References
- 1Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. DOI: 10.18637/jss.v067.i01
- 2Bishop, D. V. M. (2003). The Children’s Communication Checklist, 2nd Edition. London: Pearson.
- 3Bishop, D. V. M., Barry, J. G., & Hardiman, M. J. (2012). Delayed retention of new word-forms is better in children than adults regardless of language ability: A factorial two-way study. PloS one, 7(5),
e37326 . DOI: 10.1371/journal.pone.0037326 - 4Bishop, D. V. M., & Hsu, H. J. (2015). The declarative system in children with specific language impairment: a comparison of meaningful and meaningless auditory-visual paired associate learning. BMC Psychology, 3, 3. DOI: 10.1186/s40359-015-0062-7
- 5Bishop, D., Snowling, M., Thompson, P., Greenhalgh, T., & the CATALISE consortium. (2016). CATALISE: a multinational and multidisciplinary delphi consensus study. Identifying language impairments in children. PLOS ONE, 11(12),
e0168066 . DOI: 10.1371/journal.pone.0168066 - 6Chuang, Y. Y., Vollmer, M. L., Shafaei-Bajestan, E., et al. (2021). The processing of pseudoword form and meaning in production and comprehension: A computational modeling approach using linear discriminative learning. Behaviour Research, 53, 945–976. DOI: 10.3758/s13428-020-01356-w
- 7Davis, M., & Gaskell, M. G. (2009). A complementary systems account of word learning: neurla and behavioural evidence. Philosophical Transactions of Royal Society of London B: Biological Sciences, 364(1536), 3773–3800. DOI: 10.1098/rstb.2009.0111
- 8Delogu, F., Brouwer, H., & Crocker, M. W. (2019). Event-related potentials index lexical retrieval (N400) and integration (P600) during language comprehension. Brain & Cognition, 135, 103569. DOI: 10.1016/j.bandc.2019.05.007
- 9DiStefano, C., Senturk, D., & Jeste, S. S. (2019). ERP evidence of semantic processing in children with ASD. Developmental Cognitive Neuroscience, 36, 100640. DOI: 10.1016/j.dcn.2019.100640
- 10Dufour, S., Brunellière, A., & Frauenfelder, U. H. (2012). Tracking the time course of word-frequency effects in auditory word recognition with event related potentials. Cognitive Science, 37(3), 489–507. DOI: 10.1111/cogs.12015
- 11Dumay, N., & Gaskell, M. G. (2007). Sleep-associated changes in the mental representation of spoken words. Psychological Science, 18(1), 35–39. DOI: 10.1111/j.1467-9280.2007.01845.x
- 12Dunn, L. M., Dunn, D. M., Styles, B., & Sewell, J. (2009). The British Picture Vocabulary Scale III – 3rd Edition. London: GL Assessment.
- 13Elliott, C. D., & Smith, P. (2011). The British Ability Scales, 3rd Edition. London: GL Assessment.
- 14Fletcher, F., Knowland, V. C. P., Walker, S., Gaskell, M. G., Norbury, C., & Henderson, L.-M. (2020). Atypicalities in sleep and semantic consolidation in autism. Developmental Science, 23(3),
e12906 . DOI: 10.1111/desc.12906 - 15Gagnepain, P., Henson, R. N., & Davis, M. H. (2012). Temporal predictive codes for spoken words in auditory cortex. Current Biology, 22, 615–621. DOI: 10.1016/j.cub.2012.02.015
- 16Gathercole, S., & Baddeley, A. (1990). Phonological memory deficits in language disordered children: is there a causal connection? Journal of Memory and Language, 29(3), 336–360. DOI: 10.1016/0749-596X(90)90004-J
- 17Gathercole, S. E., Hitch, G. J., Service, E., & Martin, A. J. (1997). Phonological short-term memory and new word learning in children. Developmental Psychology, 33(6), 966–979. DOI: 10.1037/0012-1649.33.6.966
- 18Gilliam, J. E. (2013). Gilliam Autism Rating Scale – 3rd Edition. London, UK: Pearson.
- 19Grill-Spector, K., Henson, R., & Martin, A. (2006). Repetition and the brain: neural models of stimulus-specific effects. Trends in Cognitive Science, 10, 14–23. DOI: 10.1016/j.tics.2005.11.006
- 20Grummett, T. S., Leibbrandt, R. E., Lewis, T. W., DeLosAngeles, D., Powers, D. M. W., Willoughby, J. O., Pope, K. J., & Fitzgibbon, S. P. (2015). Measurement of neural signals from inexpensive, wireless and dry EEG systems. Physiological Measurement, 36, 1469–1484. DOI: 10.1088/0967-3334/36/7/1469
- 21Helenius, P., Parviainen, T., Paetau, R., & Salmelin, R. (2009). Neural processing of spoken words in specific language impairment and dyslexia. Brain, awp134. DOI: 10.1093/brain/awp134
- 22Helenius, P., Sionen, P., Parviainen, T., Isoaho, P., Hannus, S., Kauppila, T., Salmelin, R., & Isotalo, L. (2014). Abnormal functioning of the left temporal lobe in language-impaired children. Brain & Language, 130, 11–18. DOI: 10.1016/j.bandl.2014.01.005
- 23Henderson, L. M., Powell, A., Gaskell, M. G., & Norbury, C. (2014). Consolidation of vocabulary in autism spectrum disorder. Developmental Science. Early on-line view, 2014 Mar 17. DOI: 10.1111/desc.12169
- 24Henderson, L. M., Weighall, A. R., Brown, H., & Gaskell, G. (2012). Consolidation of vocabulary is associated with sleep in children. Developmental Science, 15(5), 674–687. DOI: 10.1111/desc.12639
- 25Holcomb, P. J., Coffey, S. A., & Neville, H. J. (1992). Visual and auditory sentence processing: a developmental analysis using event-related potentials. Developmental Neuropsychology, 8(2&3), 203–241. DOI: 10.1080/87565649209540525
- 26Holcomb, P. J., & Neville, H. J. (1990). Auditory and visual semantic priming in lexical decision: a comparison using event-related potentials. Language and Cognitive Processes, 5(4), 281–312. DOI: 10.1080/01690969008407065
- 27Hsu, Y.-F., Hämäläinen, J. A., & Waszak, F. (2014). Repetition suppression comprises both attention-independent and attention-dependent processes. NeuroImage, 98, 168–175. DOI: 10.1016/j.neuroimage.2014.04.084
- 28Junge, C., Boumeester, M., Mills, D. L., Paul, M., & Cosper, S. H. (2021). Development of the N400 for word learning in the first 2 years of life: a systematic review. Frontiers in Psychology. DOI: 10.3389/fpsyg.2021.689534
- 29Junge, C., Cutler, A., & Hagoort, P. (2012). Electrophysiological evidence of early word learning. Neuropsychologia, 50(14), 3702–3712. DOI: 10.1016/j.neuropsychologia.2012.10.012
- 30Kounios, J., Green, D. L., Payne, L., Fleck, J. I., Grondin, R., & McRae, K. (2009). Semantic richness and the activation of concepts in semantic memory: evidence from event related potentials. Brain Research, 1282, 95–102. DOI: 10.1016/j.brainres.2009.05.092
- 31Kuperman, V., Stadthagen-Gonzalez, H., & Brysbaert, M. (2012). Age-of-acquisition ratings for 30,000 English words. Behavior Research Methods, 44(4), 978–990. DOI: 10.3758/s13428-012-0210-4
- 32Kornilov, S. A., Magnuson, J. S., Rakhlin, N., Landi, N., & Grigorenko, E. L. (2015). Lexical processing deficits in children with developmental language disorder: an event-related potential study. Development and Psychopathology, 27, special issue 2: Neural Plasticity, Sensitive Periods and Psychopathology, 459–476. DOI: 10.1017/S0954579415000097
- 33Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: Finding meaning in the N400 component of the event related brain potential (ERP). Annual Review of Psychology, 62, 621–647. DOI: 10.1146/annurev.psych.093008.131123
- 34Landi, N., Malins, J. G., Frost, S. J., Magnuson, J. S., Molfese, P., Ryherd, K., Rueckl, J. G., Mencl, W. E., Pugh, K. R. (2018). Neural representations for newly learned words are modulated by overnight consolidation, reading skill, and age. Neuropsychologia, 111, 133–144. DOI: 10.1016/j.neuropsychologia.2018.01.011
- 35Lau, E., Phillips, C., & Poeppel, D. (2008). A cortical network for semantics: (de)constructing the N400. Nature Reviews Neuroscience, 9, 920–933. DOI: 10.1038/nrn2532
- 36Length, R. (2019). emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.3.5.
https://CRAN.R-project.org/package=emmeans - 37Marini, A., Ozbič, M., Magni, R., & Valeri, G. (2020). Toward a definition of the linguistic profile of children with Autism Spectrum Disorder. Frontiers in Psychology, 11, 808. eCollection 2020. DOI: 10.3389/fpsyg.2020.00808
- 38McCleery, J. P., Ceponiene, R., Burner, K. M., Townsend, J., Kinnear, M., & Schreibman, L. (2010). Neural correlates of verbal and nonverbal semantic integration in children with autism spectrum disorders. The Journal of Child Psychology and Psychiatry, 51(3), 277–286. DOI: 10.1111/j.1469-7610.2009.02157.x
- 39McLaughlin, J., Osterhout, L., & Kim, A. (2004). Neural correlates of second-language word learning: minimal instruction produces rapid change. Nature Neuroscience, 7, 703–704. DOI: 10.1038/nn1264
- 40Minamoto, H., Tachibana, H., Sugita, M., & Okita, T. (2001). Recognition memory in normal aging and Parkinson’s disease: behavioral and electrophysiologic measures. Cognitive Brain Research, 11(1), 23–32. DOI: 10.1016/S0926-6410(00)00060-4
- 41Norbury, C. F., Griffiths, H., & Nation, K. (2010). Sound before meaning: word learning in autistic disorders. Neuropsychologia, 48(14), 4012–4019. DOI: 10.1016/j.neuropsychologia.2010.10.015
- 42Nordt, M., Hoehl, S., & Weigelt, S. (2016). The use of repetition suppression paradigms in developmental cognitive neuroscience. Cortex, 80, 61–75. DOI: 10.1016/j.cortex.2016.04.002
- 43Owens, J. A., Spirito, A., & McGuinn, M. (2000). The Children’s Sleep Habits Questionnaire (CSHQ): psychometric properties of a survey instrument for school-aged children. Sleep, 23(8), 1043–1051. DOI: 10.1093/sleep/23.8.1d
- 44R Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. URL
https://www.R-project.org/ - 45Radüntz, T. (2018). Signal quality evaluation of emerging EEG devices. Frontiers in Physiology, 14>. DOI: 10.3389/fphys.2018.00098
- 46Roediger, H. L.,
III & Butler, A. C. (2011). The critical role of retrieval practice in long term retention. Trends in Cognitive Sciences, 15, 20–27. DOI: 10.1016/j.tics.2010.09.003 - 47Rosson, M. B. (1983). From SOFA to LOUCH: Lexical contributions to pseudoword pronunciation. Memory and Cognition, 11, 152–160. DOI: 10.3758/BF03213470
- 48Rugg, M. (1985). The effects of semantic priming and word repetition on event-related potentials. Psychophysiology, 22(6), 642–747. DOI: 10.1111/j.1469-8986.1985.tb01661.x
- 49Rugg, M. (1990). Event-related brain potentials dissociate repetition effects of high and low frequency words. Memory and Cognition, 18(4), 367–379. DOI: 10.3758/BF03197126
- 50Sheng, L., & McGregor, K. (2010). Lexical-semantic organisation in children with specific language impairment. Journal of Speech, Language and Hearing Research, 53(1), 146–159. DOI: 10.1044/1092-4388(2009/08-0160)
- 51The MathWorks. (2014). MATLAB Release 2014. Natick, Massachusetts, United States: The MathWorks, Inc.
- 52Volpert-Esmond, H. I., Merkle, E. C., Levsen, M. P., Ito, T. A., & Bartholow, B. D. (2018). Using trial-level data and multilevel modelling to investigate within-task change in event-related potentials. Psychophysiology, 55(5),
e13044 . DOI: 10.1111/psyp.13044 - 53Wagner, R., Torgesen, J., Rashotte, C. A., & Pearson, N. A. (2013). Comprehensive test of phonological processing, 2nd Edition (CTOPP2). Oxford: Pearson. DOI: 10.1037/t52630-000
- 54Wickham, H. (2016).
ggplot2: Elegant Graphics for Data Analysis . New York: Springer-Verlag. DOI: 10.1007/978-3-319-24277-4 - 55Williams, D., Botting, N., & Boucher, J. (2008). Language in autism and specific language impairment: where are the links? Psychological Bulletin, 134(6), 944–963. DOI: 10.1037/a0013743
- 56Williams, D., Payne, H., & Marshall, C. (2012). Non-word repetition impairment in autism and specific language impairment: evidence for distinct underlying cognitive causes. Journal of Autism and Developmental Disorders, 43(2), 404–417. DOI: 10.1007/s10803-012-1579-8
