References
- 1Abrahamson, D., Gutiérrez, J. F., Charoenying, T., Negrete, A. G., & Bumbacher, E. (2012). Fostering hooks and shifts: tutorial tactics for guided mathematical discovery. Technology, Knowledge and Learning, 17(1–2), 61–86. DOI: 10.1007/s10758-012-9192-7
- 2Abrahamson, D., & Trninic, D. (2015). Bringing forth mathematical concepts: signifying sensorimotor enactment in fields of promoted action. ZDM Mathematics Education, 47(2), 295–306. DOI: 10.1007/s11858-014-0620-0
- 3Abrahamson, D., Trninic, D., Gutiérrez, J. F., Huth, J., & Lee, R. G. (2011). Hooks and shifts: a dialectical study of mediated discovery. Technology, Knowledge and Learning, 16(1), 55–85. DOI: 10.1007/s10758-011-9177-y
- 4Antle, A. N., Corness, G., & Bevans, A. (2011).
Springboard: Designing image schema based embodied interaction for an abstract domain . In D. England (Ed.), Whole Body Interaction (pp. 7–18), London: Springer. DOI: 10.1007/978-0-85729-433-3_2 - 5Arbib, M. A. (2017). Toward the language-ready brain: Biological evolution and primate comparisons. Psychonomic Bulletin & Review, 24(1), 142–150. DOI: 10.3758/s13423-016-1098-2
- 6Balacheff, N. (1991).
The benefits and limits of social interaction: The case of mathematical proof . In A. Bishop, S. Mellin-Olsen, & J. van Dormolen (Eds.), Mathematical Knowledge: Its Growth Through Teaching (pp. 173–192). Springer. DOI: 10.1007/978-94-017-2195-0_9 - 7Barsalou, L. W. (1999). Perceptual symbol systems. Behavioural and Brain Sciences, 22(4), 577–609. DOI: 10.1017/S0140525X99002149
- 8Barsalou, L. W. (2010). Grounded cognition: Past, present, and future. Topics in Cognitive Science, 2(4), 716–724. DOI: 10.1111/j.1756-8765.2010.01115.x
- 9Barsalou, L. W. (2005). Continuity of the conceptual system across species. Trends in Cognitive Sciences, 9(7), 309–311. DOI: 10.1016/j.tics.2005.05.003
- 10Barsalou, L. W. (2016). On staying grounded and avoiding quixotic dead ends. Psychonomic Bulletin & Review, 23(4), 1122–1142. DOI: 10.3758/s13423-016-1028-3
- 11Barsalou, L. W., Dutriaux, L., & Scheepers, C. (2018). Moving beyond the distinction between concrete and abstract concepts. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752), 20170144. DOI: 10.1098/rstb.2017.0144
- 12Barsalou, L. W., Niedenthal, P., Barbey, A., & Rupert, J. (2003b). Social embodiment. Psychology of Learning and Motivation, 43, 43–92. DOI: 10.1016/S0079-7421(03)01011-9
- 13Barsalou, L. W., & Wiemer-Hastings, K. (2005).
Situating abstract concepts . In D. Pecher & R. A. Zwaan (Eds.), Grounding Cognition: The Role of Perception and Action in Memory, Language, and Thought (pp. 129–163). Cambridge University Press. DOI: 10.1017/CBO9780511499968.007 - 14Barsalou, L. W., Simmons, W. K., Barbey, A. K., & Wilson, C. D. (2003a). Grounding conceptual knowledge in modality-specific systems. Trends in Cognitive Sciences, 7(2), 84–91. DOI: 10.1016/S1364-6613(02)00029-3
- 15Barsalou, L. W., Santos, A., Simmons, W. K., & Wilson, C. D. (2008). Language and simulation in conceptual processing. In M. de Vega, A. M. Glenberg, & A. C. Graesser (Eds.), Symbols, Embodiment, and Meaning (pp. 245–283). DOI: 10.1093/acprof:oso/9780199217274.003.0013
- 16Bedny, M., Caramazza, A., Grossman, E., Pascual-Leone, A., & Saxe, R. (2008). Concepts are more than percepts: the case of action verbs. The Journal of Neuroscience, 28(44), 11347–11353. DOI: 10.1523/JNEUROSCI.3039-08.2008
- 17Bekkali, S., Youssef, G. J., Donaldson, P. H., Albein-Urios, N., Hyde, C., & Enticott, P. G. (2021). Is the putative mirror neuron system associated with empathy? A systematic review and meta-analysis. Neuropsychology Review, 31, 14–57. DOI: 10.1007/s11065-020-09452-6
- 18Bender, E. M., & Koller, A. (2020). Climbing towards NLU: On meaning, form, and understanding in the age of data. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5185–5198. DOI: 10.18653/v1/2020.acl-main.463
- 19Bergelson, E., & Swingley, D. (2013). The acquisition of abstract words by young infants. Cognition, 127(3), 391–397. DOI: 10.1016/j.cognition.2013.02.011
- 20Binder, J. R., Conant, L., Humphries, C., Fernandino, L., Simons, S., Aguilar, M., & Desai, R. (2016). Toward a brain-based componential semantic representation. Cognitive Neuropsychology, 1–45. DOI: 10.1080/02643294.2016.1147426
- 21Boleda, G. (2020). Distributional semantics and linguistic theory. Annual Review of Linguistics, 6, 213–34. DOI: 10.1146/annurev-linguistics-011619-030303
- 22Bloom, P. (2002). How Children Learn the Meanings of Words. MIT press.
- 23Booth, A., Waxman, S., & Huang, Y. (2005). Conceptual information permeates word learning in infancy. Developmental Psychology, 41(3), 491–505. DOI: 10.1037/0012-1649.41.3.491
- 24Borghi, A. (2020). A future of words: Language and the challenge of abstract concepts. Journal of Cognition, 3(1), 42. DOI: 10.5334/joc.134
- 25Borghi, A., Barca, L., Binkofski, F., & Tummolini, L. (2018). Varieties of abstract concepts: development, use and representation in the brain. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 373(1752). DOI: 10.1098/rstb.2017.0121
- 26Borghi, A., & Cimatti, F. (2009a). Embodied cognition and beyond: acting and sensing the body. Neuropsychologia, 48, 763–73. DOI: 10.1016/j.neuropsychologia.2009.10.029
- 27Borghi, A., & Binkofski, F. (2014). Words as social tools: An embodied view on abstract concepts. Springer Science & Business Media. DOI: 10.1007/978-1-4614-9539-0
- 28Borghi, A., Binkofski, F., Castelfranchi, C., Cimatti, F., Scorolli, C., & Tummolini, L. (2017). The challenge of abstract concepts. Psychological Bulletin, 143, 263–292. DOI: 10.1037/bul0000089
- 29Borghi, A., & Cimatti, F. (2009b). Words as tools and the problem of abstract word meanings. In N. A. Taatgen & H. van Rijn (Eds.), In Proceedings of the 31st Annual Conference of the Cognitive Science Society (pp. 31–2304).
- 30Boroditsky, L. (2003).
Linguistic relativity . In L. Nadel (Ed.), Encyclopedia of Cognitive Science (pp. 917–922). London: Macmillan. - 31Brookshire, G., & Casasanto, D. (2012). Motivation and motor control: Hemispheric specialization for approach motivation reverses with handedness. PLOS ONE, 7(4), 1–5. DOI: 10.1371/journal.pone.0036036
- 32Brysbaert, M., Warriner, A. B., & Kuperman, V. (2014). Concreteness ratings for 40 thousand generally known English Word Lemmas. Behavior Research Methods, 64, 904–911. DOI: 10.3758/s13428-013-0403-5
- 33Burgoon, E. M., Henderson, M. D., & Markman, A. B. (2013). There are many ways to see the forest for the trees: A tour guide for abstraction. Perspectives on Psychological Science, 8(5), 501–520. DOI: 10.1177/1745691613497964
- 34Cangelosi, A., & Stramandinoli, F. (2018). A review of abstract concept learning in embodied agents and robots. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 373(1752). DOI: 10.1098/rstb.2017.0131
- 35Casasanto, D. (2009). Embodiment of abstract concepts: Good and bad in right- and left-handers. Journal of Experimental Psychology: General, 138(3), 351–367. DOI: 10.1037/a0015854
- 36Casasanto, D. (2011a). Bodily relativity: The body-specificity of language and thought. In Proceedings of the 33rd Annual Meeting of the Cognitive Science Society (pp. 1258–1259).
- 37Casasanto, D. (2011b). Different bodies, different minds. Current Directions in Psychological Science, 20(6), 378–383. DOI: 10.1177/0963721411422058
- 38Casasanto, D., & Chrysikou, E. G. (2011). When left is “right”. Psychological Science, 22(4), 419–422. DOI: 10.1017/S0003055409990220
- 39Casasanto, D., Hagoort, P., & Willems, R. (2009). Body-specific representations of action verbs: Evidence from fMRI in right-and left-handers. In Proceedings of the 31st Annual Meeting of the Cognitive Science Society (pp. 875–880).
- 40Casasanto, D., & Jasmin, K. (2010). Good and bad in the hands of politicians: Spontaneous gestures during positive and negative speech. PLOS ONE, 5(7), 1–5. DOI: 10.1371/journal.pone.0011805
- 41Casasanto, D., & Lupyan, G. (2015).
All concepts are ad hoc concepts . In E. Margolis & S. Laurence (Eds.), The Conceptual Mind: New Directions in the Study of Concepts (pp. 543–566). MIT Press. - 42Chatterjee, A. (2010). Disembodying cognition. Language and Cognition, 2, 79–116. DOI: 10.1515/langcog.2010.004
- 43Chemero, A. (2011). Radical Embodied Cognitive Science. MIT Press.
- 44Clark, A. (1998).
Magic Words: How Language Augments Human Computation . In P. Carruthers & J. Boucher (Eds.), Language and thought: Interdisciplinary themes (pp. 162–183). Cambridge University Press. DOI: 10.1017/CBO9780511597909.011 - 45Clark, A. (2008). Supersizing the Mind: Embodiment, Action, and Cognitive Extension. USA: Oxford University Press. DOI: 10.1093/acprof:oso/9780195333213.001.0001
- 46Cobb, P. (1994). Where is the mind? Constructivist and Sociocultural Perspectives on Mathematical Development. Educational Researcher, 23(7), 13–20. DOI: 10.3102/0013189X023007013
- 47Connell, L. (2019). What have labels ever done for us? The linguistic shortcut in conceptual processing. Language, Cognition and Neuroscience, 34, 1308–1318. DOI: 10.1080/23273798.2018.1471512
- 48Connell, L. M., Lynott, D. J., & Banks, B. (2018). Interoception: the forgotten modality in perceptual grounding of abstract and concrete concepts. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 5, 373. DOI: 10.1098/rstb.2017.0143
- 49Crutch, S. J., & Warrington, E. K. (2005). Abstract and concrete concepts have structurally different representational frameworks. Brain, 128, 615–627. DOI: 10.1093/brain/awh349
- 50Damasio, A. (1999). The Feeling of What Happens: Body and Emotion in the Making of Consciousness. Harcourt Brace.
- 51D’Angiulli, A., Griffiths, G., & Marmolejo-Ramos, F. (2015). Neural correlates of visualizations of concrete and abstract words in preschool children: a developmental embodied approach. Frontiers in Psychology, 6. DOI: 10.3389/fpsyg.2015.00856
- 52De Freitas, E., & Sinclair, N. (2012). Diagram, gesture, agency: theorizing embodiment in the mathematics classroom. Educational Studies in Mathematics, 80(1), 133–152. DOI: 10.1007/s10649-011-9364-8
- 53Della Rosa, P. A., Catricalà, E., Vigliocco, G., & Cappa, S. F. (2010). Beyond the abstract–concrete dichotomy: Mode of acquisition, concreteness, imageability, familiarity, age of acquisition, context availability, and abstractness norms for a set of 417 Italian words. Behavior Research Methods, 42(4), 1042–1048. DOI: 10.3758/BRM.42.4.1042
- 54Devlin, J., Chang, M.-W., Lee, L., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL-HLT), pp. 4171–4186.
- 55Dove, G. (2011). On the need for embodied and dis-embodied cognition. Frontiers in Psychology, 1, 242. DOI: 10.3389/fpsyg.2010.00242
- 56Dove, G. (2018). Language as a disruptive technology: abstract concepts, embodiment and the flexible mind. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 373. DOI: 10.1098/rstb.2017.0135
- 57Dumontheil, I. (2014). Development of abstract thinking during childhood and adolescence: The role of rostrolateral prefrontal cortex. Developmental Cognitive Neuroscience, 10. DOI: 10.1016/j.dcn.2014.07.009
- 58Editors of the American Heritage Dictionaries. (2018). American heritage dictionary of the English language (5th ed.). Boston, MA: Houghton Mifflin Harcourt.
- 59Evans, V. (2016). Design features for linguistically-mediated meaning construction: The relative roles of the linguistic and conceptual systems in subserving the ideational function of language. Frontiers in Psychology, 7. DOI: 10.3389/fpsyg.2016.00156
- 60Fauconnier, G., & Turner, M. (2003). Conceptual blending, form and meaning. Recherches en Communication, 19, 57–86. DOI: 10.14428/rec.v19i19.48413
- 61Fincher-Kiefer, R. (2019). How the Body Shapes Knowledge: Empirical Support for Embodied Cognition. American Psychological Association. DOI: 10.1037/0000136-000
- 62Fischer, M., & Shaki, S. (2018). Number concepts: abstract and embodied. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 373(1752). DOI: 10.1098/rstb.2017.0125
- 63Gallese, V., & Lakoff, G. (2005). The brain’s concepts: the role of the sensorimotor system in conceptual knowledge. Cognitive Neuropsychology, 22(3–4), 455–479. DOI: 10.1080/02643290442000310
- 64Gibbs, R. W. (2011). Evaluating conceptual metaphor theory. Discourse Processes, 48(8), 529–562. DOI: 10.1080/0163853X.2011.606103
- 65Givón, T. (2002).
The visual information-processing system as an evolutionary precursor of human . In T. Givón & B. F. Malle (Eds.), The Evolution of Language out of pre-language (pp. 3–50). John Benjamins Publishing. DOI: 10.1075/tsl.53.03giv - 66Glenberg, A. M., & Mehta, S. (2009). Constraints on covariation: It’s not meaning. Italian Journal of Linguistics, 20, 33–53.
- 67Glenberg, A. M., & Robertson, D. A. (2000). Symbol grounding and meaning: A comparison of high-dimensional and embodied theories of meaning. Journal of Memory and Language, 43(3), 379–401. DOI: 10.1006/jmla.2000.2714
- 68Goldin-Meadow, S., Cook, S. W., & Mitchell, Z. A. (2009). Gesturing gives children new ideas about math. Psychological Science, 20(3), 267–272. DOI: 10.1111/j.1467-9280.2009.02297.x
- 69Goodwin, C. (2000). Action and embodiment within situated human interaction. Journal of Pragmatics, 32(10), 1489–1522. DOI: 10.1016/S0378-2166(99)00096-X
- 70Hargreaves, I., Leonard, G., Pexman, P., Pittman, D., Siakaluk, P., & Goodyear, B. (2012). The neural correlates of the body–object interaction effect in semantic processing. Frontiers in Human Neuroscience, 6(22). DOI: 10.3389/fnhum.2012.00022
- 71Harnad, S. (1990). The symbol grounding problem. Physica D: Nonlinear Phenomena, 42(1–3), 335–346. DOI: 10.1016/0167-2789(90)90087-6
- 72Hayes, J. C., & Kraemer, D. J. (2017). Grounded understanding of abstract concepts: The case of STEM learning. Cognitive Research: Principles and Implications, 2(1). DOI: 10.1186/s41235-016-0046-z
- 73Hill, F., Reichart, R., & Korhonen, A. (2014). Multi-modal models for concrete and abstract concept meaning. Transactions of the Association for Computational Linguistics, 2, 285–296. DOI: 10.1162/tacl_a_00183
- 74Hoffman, P. (2016). The meaning of “life” and other abstract words: Insights from neuropsychology. Journal of Neuropsychology, 10(2), 317–343. DOI: 10.1111/jnp.12065
- 75Hostetter, A. B., & Alibali, M. W. (2008). Visible embodiment: Gestures as simulated action. Psychonomic Bulletin & Review, 15(3), 495–514. DOI: 10.3758/PBR.15.3.495
- 76Howison, M., Trninic, D., Reinholz, D., & Abrahamson, D. (2011).
The mathematical imagery trainer: from embodied interaction to conceptual learning . In G. Fitzpatrick et al. (Eds.), In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1989–1998). Vancouver: ACM Press. DOI: 10.1145/1978942.1979230 - 77Hutto, D. D., Kirchhoff, M. D., & Abrahamson, D. (2015). The enactive roots of STEM: Rethinking educational design in mathematics. Educational Psychology Review, 27(3), 371–389. DOI: 10.1007/s10648-015-9326-2
- 78Hutto, D. D., Kirchhoff, M. D., & Myin, E. (2014). Extensive enactivism: why keep it all in? Frontiers in Human Neuroscience, 8. DOI: 10.3389/fnhum.2014.00706
- 79Ingold, T. (2000). The Perception of the Environment: Essays on Livelihood, Dwelling and Skill. Routledge.
- 80Iossifova, R., & Marmolejo-Ramos, F. (2013). When the body is time: spatial and temporal deixis in children with visual impairments and sighted children. Research in Developmental Disabilities, 34(7), 2173–2184. DOI: 10.1016/j.ridd.2013.03.030
- 81Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences of the USA, 106(25), 10382–10385. DOI: 10.1073/pnas.0812142106
- 82James, K. H., & Swain, S. N. (2011). Only self-generated actions create sensori-motor systems in the developing brain. Developmental Science, 14(4), 673–678. DOI: 10.1111/j.1467-7687.2010.01011.x
- 83Jeannerod, M. (1995). Mental imagery in the motor context. Neuropsychologia, 33(11), 1419–1432. DOI: 10.1016/0028-3932(95)00073-C
- 84Jeannerod, M., & Frak, V. (1999). Mental imaging of motor activity in humans. Current Opinion in Neurobiology, 9(6), 735–739. DOI: 10.1016/S0959-4388(99)00038-0
- 85Jonkisz, J., Wierzchoń, M., & Binder, M. (2017). Four-dimensional graded consciousness. Frontiers in Psychology, 8. DOI: 10.3389/fpsyg.2017.00420
- 86Kelso, J. A. (1984). Phase transitions and critical behavior in human bimanual coordination. American Journal of Physiology, 246(6), R1000–R1004. DOI: 10.1152/ajpregu.1984.246.6.R1000
- 87Kostrubiec, V., Zanone, P.-G., Fuchs, A., & Kelso, J. A. S. (2012). Beyond the blank slate: routes to learning new coordination patterns depend on the intrinsic dynamics of the learner – experimental evidence and theoretical model. Frontiers in Human Neuroscience, 6. DOI: 10.3389/fnhum.2012.00222
- 88Kousta, S.-T., Vigliocco, G., Vinson, D. P., Andrews, M., & Del Campo, E. (2011). The representation of abstract words: Why emotion matters. Journal of Experimental Psychology: General, 140(1), 14–34. DOI: 10.1037/a0021446
- 89Lakoff, G., & Johnson, M. (1980). Metaphors We Live By. Illinois: University of Chicago Press.
- 90Lepora, N. F., & Pezzulo, G. (2015). Embodied choice: How action influences perceptual decision making. PLOS Computational Biology, 11(4),
e1004110 . DOI: 10.1371/journal.pcbi.1004110 - 91Louwerse, M. (2011). Symbol interdependency in symbolic and embodied cognition. Topics in Cognitive Science, 3(2), 273–302. DOI: 10.1111/j.1756-8765.2010.01106.x
- 92Lupyan, G., & Bergen, B. (2016). How language programs the mind. Topics in Cognitive Science, 8, 408–424. DOI: 10.1111/tops.12155
- 93Machery, E. (2009). Doing without concepts. Oxford University Press. DOI: 10.1093/acprof:oso/9780195306880.001.0001
- 94Mahon, B. Z., & Caramazza, A. (2008). A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. Journal of Physiology-Paris, 102(1), 59–70. DOI: 10.1016/j.jphysparis.2008.03.004
- 95Marghetis, T., & Núñez, R. (2013). The motion behind the symbols: A vital role for dynamism in the conceptualization of limits and continuity in expert mathematics. Topics in Cognitive Science, 5(2), 299–316. DOI: 10.1111/tops.12013
- 96McGlone, M. S. (2011). Hyperbole, homunculi, and hindsight bias: An alternative evaluation of conceptual metaphor theory. Discourse Processes, 48(8), 563–574. DOI: 10.1080/0163853X.2011.606104
- 97McNeill, D. (1992). Hand and Mind: What Gestures Reveal about Thought. University of Chicago Press.
- 98Merriam-Webster. (2016). The Merriam-Webster Dictionary. Encyclopaedia Britannica Inc.
- 99Meteyard, L., Cuadrado, S. R., Bahrami, B., & Vigliocco, G. (2012). Coming of age: A review of embodiment and the neuroscience of semantics. Cortex, 48(7), 788–804. DOI: 10.1016/j.cortex.2010.11.002
- 100Mirolli, M., & Parisi, D. (2011). Towards a Vygotskyan cognitive robotics: The role of language as a cognitive tool. New Ideas in Psychology, 29(3), 298–311. DOI: 10.1016/j.newideapsych.2009.07.001
- 101Mishra, R. K., & Marmolejo-Ramos, F. (2010). On the mental representations originating during the interaction between language and vision. Cognitive Processing, 11(4), 295–305. DOI: 10.1007/s10339-010-0363-y
- 102Moseley, R. L., & Pulvermüller, F. (2014). Nouns, verbs, objects, actions, and abstractions: Local fMRI activity indexes semantics, not lexical categories. Brain and Language, 132, 28–42. DOI: 10.1016/j.bandl.2014.03.001
- 103Naumann, D., Frassinelli, D., & Schulte im Walde, S. (2018). Quantitative semantic variation in the contexts of concrete and abstract words. In Proceedings of the 7th Joint Conference on Lexical and Computational Semantics, New Orleans, USA, pp. 76–85. DOI: 10.18653/v1/S18-2008
- 104Nickel, M., & Gu, C. (2018). Regulation of central nervous system myelination in higher brain functions. Neural Plasticity, 2018, 12. DOI: 10.1155/2018/6436453
- 105Núñez, R. (1997). Eating soup with chopsticks: dogmas, difficulties and alternatives in the study of conscious experience. Journal of Consciousness Studies, 4(2), 143–167
- 106Núñez, R. (1999). Could the future taste purple? Reclaiming mind, body and cognition. Journal of Consciousness Studies, 6(11–12), 41–60.
- 107Oppenheimer, D. M. (2008). The secret life of fluency. Trends in Cognitive Sciences, 12(6), 237–241. DOI: 10.1016/j.tics.2008.02.014
- 108Pagis, M. (2010). From abstract concepts to experiential knowledge: Embodying enlightenment in a meditation center. Qualitative Sociology, 33(4), 469–489. DOI: 10.1007/s11133-010-9169-6
- 109Piaget, J., Inhelder, B., & Szeminska, A. (1960). The Child’s Conception of Geometry. Harper.
- 110Ponari, M., Norbury, C., & Vigliocco, G. (2016). Acquisition of abstract concepts is influenced by emotional valence. Developmental Science, 2. DOI: 10.1111/desc.12549
- 111Pulvermüller, F. (2018). The case of CAUSE: neurobiological mechanisms for grounding an abstract concept. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752). DOI: 10.1098/rstb.2017.0129
- 112Pulvermüller, F., Hauk, O., Nikulin, V. V., & Ilmoniemi, R. J. (2005). Functional links between motor and language systems. European Journal of Neuroscience, 21(3), 793–797. DOI: 10.1111/j.1460-9568.2005.03900.x
- 113Quandt, L. C., Lee, Y. S., & Chatterjee, A. (2017). Neural bases of action abstraction. Biological Psychology, 129(Suppl. C), 314–323. DOI: 10.1016/j.biopsycho.2017.09.015
- 114Radford, L. (2013). Three key concepts of the theory of objectification: Knowledge, knowing, and learning. Journal of Research in Mathematics Education, 2(1), 7–44. DOI: 10.4471/redimat.2013.19
- 115Reid, D., & Mgombelo, J. (2015). Survey of key concepts in enactivist theory and methodology. ZDM Mathematics Education, 47(2), 171–183. DOI: 10.1007/s11858-014-0634-7
- 116Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nature Reviews Neuroscience, 11(4), 264–74. DOI: 10.1038/nrn2805
- 117Robbins, P., & Aydede, M. (2009).
A short primer on situated cognition . In P. Robbins & M. Aydede (Eds.), The Cambridge Handbook of Situated Cognition (pp. 3–10), Cambridge University Press. DOI: 10.1017/CBO9780511816826.001 - 118Rosch, E. H. (1973). Natural categories. Cognitive Psychology, 4(3), 328–350. DOI: 10.1016/0010-0285(73)90017-0
- 119Roth, W.-M., & Lawless, D. (2002). Scientific investigations, metaphorical gestures, and the emergence of abstract scientific concepts. Learning and Instruction, 12(3), 285–304. DOI: 10.1016/S0959-4752(01)00023-8
- 120Rüschemeyer, S.-A., Brass, M., & Friederici, A. D. (2007). Comprehending prehending: Neural correlates of processing verbs with motor stems. Journal of Cognitive Neuroscience, 19(5), 855–865. DOI: 10.1162/jocn.2007.19.5.855
- 121Sakreida, K., Scorolli, C., Menz, M., Heim, S., Borghi, A., & Binkofski, F. (2013). Are abstract action words embodied? An fMRI investigation at the interface between language and motor cognition. Frontiers in Human Neuroscience, 7, 125. DOI: 10.3389/fnhum.2013.00125
- 122Scorolli, C., Binkofski, F., Buccino, G., Nicoletti, R., Riggio, L., & Borghi, A. (2011). Abstract and concrete sentences, embodiment, and languages. Frontiers in Psychology, 2, 227. DOI: 10.3389/fpsyg.2011.00227
- 123Šefránek, J. (2008). Knowledge representation for animal reasoning. In Proceedings of the 2nd International and Interdisciplinary Conference on Adaptive Knowledge Representation and Reasoning (p. 65–72). Espoo, Finland.
- 124Shea, N. (2018). Representation in Cognitive Science. Oxford University Press. DOI: 10.1093/oso/9780198812883.001.0001
- 125Sidhu, D. M., Kwan, R., Pexman, P. M., & Siakaluk, P. D. (2014). Effects of relative embodiment in lexical and semantic processing of verbs. Acta Psychologica, 149, 32–39. DOI: 10.1016/j.actpsy.2014.02.009
- 126Smith, L. (2005). Cognition as a dynamic system: Principles from embodiment. Developmental Review, 25(3–4), 278–298. DOI: 10.1016/j.dr.2005.11.001
- 127Taylor, P., Hobbs, J., Burroni, J., & Siegelmann, H. (2015). The global landscape of cognition: hierarchical aggregation as an organizational principle of human cortical networks and functions. Nature, 5, 1–18. DOI: 10.1038/srep18112
- 128Thompson, E., & Varela, F. (2001). Radical embodiment: neural dynamics and consciousness. Trends in Cognitive Sciences, 5(10), 418–425. DOI: 10.1016/S1364-6613(00)01750-2
- 129Tomasino, B., & Rumiati, R. I. (2013). Introducing the special topic “the when and why of sensorimotor processes in conceptual knowledge and abstract concepts”. Frontiers in Human Neuroscience. DOI: 10.3389/fnhum.2013.00498
- 130Troche, J., Crutch, S., & Reilly, J. (2014). Clustering, hierarchical organization, and the topography of abstract and concrete nouns. Frontiers in Psychology, 5. DOI: 10.3389/fpsyg.2014.00360
- 131Van den Bergh, O., Vrana, S., & Eelen, P. (1990). Letters from the heart: Affective categorization of letter combinations in typists and nontypists. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(6), 1153–1161. DOI: 10.1037/0278-7393.16.6.1153
- 132Van Kleef, G. A., Cheshin, A., Fischer, A. H., & Schneider, I. K. (2016). Editorial: The Social Nature of Emotions. Frontiers in Psychology, 7. DOI: 10.3389/fpsyg.2016.00896
- 133Varela, F., Thompson, E., & Rosch, E. (2017). The Embodied Mind, Revised edition: Cognitive Science and Human Experience. MIT Press. DOI: 10.7551/mitpress/9780262529365.001.0001
- 134Villani, C., D’Ascenzo, S., Borghi, A. M., Roversi, C., Benassi, M., & Lugli, L. (2021b). Is justice grounded? How expertise shapes conceptual representation of institutional concepts. Psychological Research, 1–17. DOI: 10.1007/s00426-021-01492-8
- 135Villani, C., Lugli, L., Liuzza, M. T., & Borghi, A. M. (2019). Varieties of abstract concepts and their multiple dimensions. Language and Cognition, 11(3), 403–430. DOI: 10.1017/langcog.2019.23
- 136Villani, C., Lugli, L., Liuzza, M. T., Nicoletti, R., & Borghi, A. M. (2021a). Sensorimotor and interoceptive dimensions in concrete and abstract concepts. Journal of Memory and Language, 116, 104173. DOI: 10.1016/j.jml.2020.104173
- 137Voigt, J. (2013).
Negotiation of mathematical meaning in classroom processes: Social interaction and learning mathematics . In Theories of Mathematical Learning (pp. 33–62), Routledge. DOI: 10.4324/9780203053126-7 - 138Vygotsky, L. S. (1964). Thought and language. Annals of Dyslexia, 14(1), 97–98. DOI: 10.1007/BF02928399
- 139Wauters, L., Tellings, A., van Bon, W., & Wouter van Haaften, A. (2003). Mode of acquisition of word meanings: The viability of a theoretical construct. Applied Psycholinguistics, 24(3). DOI: 10.1017/S0142716403000201
- 140Wendelken, C., O’Hare, E. D., Whitaker, K. J., Ferrer, E., & Bunge, S. A. (2011). Increased functional selectivity over development in rostrolateral prefrontal cortex. Journal of Neuroscience, 31. DOI: 10.1523/JNEUROSCI.1193-10.2011
- 141Wiemer-Hastings, K., & Xu, X. (2005). Content differences for abstract and concrete concepts. Cognitive Science, 29(5), 719–736. DOI: 10.1207/s15516709cog0000_33
- 142Willems, R. M., Labruna, L., D’Esposito, M., Ivry, R., & Casasanto, D. (2011). A functional role for the motor system in language understanding: Evidence from theta-burst transcranial magnetic stimulation. Psychology Science, 22(7), 849–854. DOI: 10.1177/0956797611412387
- 143Willems, R. M., Toni, I., Hagoort, P., & Casasanto, D. (2009). Body-specific motor imagery of hand actions: Neural evidence from right- and left-handers. Frontiers in Human Neuroscience, 3, 39. DOI: 10.1177/0956797611412387
- 144Wittgenstein, L., & Anscombe, G. (1953). Philosophical Investigations. Basil Blackwell.
- 145Wright, B. S., Matlen, J. B., Baym, L. C., Ferrer, E., & Bunge, A. S. (2008). Neural correlates of fluid reasoning in children and adults. Frontiers in Human Neuroscience, 1. DOI: 10.3389/neuro.09.008.2007
- 146Yee, E. (2019). Abstraction and concepts: when, how, where, what and why? Language, Cognition and Neuroscience, 34(10), 1257–1265. DOI: 10.1080/23273798.2019.1660797
- 147Zdrazilova, L., Sidhu, D., & Pexman, P. (2018). Communicating abstract meaning: concepts revealed in words and gestures. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752). DOI: 10.1098/rstb.2017.0138
