References
- Anderson, B. A. (2015). Value-driven attentional capture is modulated by spatial context. Visual Cognition, 23, 67–81. DOI: 10.1080/13506285.2014.956851
- Anderson, B. A. (2016). The attention habit: How reward learning shapes attentional selection. Annals of New York Academy Sciences, 1369(1), 24–39. DOI: 10.1111/nyas.12957
- Anderson, B. A., Laurent, P. A., & Yantis, S. (2011a). Learned value magnifies salience-based attentional capture. PLoS One, 6(11),
e27926 . DOI: 10.1371/journal.pone.0027926 - Anderson, B. A., Laurent, P. A., & Yantis, S. (2011b). Value-driven attentional capture. Proceedings of the National Academy of Sciences, 108(25), 10367–10371. DOI: 10.1073/pnas.1104047108
- Awh, E., Belopolsky, A., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: a failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437–443. DOI: 10.1016/j.tics.2012.06.010
- Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Perception & Psychophysics, 55, 485–496. DOI: 10.3758/BF03205306
- Baluch, F., & Itti, L. (2011). Mechanisms of top-down attention. Trends in Neurosciences, 34, 210–224. DOI: 10.1016/j.tins.2011.02.003
- Bargh, J. A., & Chartrand, T. L. (1999). The unbearable automaticity of being. American Psychologist, 54(7), 462–479. DOI: 10.1037/0003-066X.54.7.462
- Belopolsky, A. V., Schreij, D., & Theeuwes, J. (2010). What is top-down about contingent capture? Attention Perception & Psychophysics, 72(2), 326–341. DOI: 10.3758/APP.72.2.326
- Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Research Reviews, 28(3), 309–369. DOI: 10.1016/S0165-0173(98)00019-8
- Bichot, N. P., & Schall, J. D. (2002). Priming in macaque frontal cortex during popout visual search: Feature-based facilitation and location-based inhibition of return. Journal of Neuroscience, 22, 4675–4685.
- Bucker, B., & Theeuwes, J. (2014). The effect of reward on orienting and reorienting in exogenous cuing. Cognitive, Affective, & Behavioral Neuroscience, 14(2), 635–646. DOI: 10.3758/s13415-014-0278-7
- Buschman, T. J., & Miller, E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science, 315, 1860–2. DOI: 10.1126/science.1138071
- Carrasco, M. (2011). Visual Attention: The past 25 years. Vision Research, 51, 1484–1525. DOI: 10.1016/j.visres.2011.04.012
- Chelazzi, L., Perlato, A., Santandrea, E., & Della Libera, C. (2013). Rewards teach visual selective attention. Vision Research, 85, 58–72. DOI: 10.1016/j.visres.2012.12.005
- Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 28–71. DOI: 10.1006/cogp.1998.0681
- Connor, C. E., Egeth, H. E., & Yantis, S. (2004). Visual attention: Bottom-up versus top-down. Current Biology, 14(19), R850–R852. DOI: 10.1016/j.cub.2004.09.041
- Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215. DOI: 10.1038/nrn755
- Della Libera, C., & Chelazzi, L. (2006). Visual selective attention and the effects of monetary rewards. Psychological Science, 17(3), 222–227. DOI: 10.1111/j.1467-9280.2006.01689.x
- Della Libera, C., & Chelazzi, L. (2009). Learning to attend and to ignore is a matter of gains and losses. Psychological Science, 20(6), 778–784. DOI: 10.1111/j.1467-9280.2009.02360.x
- Desimone, R. (1996). Neural mechanisms for visual memory and their role in attention. Proceedings of the National Academy of Sciences, 93, 13494–13499. DOI: 10.1073/pnas.93.24.13494
- Egeth, H. E., & Yantis, S. (1997). Visual attention: Control, representation, and time course. Annual Review of Psychology, 48, 269–297. DOI: 10.1146/annurev.psych.48.1.269
- Failing, M. F., & Theeuwes, J. (2014). Exogenous visual orienting by reward. Journal of Vision, 14(5), 6. DOI: 10.1167/14.5.6
- Failing, M. F., & Theeuwes, J. (2015). Nonspatial Attentional Capture by Previously Rewarded Scene Semantics. Visual Cognition, 23(1–2), 82–104. DOI: 10.1080/13506285.2014.990546
- Failing, M., Nissens, T., Pearson, D., Le Pelley, M., & Theeuwes, J. (2015). Oculomotor capture by stimuli that signal the availability of reward. Journal of Neurophysiology, 114(4), 2316–2327. DOI: 10.1152/jn.00441.2015
- Failing, M., & Theeuwes, J. (2016). Reward alters the perception of time. Cognition, 148, 19–26. DOI: 10.1016/j.cognition.2015.12.005
- Failing, M., & Theeuwes, J. (2017). Don’t let it distract you: How information about the availability of reward affects attentional selection. Attention, Perception, & Psychophysics. DOI: 10.3758/s13414-017-1376-8
- Failing, M., & Theeuwes, J. (in press). Selection history: How reward modulates selectivity of visual attention. Psychonomic Bulletin & Review. DOI: 10.3758/s13423-017-1380-y
- Ferrante, O., Patacca, A., Di Caro, V., Della Libera, C., Santandrea, E., & Chelazzi, L. (in press).
Alternating spatial priority maps via statistical learning of target selection and distractor filtering . Cortex. - Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary Covert Orienting Is Contingent on Attentional Control Settings. Journal of Experimental Psychology-Human Perception and Performance, 18(4), 1030–1044. DOI: 10.1037/0096-1523.18.4.1030
- Gaspelin, N., Leonard, C. J., & Luck, S. J. (2017). Suppression of overt attentional capture by salient-but-irrelevant color singletons. Attention, Perception, & Psychophysics, 79(1), 45–62. DOI: 10.3758/s13414-016-1209-1
- Gaspelin, N., & Luck, S. J. (2018). The role of inhibition in avoiding distraction by salient stimuli. Trends in Cognitive Sciences, 22(1), 79–92. DOI: 10.1016/j.tics.2017.11.001
- Geng, J. J., & Behrmann, M. (2005). Spatial probability as an attentional cue in visual search. Perception and Psychophysics, 67, 1252–1268. DOI: 10.3758/BF03193557
- Geyer, T., Muller, H. J., & Krummenacher, J. (2008). Expectancies modulate attentional capture by salient color singletons. Vision Research, 48(11), 1315–1326. DOI: 10.1016/j.visres.2008.02.006
- Godijn, R., & Theeuwes, J. (2002). Programming of endogenous and exogenous saccades: Evidence for a competitive integration model. Journal of Experimental Psychology-Human Perception and Performance, 28(5), 1039–1054. DOI: 10.1037/0096-1523.28.5.1039
- Hickey, C., Chelazzi, L., & Theeuwes, J. (2010). Reward Changes Salience in Human Vision via the Anterior Cingulate. Journal of Neuroscience, 30(33), 11096–11103. DOI: 10.1523/JNEUROSCI.1026-10.2010
- Hickey, C., McDonald, J. J., & Theeuwes, J. (2006). Electrophysiological evidence of the capture of visual attention. Journal of Cognitive Neuroscience, 18, 604–613. DOI: 10.1162/jocn.2006.18.4.604
- Hickey, C., van Zoest, W., & Theeuwes, J. (2010). The time course of exogenous and endogenous control of covert attention. Experimental Brain Research, 201(4), 789–796. DOI: 10.1007/s00221-009-2094-9
- Hillstrom, A. P. (2000). Repetition effects in visual search. Perception & Psychophysics, 62, 800–817. DOI: 10.3758/BF03206924
- Hollingworth, A., Matsukura, M., & Luck, S. J. (2013). Visual Working Memory Modulates Rapid Eye Movements to Simple Onset Targets. Psychological Science, 24(5), 790–796. DOI: 10.1177/0956797612459767
- Hopkins, L. S., Helmstetter, F. J., & Hannula, D. E. (2016). Eye Movements are Captured by a Perceptually Simple Conditioned Stimulus in the Absence of Explicit Contingency Knowledge. Emotion. DOI: 10.1037/emo0000206
- Hopfinger, J. B., Buonocore, M. H., & Mangun, G. R. (2000). The neural mechanisms of top-down attentional control. Nature Neuroscience, 3, 284–291. DOI: 10.1038/72999
- Hunt, A. R., von Muhlenen, A., & Kingstone, A. (2007). The time course of attentional and oculomotor capture reveals a common cause. Journal of Experimental Psychology-Human Perception and Performance, 33(2), 271–284. DOI: 10.1037/0096-1523.33.2.271
- Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews Neuroscience, 2(3), 194–203. DOI: 10.1038/35058500
- Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual-attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20, 1254–1259. DOI: 10.1109/34.730558
- Jahfari, S., & Theeuwes, J. (2017). Sensitivity to value-driven attention is predicted by how we learn from value. Psychonomic Bulletin & Review, 1–8. DOI: 10.3758/s13423-016-1106-6
- James, W. (1890).
The principles of Psychology . London: MacMillan. DOI: 10.1037/11059-000 - Jiang, Y. V. (2017). Habitual versus goal-driven attention. Cortex. DOI: 10.1016/j.cortex.2017.06.018
- Jiang, Y. V., Swallow, K. M., Rosenbaum, G. M., & Herzig, C. (2013). Rapid acquisition but slow extinction of an attentional bias in space. Journal of Experimental Psychology: Human Perception & Performance, 39, 87–99. DOI: 10.1037/a0027611
- Jonides, J. (1981).
Voluntary versus automatic control over the mind’s eye . In: Long, J., & Baddeley, A. (Eds.), Attention and performance, IX, 187–203. Hillsdale, N. J: Erlbaum. - Katsuki, F., & Constantinidis, C. (2014). Bottom-up and top-down attention: different processes and overlapping neural systems. Neuroscientist, 20(5), 509–21. DOI: 10.1177/1073858413514136
- Kim, M. S., & Cave, K. R. (1999). Top-down and bottom-up attentional control: On the nature of interference from a salient distractor. Perception & Psychophysics, 61, 1009–1023. DOI: 10.3758/BF03207609
- Klein, R. M. (2017). Psychonomics in Boston: A debate about types of orienting. Attention, Perception & Psychophysics, 79, 1–2.
- Koch, C., & Ullman, S. (1985). Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology, 4, 219–227.
- Kristjansson, A. (2010). Priming in visual search: A spanner in the works for Theeuwes’s bottom-up attention sweeps? Acta Psychologica, 135(2), 114–116. DOI: 10.1016/j.actpsy.2010.05.001
- Kristjánsson, Á., & Campana, G. (2010). Where perception meets memory: A review of repetition priming in visual search tasks. Attention, Perception, & Psychophysics, 72(1), 5–18. DOI: 10.3758/APP.72.1.5
- Kumada, T. (1999). Limitations in attending to a feature value for overriding stimulus-driven interference. Perception & Psychophysics, 61, 61–79. DOI: 10.3758/BF03211949
- Lamy, D. F., & Kristjánsson, Á. (2013). Is goal-directed attentional guidance just intertrial priming? A review. Journal of Vision, 13. DOI: 10.1167/13.3.14
- Le Pelley, M. E., Pearson, D., Griffiths, O., & Beesley, T. (2015). When goals conflict with values: Counterproductive attentional and oculomotor capture by reward-related stimuli. Journal of Experimental Psychology: General, 144(1), 158–171. DOI: 10.1037/xge0000037
- Lien, M.-C., Ruthruff, E., & Johnston, J. C. (2010). Attentional capture with rapidly changing attentional control settings. Journal of Experimental Psychology. Human Perception and Performance, 36, 1–16. DOI: 10.1037/a0015875
- Ludwig, C. J. H., & Gilchrist, I. D. (2002). Stimulus-driven and goal-driven control over visual selection. Journal of Experimental Psychology: Human Perception and Performance, 28, 902–912. DOI: 10.1037/0096-1523.28.4.902
- Maljkovic, V., & Nakayama, K. (1994). Priming of pop-out: I. Role of features. Memory & Cognition, 22(6), 657–672. DOI: 10.3758/BF03209251
- Maljkovic, V., & Nakayama, K. (2000). Priming of pop-out: III. A short-term implicit memory system beneficial for rapid target selection. Visual Cognition, 7, 571–595. DOI: 10.1080/135062800407202
- Mortier, K., Theeuwes, J., & Starreveld, P. (2005). Response selection modulates visual search within and across dimensions. Journal of Experimental Psychology: Human Perception and Performance, 31, 542–557. DOI: 10.1037/0096-1523.31.3.542
- Mulckhuyse, M., Crombez, G., & Van der Stigchel, S. (2013). Conditioned fear modulates visual selection. Emotion, 13(3), 529–536. DOI: 10.1037/a0031076
- Mulckhuyse, M., & Dalmaijer, E. S. (2016). Distracted by danger: Temporal and spatial dynamics of visual selection in the presence of threat. Cognitive, Affective, and Behavioral Neuroscience, 16(2), 315–324. DOI: 10.3758/s13415-015-0391-2
- Mulckhuyse, M., Van der Stigchel, S., & Theeuwes, J. (2009). Early and Late Modulation of Saccade Deviations by Target Distractor Similarity. Journal of Neurophysiology, 102(3), 1451–1458. DOI: 10.1152/jn.00068.2009
- Müller, H. J., Heller, D., & Ziegler, J. (1995). Visual search for singleton feature targets within and across feature dimensions. Perception & Psychophysics, 57, 1–17. DOI: 10.3758/BF03211845
- Müller, H. J., & Rabbitt, P. M. A. (1989). Reflexive and voluntary orienting of visual attention: Time course of activation and resistance to interruption. Journal of Experimental Psychology: Human Perception and Performance, 15, 315–330. DOI: 10.1037/0096-1523.15.2.315
- Müller, H. J., Reimann, B., & Krummenacher, J. (2003). Visual search for singleton feature targets across dimensions: Stimulus and expectancy-driven effects in dimensional weighing. Journal of Experimental Psychology: Human Perception and Performance, 29, 1021–1035. DOI: 10.1037/0096-1523.29.5.1021
- Nakayama, K., & Mackeben, M. (1989). Sustained and transient components of focal visual attention. Vision Res, 29, 1631–1647. DOI: 10.1016/0042-6989(89)90144-2
- Neumann, O. (1984).
Automatic processing: A review of recent findings and a plea for an old theory . In: Prinz, W., & Sanders, A. F. (Eds.), Cognition and Motor Processes, 255–290. Berlin: Springer-Verlag. DOI: 10.1007/978-3-642-69382-3_17 - Nissens, T., Failing, M., & Theeuwes, J. (2016). People look at the object they fear: Oculomotor capture by stimuli that signal threat. Cognition and Emotion, 1–8.
- Ogawa, T., & Komatsu, H. (2004). Target selection in area V4 during a multidimensional visual search task. Journal of Neuroscience, 24(28), 6371–6382. DOI: 10.1523/JNEUROSCI.0569-04.2004
- Olivers, C. N. L., & Hickey, C. (2010). Priming resolves perceptual ambiguity in visual search: evidence from behaviour and electrophysiology. Vision Research, 50(14), 1362–1371. DOI: 10.1016/j.visres.2009.11.022
- Olivers, C. N. L., & Humphreys, G. W. (2003). Visual marking inhibits singleton capture. Cognitive Psychology, 47, 1–42. DOI: 10.1016/S0010-0285(03)00003-3
- Pashler, H., Johnston, J., & Ruthruff, E. (2001). Attention and Performance. In: Annual Review of Psychology, 52, 629–651. DOI: 10.1146/annurev.psych.52.1.629
- Pearson, D., Donkin, C., Tran, S. C., Most, S. B., & Le Pelley, M. E. (2015). Cognitive control and counterproductive oculomotor capture by reward-related stimuli. Visual Cognition, 23(1–2), 41–66. DOI: 10.1080/13506285.2014.994252
- Pinto, Y., Olivers, C. N. L., & Theeuwes, J. (2005). Target uncertainty does not lead to more distraction by singletons: intertrial priming does. Perception & Psychophysics, 67(8), 1354–1361. DOI: 10.3758/BF03193640
- Posner, M. I. (1978).
Chronometric explorations of mind . Hillsdale NJ: Erlbaum. - Posner, M. I. (1980). Orienting of Attention, The VIIth Sir Frederic Bartlett Lecture. Quarterly Journal of Experimental Psychology, 32, 3–25. DOI: 10.1080/00335558008248231
- Posner, M. I., Davidson, B. J., & Snyder, C. R. R. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109, 160–174. DOI: 10.1037/0096-3445.109.2.160
- Preciado, D., Munneke, J., & Theeuwes, J. (2016). Was That a Threat? Attentional biases by signals of threat. Emotion, 16(8).
- Ristic, J., & Kingstone, A. (2006). Attention to arrows: Pointing to a new direction. Quarterly Journal of Experimental Psychology, 59, 1921–1930. DOI: 10.1080/17470210500416367
- Schmidt, L. J., Belopolsky, A. V., & Theeuwes, J. (2015). Attentional capture by signals of threat. Cognition & Emotion, 15, 329–334. DOI: 10.1037/emo0000041
- Schmidt, L. J., Belopolsky, A. V., & Theeuwes, J. (2017). The time course of attentional bias to cues of threat and safety. Cognition and Emotion, 31(5), 845–857. DOI: 10.1080/02699931.2016.1169998
- Schneider, W., & Shiffrin, R. M. (1977). Controlled and Automatic Human Information Processing: I. Detection, Search, and Attention. Psychological Review, 84, 1–66. DOI: 10.1037/0033-295X.84.1.1
- Schubo, A. (2009). Salience detection and attentional capture. Psychological Research-Psychologische Forschung, 73(2), 233–243. DOI: 10.1007/s00426-008-0215-x
- Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending, and a general theory. Psychological Review, 84(3), 127–190. DOI: 10.1037/0033-295X.84.2.127
- Theeuwes, J. (1989). Effects of Location and Form Cueing on the Allocation of Attention in the Visual-Field. Acta Psychologica, 72(2), 177–192. DOI: 10.1016/0001-6918(89)90043-7
- Theeuwes, J. (1990). Perceptual Selectivity Is Task Dependent – Evidence from Selective Search. Acta Psychologica, 74(1), 81–99. DOI: 10.1016/0001-6918(90)90036-F
- Theeuwes, J. (1991). Cross-Dimensional Perceptual Selectivity. Perception & Psychophysics, 50(2), 184–193. DOI: 10.3758/BF03212219
- Theeuwes, J. (1992). Perceptual Selectivity for Color and Form. Perception & Psychophysics, 51(6), 599–606. DOI: 10.3758/BF03211656
- Theeuwes, J. (1994a). Endogenous and Exogenous Control of Visual Selection. Perception, 23(4), 429–440. DOI: 10.1068/p230429
- Theeuwes, J. (1994b). Stimulus-Driven Capture and Attentional Set – Selective Search for Color and Visual Abrupt Onsets. Journal of Experimental Psychology-Human Perception and Performance, 20(4), 799–806. DOI: 10.1037/0096-1523.20.4.799
- Theeuwes, J. (2004). Top-down search strategies cannot override attentional capture. Psychonomic Bulletin & Review, 11(1), 65–70. DOI: 10.3758/BF03206462
- Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 135(2), 77–99. DOI: 10.1016/j.actpsy.2010.02.006
- Theeuwes, J. (2013). Feature-based attention: It is all bottom-up priming. Philosophical Transactions of the Royal Society B: Biological Sciences, 368, 1–8. DOI: 10.1098/rstb.2013.0055
- Theeuwes, J., & Chen, C. Y. D. (2005). Attentional capture and inhibition (of return): The effect on perceptual sensitivity. Perception & Psychophysics, 67(8), 1305–1312. DOI: 10.3758/BF03193636
- Theeuwes, J., Kramer, A. F., Hahn, S., & Irwin, D. E. (1998). Our eyes do not always go where we want them to go: Capture of the eyes by new objects. Psychological Science, 9(5), 379–385. DOI: 10.1111/1467-9280.00071
- Theeuwes, J., Kramer, A. F., Hahn, S., Irwin, D. E., & Zelinsky, G. J. (1999). Influence of attentional capture on oculomotor control. Journal of Experimental Psychology-Human Perception and Performance, 25(6), 1595–1608. DOI: 10.1037/0096-1523.25.6.1595
- Theeuwes, J., Kramer, A. F., & Kingstone, A. (2004). Attentional capture modulates perceptual sensitivity. Psychonomic Bulletin & Review, 11(3), 551–554. DOI: 10.3758/BF03196609
- Theeuwes, J., Reimann, B., & Mortier, K. (2006). Visual search for featural singletons: No top-down modulation, only bottom-up priming. Visual Cognition, 14(4–8), 466–489. DOI: 10.1080/13506280500195110
- Theeuwes, J., & Van der Burg, E. (2007). The role of spatial and nonspatial information in visual selection. Journal of Experimental Psychology-Human Perception and Performance, 33(6), 1335–1351. DOI: 10.1037/0096-1523.33.6.1335
- Theeuwes, J., & Van der Burg, E. (2011). On the limits of top-down control. Attention, Perception & Psychophysics, 73, 2092–2103. DOI: 10.3758/s13414-011-0176-9
- Theeuwes, J., & Van der Burg, E. (2013). Priming makes a stimulus more salient. Journal of Vision, 13(3), 1–11. DOI: 10.1167/13.3.21
- Thompson, K. G., Bichot, N. P., & Sato, T. R. (2005). Frontal eye field activity before visual search errors reveals the integration of bottom-up and top-down salience. Journal of Neurophysiology, 93, 337–351. DOI: 10.1152/jn.00330.2004
- Todd, R. M., & Manaligod, M. G. M. (2017). Implicit guidance of attention: The Priority State Space framework. Cortex. DOI: 10.1016/j.cortex.2017.08.001
- Treisman, A. (1988). “Features and objects: the fourteenth Bartlett Memorial Lecture.” Quarterly Journal of Experimental Psychology, 40A, 201–236. DOI: 10.1080/02724988843000104
- van Zoest, W., Donk, M., & Theeuwes, J. (2004). The role of stimulus-driven and goal-driven control in saccadic visual selection. Journal of Experimental Psychology-Human Perception and Performance, 30(4), 746–759. DOI: 10.1037/0096-1523.30.4.749
- Wang, B., & Theeuwes, J. (2018). Statistical regularities modulate attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 44(1), 13–17. DOI: 10.1037/xhp0000472
- Wang, B., & Theeuwes, J. (submitted-a). How to inhibit a distractor location? Statistical learning versus active, top-down suppression.
- Wang, B., & Theeuwes, J. (submitted-b). Statistical regularities modulate attentional capture independent of search strategy.
- Wolfe, J. M., Butcher, S. J., Lee, C., & Hyle, M. (2003). Changing Your Mind: On the Contributions of Top-Down and Bottum-Up Guidance in Visual Search for Feature Singeltons. Journal of Experimental Psychology, 29(2), 483–502. DOI: 10.1037/0096-1523.29.2.483
- Yantis, S., & Jonides, J. (1990). Abrupt Visual Onsets and Selective Attention: Voluntary Versus Automatic Allocation. Journal of Experimental Psychology: Human Perception and Performance, 16, 121–134. DOI: 10.1037/0096-1523.16.1.121
- Zhao, J., Al-Aidroos, N., & Turk-Browne, N. B. (2013). Attention is spontaneously biased toward regularities. Psychological Science, 24(5), 667–677. DOI: 10.1177/0956797612460407
