. (2021). Listener’s personality traits predict changes in pupil size during auditory language comprehension. Scientific Reports, 11(1), 5443. DOI: 10.1038/s41598-021-84886-3
  60. Huettig, F., & Guerra, E. (2019). Effects of speech rate, preview time of visual context, and participant instructions reveal strong limits on prediction in language processing. Brain Research, 1706, 196208. DOI: 10.1016/j.brainres.2018.11.013
  61. Huettig, F., & Janse, E. (2016). Individual differences in working memory and processing speed predict anticipatory spoken language processing in the visual world. Language, Cognition and Neuroscience, 31(1), 8093. DOI: 10.1080/23273798.2015.1047459
  62. Isbilen, E. S., McCauley, S. M., & Christiansen, M. H. (2022). Individual differences in artificial and natural language statistical learning. Cognition, 225, 105123. DOI: 10.1016/j.cognition.2022.105123
  63. Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension: Individual differences in working memory. Psychological Review, 99(1), 122149. DOI: 10.1037/0033-295X.99.1.122
  64. Kapteijns, B., & Hintz, F. (2021). Comparing predictors of sentence self-paced reading times: Syntactic complexity versus transitional probability metrics. PLOS ONE, 16(7), e0254546. DOI: 10.1371/journal.pone.0254546
  65. Kaufman, S. B., DeYoung, C. G., Gray, J. R., Jiménez, L., Brown, J., & Mackintosh, N. (2010). Implicit learning as an ability. Cognition, 116(3), 321340. DOI: 10.1016/j.cognition.2010.05.011
  66. Kerz, E., & Wiechmann, D. (2017). Individual Differences in L2 Processing of Multi-word Phrases: Effects of Working Memory and Personality. R. Mitkov (Ed.), Computational and Corpus-Based Phraseology, 10596, 306321. Springer International Publishing. DOI: 10.1007/978-3-319-69805-2_22
  67. Kerz, E., & Wiechmann, D. (2021). Individual differences. N. Tracy-Ventura & M. Paquot (Eds.), The Routledge Handbook of Second Language Acquisition and Corpora (pp. 394406). Taylor & Francis. DOI: 10.4324/9781351137904-35
  68. Kidd, E., & Donnelly, S. (2020). Individual Differences in First Language Acquisition. Annual Review of Linguistics, 6(1), 319340. DOI: 10.1146/annurev-linguistics-011619-030326
  69. Kidd, E., Donnelly, S., & Christiansen, M. H. (2018). Individual Differences in Language Acquisition and Processing. Trends in Cognitive Sciences, 22(2), 154169. DOI: 10.1016/j.tics.2017.11.006
  70. King, J., & Just, M. A. (1991). Individual differences in syntactic processing: The role of working memory. Journal of Memory and Language, 30(5), 580602. DOI: 10.1016/0749-596X(91)90027-H
  71. Klaus, J., & Schriefers, H. (2016). Measuring verbal working memory capacity: A reading span task for laboratory and web-based use. DOI: 10.31219/osf.io/nj48x
  72. Komarraju, M., Karau, S. J., Schmeck, R. R., & Avdic, A. (2011). The Big Five personality traits, learning styles, and academic achievement. Personality and Individual Differences, 51(4), 472477. DOI: 10.1016/j.paid.2011.04.019
  73. Kyllonen, P., & Zu, J. (2016). Use of Response Time for Measuring Cognitive Ability. Journal of Intelligence, 4(4), 14. DOI: 10.3390/jintelligence4040014
  74. Lao, J., Vizioli, L., & Caldara, R. (2013). Culture modulates the temporal dynamics of global/local processing. Culture and Brain, 1(2–4), 158174. DOI: 10.1007/s40167-013-0012-2
  75. Lee, L. Y., Talhelm, T., Zhang, X., Hu, B., & Lv, X. (2021). Holistic thinkers process divided-attention tasks faster: From the global/local perspective. Current Psychology. DOI: 10.1007/s12144-021-01879-1
  76. Lev-Ari, S. (2019). People with larger social networks are better at predicting what someone will say but not how they will say it. Language, Cognition and Neuroscience, 34(1), 101114. DOI: 10.1080/23273798.2018.1508733
  77. Levy, R. (2008). Expectation-based syntactic comprehension. Cognition, 106(3), 11261177. DOI: 10.1016/j.cognition.2007.05.006
  78. Lewis, M. B., & Dawkins, G. (2015). Local Navon letter processing affects skilled behavior: A golf-putting experiment. Psychonomic Bulletin & Review, 22(2), 420428. DOI: 10.3758/s13423-014-0702-6
  79. Lieven, E., Salomo, D., & Tomasello, M. (2009). Two-year-old children’s production of multiword utterances: A usage-based analysis. Cognitive Linguistics, 20(3). DOI: 10.1515/COGL.2009.022
  80. Lorenz, D., & Tizón-Couto, D. (2019). Chunking or predicting – frequency information and reduction in the perception of multi-word sequences. Cognitive Linguistics, 30(4), 751784. DOI: 10.1515/cog-2017-0138
  81. Lowder, M. W., Choi, W., Ferreira, F., & Henderson, J. M. (2018). Lexical Predictability During Natural Reading: Effects of Surprisal and Entropy Reduction. Cognitive Science, 42, 11661183. DOI: 10.1111/cogs.12597
  82. Lüdecke, D. (2018). ggeffects: Tidy Data Frames of Marginal Effects from Regression Models. Journal of Open Source Software, 3(26), 772. DOI: 10.21105/joss.00772
  83. MacDonald, M. C., & Christiansen, M. H. (2002). Reassessing working memory: Comment on Just and Carpenter (1992) and Waters and Caplan (1996). Psychological Review, 109(1), 3554. DOI: 10.1037//0033-295X.109.1.35
  84. MacDonald, M. C., Just, M. A., & Carpenter, P. A. (1992). Working memory constraints on the processing of syntactic ambiguity. Cognitive Psychology, 24(1), 5698. DOI: 10.1016/0010-0285(92)90003-K
  85. MacIntyre, P. D., & Charos, C. (1996). Personality, Attitudes, and Affect as Predictors of Second Language Communication. Journal of Language and Social Psychology, 15(1), 326. DOI: 10.1177/0261927X960151001
  86. McCauley, S. M., & Christiansen, M. H. (2015). Individual Differences in Chunking Ability Predict On-line Sentence Processing. CogSci.
  87. McCauley, S. M., & Christiansen, M. H. (2019). Language learning as language use: A cross-linguistic model of child language development. Psychological Review, 126(1), 151. DOI: 10.1037/rev0000126
  88. McConnell, K., & Blumenthal-Dramé, A. (2019). Effects of task and corpus-derived association scores on the online processing of collocations. Corpus Linguistics and Linguistic Theory, 18(1). DOI: 10.1515/cllt-2018-0030
  89. McConnell, K., & Blumenthal-Dramé, A. (2021). Usage-Based Individual Differences in the Probabilistic Processing of Multi-Word Sequences. Frontiers in Communication, 6, 703351. DOI: 10.3389/fcomm.2021.703351
  90. McCrae, R. R., & John, O. P. (1992). An Introduction to the Five-Factor Model and Its Applications. Journal of Personality, 60(2), 175215. DOI: 10.1111/j.1467-6494.1992.tb00970.x
  91. McDonald, S. A., & Shillcock, R. C. (2003). Low-level predictive inference in reading: The influence of transitional probabilities on eye movements. Vision Research, 43(16), 17351751. DOI: 10.1016/S0042-6989(03)00237-2
  92. Medimorec, S., Milin, P., & Divjak, D. (2019). Working memory affects anticipatory behavior during implicit pattern learning. Psychological Research. DOI: 10.1007/s00426-019-01251-w
  93. Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 8197. DOI: 10.1037/h0043158
  94. Miyake, A., & Friedman, N. P. (2012). The Nature and Organization of Individual Differences in Executive Functions: Four General Conclusions. Current Directions in Psychological Science, 21(1), 814. DOI: 10.1177/0963721411429458
  95. Myers, J. L., & O’Brien, E. J. (1998). Accessing the discourse representation during reading. Discourse Processes, 26(2–3), 131157. DOI: 10.1080/01638539809545042
  96. Navon, D. (1969). Forest before trees: The precedence of global features in visual perception. Perception and Psychophysics, 5, 353383. DOI: 10.1016/0010-0285(77)90012-3
  97. Onnis, L., & Huettig, F. (2021). Can prediction and retrodiction explain whether frequent multi-word phrases are accessed ‘precompiled’ from memory or compositionally constructed on the fly? Brain Research, 1772, 147674. DOI: 10.1016/j.brainres.2021.147674
  98. Onnis, L., & Thiessen, E. (2013). Language experience changes subsequent learning. Cognition, 126(2), 268284. DOI: 10.1016/j.cognition.2012.10.008
  99. Pelucchi, B., Hay, J. F., & Saffran, J. R. (2009). Learning in reverse: Eight-month-old infants track backward transitional probabilities. Cognition, 113(2), 244247. DOI: 10.1016/j.cognition.2009.07.011
  100. Perruchet, P., & Desaulty, S. (2008). A role for backward transitional probabilities in word segmentation? Memory & Cognition, 36(7), 12991305. DOI: 10.3758/MC.36.7.1299
  101. Pronk, T., Molenaar, D., Wiers, R. W., & Murre, J. (2022). Methods to split cognitive task data for estimating split-half reliability: A comprehensive review and systematic assessment. Psychonomic Bulletin & Review, 29(1), 4454. DOI: 10.3758/s13423-021-01948-3
  102. Redick, T. S., Broadway, J. M., Meier, M. E., Kuriakose, P. S., Unsworth, N., Kane, M. J., & Engle, R. W. (2012). Measuring Working Memory Capacity With Automated Complex Span Tasks. European Journal of Psychological Assessment, 28(3), 164171. DOI: 10.1027/1015-5759/a000123
  103. Reimers, S., & Stewart, N. (2015). Presentation and response timing accuracy in Adobe Flash and HTML5/JavaScript Web experiments. Behavior Research Methods, 47(2), 309327. DOI: 10.3758/s13428-014-0471-1
  104. Roberts, B. W., Lejuez, C., Krueger, R. F., Richards, J. M., & Hill, P. L. (2014). What is conscientiousness and how can it be assessed? Developmental Psychology, 50(5), 13151330. DOI: 10.1037/a0031109
  105. Roete, I., Frank, S. L., Fikkert, P., & Casillas, M. (2020). Modeling the Influence of Language Input Statistics on Children’s Speech Production. Cognitive Science, 44(12). DOI: 10.1111/cogs.12924
  106. Rogalski, Y., Peelle, J. E., & Reilly, J. (2011). Effects of Perceptual and Contextual Enrichment on Visual Confrontation Naming in Adult Aging. Journal of Speech, Language, and Hearing Research, 54(5), 13491360. DOI: 10.1044/1092-4388(2011/10-0178)
  107. Ryskin, R., Levy, R. P., & Fedorenko, E. (2020). Do domain-general executive resources play a role in linguistic prediction? Re-evaluation of the evidence and a path forward. Neuropsychologia, 136, 107258. DOI: 10.1016/j.neuropsychologia.2019.107258
  108. Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103(3), 403428. DOI: 10.1037/0033-295X.103.3.403
  109. Schubert, A.-L., Nunez, M. D., Hagemann, D., & Vandekerckhove, J. (2018). Individual differences in cortical processing speed predict cognitive abilities: A model-based cognitive neuroscience account [Preprint]. Neuroscience. DOI: 10.1101/374827
  110. Sheppard, L. D., & Vernon, P. A. (2008). Intelligence and speed of information-processing: A review of 50 years of research. Personality and Individual Differences, 44(3), 535551. DOI: 10.1016/j.paid.2007.09.015
  111. Siyanova-Chanturia, A. (2015). On the ‘holistic’ nature of formulaic language. Corpus Linguistics and Linguistic Theory, 11(2). DOI: 10.1515/cllt-2014-0016
  112. Siyanova-Chanturia, A., Conklin, K., Caffarra, S., Kaan, E., & van Heuven, W. J. B. (2017). Representation and processing of multi-word expressions in the brain. Brain and Language, 11(2), 111122. DOI: 10.1016/j.bandl.2017.10.004
  113. Siyanova-Chanturia, A., Conklin, K., & van Heuven, W. J. B. (2011). Seeing a phrase “time and again” matters: The role of phrasal frequency in the processing of multiword sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(3), 776784. DOI: 10.1037/a0022531
  114. Slevc, L. R., & Novick, J. M. (2013). Memory and cognitive control in an integrated theory of language processing. Behavioral and Brain Sciences, 36(04), 373374. DOI: 10.1017/S0140525X12002683
  115. Smith, N. J., & Levy, R. (2013). The effect of word predictability on reading time is logarithmic. Cognition, 128(3), 302319. DOI: 10.1016/j.cognition.2013.02.013
  116. Soble, J. R., Sordahl, J. A., Critchfield, E. A., Highsmith, J. M., González, D. A., Ashish, D., Marceaux, J. C., O’Rourke, J. J. F., & McCoy, K. J. M. (2016). Slow and Steady Does Not Always Win the Race: Investigating the Effect of Processing Speed across Five Naming Tests. Archives of Clinical Neuropsychology, acn;acw073v1. DOI: 10.1093/arclin/acw073
  117. Sochat, V. (2018). The Experiment Factory: Reproducible Experiment Containers. The Journal of Open Source Software, 3(22), 521. DOI: 10.21105/joss.00521
  118. Sochat, V., Eisenberg, I. W., Enkavi, A. Z., Li, J., Bissett, P. G., & Poldrack, R. A. (2016). The Experiment Factory: Standardizing Behavioral Experiments. Frontiers in Psychology, 7. DOI: 10.3389/fpsyg.2016.00610
  119. Soto, C. J., & John, O. P. (2017). The next Big Five Inventory (BFI-2): Developing and assessing a hierarchical model with 15 facets to enhance bandwidth, fidelity, and predictive power. Journal of Personality and Social Psychology, 113(1), 117143. DOI: 10.1037/pspp0000096
  120. Staudinger, M. R., Fink, G. R., Mackay, C. E., & Lux, S. (2011). Gestalt perception and the decline of global precedence in older subjects. Cortex, 47(7), 854862. DOI: 10.1016/j.cortex.2010.08.001
  121. Stevens, C. D., & Ash, R. A. (2001). The Conscientiousness of Students in Subject Pools: Implications for “Laboratory” Research. Journal of Research in Personality, 35(1), 9197. DOI: 10.1006/jrpe.2000.2310
  122. Summerfield, C., & Egner, T. (2009). Expectation (and attention) in visual cognition. Trends in Cognitive Sciences, 13(9), 403409. DOI: 10.1016/j.tics.2009.06.003
  123. Tilmatine, M., Hubers, F., & Hintz, F. (2021). Exploring Individual Differences in Recognizing Idiomatic Expressions in Context. Journal of Cognition, 4(1), 37. DOI: 10.5334/joc.183
  124. Van der Hallen, R., Evers, K., Brewaeys, K., Van den Noortgate, W., & Wagemans, J. (2015). Global processing takes time: A meta-analysis on local–global visual processing in ASD. Psychological Bulletin, 141(3), 549573. DOI: 10.1037/bul0000004
  125. van Paridon, J., & Alday, P. M. (2020). A note on co-occurrence, transitional probability, and causal inference [Preprint]. PsyArXiv. DOI: 10.31234/osf.io/92zbx
  126. Verhagen, V., Mos, M., Backus, A., & Schilperoord, J. (2018). Predictive language processing revealing usage-based variation. Language and Cognition, 10(02), 329373. DOI: 10.1017/langcog.2018.4
  127. Wiggins, J. S. (Ed.) (1996). The five-factor model of personality: Theoretical perspectives. Guilford Press.
  128. Willems, R. M., Frank, S. L., Nijhof, A. D., Hagoort, P., & van den Bosch, A. (2016). Prediction During Natural Language Comprehension. Cerebral Cortex, 26(6), 25062516. DOI: 10.1093/cercor/bhv075
  129. Wlotko, E. W., & Federmeier, K. D. (2012). So that’s what you meant! Event-related potentials reveal multiple aspects of context use during construction of message-level meaning. NeuroImage, 62(1), 356366. DOI: 10.1016/j.neuroimage.2012.04.054
  130. Wlotko, E. W., & Federmeier, K. D. (2015). Time for prediction? The effect of presentation rate on predictive sentence comprehension during word-by-word reading. Cortex, 68, 2032. DOI: 10.1016/j.cortex.2015.03.014
  131. Yang, J., van den Bosch, A., & Frank, S. L. (2022). Unsupervised Text Segmentation Predicts Eye Fixations During Reading. Frontiers in Artificial Intelligence, 5, 731615. DOI: 10.3389/frai.2022.731615
  132. Yang, J. (杨金骉), Cai, Q. (蔡清), & Tian, X. (田兴). (2020). How Do We Segment Text? Two-Stage Chunking Operation in Reading. Eneuro, 7(3), ENEURO.0425-19.2020. DOI: 10.1523/ENEURO.0425-19.2020
  133. Zabelina, D. L., & Ganis, G. (2018). Creativity and cognitive control: Behavioral and ERP evidence that divergent thinking, but not real-life creative achievement, relates to better cognitive control. Neuropsychologia, 118, 2028. DOI: 10.1016/j.neuropsychologia.2018.02.014
  134. Zirnstein, M., van Hell, J. G., & Kroll, J. F. (2018). Cognitive control ability mediates prediction costs in monolinguals and bilinguals. Cognition, 176, 87106. DOI: 10.1016/j.cognition.2018.03.001
DOI: https://doi.org/10.5334/joc.283 | Journal eISSN: 2514-4820
Language: English
Submitted on: Aug 30, 2022
|
Accepted on: May 24, 2023
|
Published on: Jun 28, 2023
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Kyla McConnell, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.