Have a personal or library account? Click to login
Challenges and Opportunities for Grounding Cognition Cover

Challenges and Opportunities for Grounding Cognition

Open Access
|Sep 2020

References

  1. Adams, S. V., Wennekers, T., Cangelosi, A., Garagnani, M., & Pulvermuller, F. (2014). Learning visual-motor Cell Assemblies for the iCub robot using a neuroanatomically grounded neural network. 2014 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB), 18. DOI: 10.1109/CCMB.2014.7020687
  2. Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Cambridge University Press.
  3. Andrews, M., Frank, S., & Vigliocco, G. (2014). Reconciling embodied and distributional accounts of meaning in language. Topics in Cognitive Science, 6, 359370. DOI: 10.1111/tops.12096
  4. Andrews, M., Vigliocco, G., & Vinson, D. (2009). Integrating experiential and distributional data to learn semantic representations. Psychological Review, 116, 463498. DOI: 10.1037/a0016261
  5. Aydede, M., & Robbins, P. (2009). The Cambridge handbook of situated cognition. Cambridge: Cambridge University Press.
  6. Baerger, D. R., & McAdams, D. P. (1999). Life story coherence and its relation to psychological well-being. Narrative Inquiry, 9, 6996. DOI: 10.1075/ni.9.1.05bae
  7. Bagga, D., Reichert, J. L., Koschutnig, K., Aigner, C. S., Holzer, P., Koskinen, K., … Schöpf, V. (2018). Probiotics drive gut microbiome triggering emotional brain signatures. Gut Microbes, 9, 486496. DOI: 10.1080/19490976.2018.1460015
  8. Barrett, L. F. (2017). How emotions are made: The secret life of the brain. New York: Houghton Mifflin Harcourt.
  9. Barrett, L. F., & Russell, J. A. (2015). The psychological construction of emotion. New York: Guilford.
  10. Barsalou, L. W. (1987). The instability of graded structure: Implications for the nature of concepts. In U. Neisser (Ed.), Concepts and conceptual development: Ecological and intellectual factors in categorization (pp. 101140). Cambridge University Press.
  11. Barsalou, L. W. (1989). Intraconcept similarity and its implications for interconcept similarity. In S. Vosniadou & A. Ortony (Eds.), Similarity and analogical reasoning (pp. 76121). Cambridge: Cambridge University Press. DOI: 10.1017/CBO9780511529863.006
  12. Barsalou, L. W. (1993). Flexibility, structure, and linguistic vagary in concepts: Manifestations of a compositional system of perceptual symbols. In A. F. Collins, S. E. Gathercole, & M. A. Conway (Eds.), Theories of memory (pp. 29101). London: Erlbaum. DOI: 10.4324/9781315782119-3
  13. Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577660. DOI: 10.1017/S0140525X99002149
  14. Barsalou, L. W. (2003a). Abstraction in perceptual symbol systems. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 358, 11771187. DOI: 10.1098/rstb.2003.1319
  15. Barsalou, L. W. (2003b). Situated simulation in the human conceptual system. Language and Cognitive Processes, 18, 513562. DOI: 10.1080/01690960344000026
  16. Barsalou, L. W. (2005). Abstraction as dynamic interpretation in perceptual symbol systems. In L. Gershkoff-Stowe & D. H. Rakison (Eds.), Building object categories in developmental time (pp. 389431). Majwah, NJ: Erlbaum.
  17. Barsalou, L. W. (2008a). Grounded cognition. Annual Review of Psychology, 59, 617645. DOI: 10.1146/annurev.psych.59.103006.093639
  18. Barsalou, L. W. (2008b). Grounding symbolic operations in the brain’s modal systems. In G. R. Semin & E. R. Smith (Eds.), Embodied grounding: Social, cognitive, affective, and neuroscientific approaches (pp. 942). New York: Cambridge University Press. DOI: 10.1017/CBO9780511805837.002
  19. Barsalou, L. W. (2009). Simulation, situated conceptualization, and prediction. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 12811289. DOI: 10.1098/rstb.2008.0319
  20. Barsalou, L. W. (2010). Grounded cognition: Past, present, and future. Topics in Cognitive Science, 2, 716724. DOI: 10.1111/j.1756-8765.2010.01115.x
  21. Barsalou, L. W. (2016a). Can cognition be reduced to action? Processes that mediate stimuli and responses make human action possible. In A. K. Engel, K. J. Friston & D. Kragic (Eds.), Where’s the action? The pragmatic turn in cognitive science (Strüngmann Forum Reports, Vol. 18. J. Lupp, Series Ed.) (pp. 8196). Cambridge, MA: MIT Press.
  22. Barsalou, L. W. (2016b). On staying grounded and avoiding Quixotic dead ends. Psychonomic Bulletin & Review, 23, 11221142. DOI: 10.3758/s13423-016-1028-3
  23. Barsalou, L. W. (2016c). Situated conceptualization offers a theoretical account of social priming. Current Opinion in Psychology, 12, 611. DOI: 10.1016/j.copsyc.2016.04.009
  24. Barsalou, L. W. (2016d). Situated conceptualization: Theory and applications. In Y. Coello & M. H. Fischer (Eds.), Foundations of embodied cognition: Volume 1. Perceptual and emotional embodiment (pp. 1137). East Sussex: Psychology Press.
  25. Barsalou, L. W. (2017a). Cognitively plausible theories of concept composition. In Y. Winter & J. A. Hampton (Eds.), Compositionality and concepts in linguistics and psychology (pp. 930). London: Springer Publishing. DOI: 10.1007/978-3-319-45977-6_2
  26. Barsalou, L. W. (2017b). What does semantic tiling of the cortex tell us about semantics? Neuropsychologia, 105, 1838. DOI: 10.1016/j.neuropsychologia.2017.04.011
  27. Barsalou, L. W. (2019). Establishing generalizable mechanisms. Psychological Inquiry, 30, 220230. DOI: 10.1080/1047840X.2019.1693857
  28. Barsalou, L. W., Dutriaux, L., & Scheepers, C. (2018). Moving beyond the distinction between concrete and abstract concepts. Philosophical Transactions of the Royal Society B: Biological Sciences, 373, 20170144. DOI: 10.1098/rstb.2017.0144
  29. Barsalou, L. W., Niedenthal, P. M., Barbey, A. K., & Ruppert, J. A. (2003). Social embodiment. In B. H. Ross (Ed.), Psychology of Learning and Motivation, 43, 4392. New York: Academic Press. DOI: 10.1016/S0079-7421(03)01011-9
  30. Barsalou, L. W., Santos, A., Simmons, W. K., & Wilson, C. D. (2008). Language and simulation in conceptual processing. In M. De Vega, A. M. Glenberg & A. C. Graesser (Eds.), Symbols, embodiment, and meaning (pp. 245283). Oxford: Oxford University Press. DOI: 10.1093/acprof:oso/9780199217274.003.0013
  31. Barsalou, L. W., & Wiemer-Hastings, K. (2005). Situating abstract concepts. In D. Pecher & R. A. Zwaan (Eds.), Grounding cognition: The role of perception and action in memory, language, and thinking (pp. 129163). New York: Cambridge University Press. DOI: 10.1017/CBO9780511499968.007
  32. Bickel, W. K., MacKillop, J., Madden, G. J., Odum, A. L., & Yi, R. (2015). Experimental manipulations of delay discounting & related processes: An introduction to the special issue. Journal of the Experimental Analysis of Behavior, 103, 19. DOI: 10.1002/jeab.133
  33. Binder, J. R. (2016). In defense of abstract conceptual representations. Psychonomic Bulletin & Review, 23, 10961108. DOI: 10.3758/s13423-015-0909-1
  34. Binder, J. R., Conant, L. L., Humphries, C. J., Fernandino, L., Simons, S. B., Aguilar, M., & Desai, R. H. (2016). Toward a brain-based componential semantic representation. Cognitive Neuropsychology, 145. DOI: 10.1080/02643294.2016.1147426
  35. Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where Is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19, 27672796. DOI: 10.1093/cercor/bhp055
  36. Binder, J. R., Frost, J. A., Hammeke, T. A., Bellgowan, P. S. F., Rao, S. M., & Cox, R. W. (1999). Conceptual processing during the conscious resting state: A functional MRI study. Journal of Cognitive Neuroscience, 11, 8093. DOI: 10.1162/089892999563265
  37. Binder, J. R., Westbury, C. F., McKiernan, K. A., Possing, E. T., & Medler, D. A. (2005). Distinct brain systems for processing concrete and abstract concepts. Journal of Cognitive Neuroscience, 17, 905917. DOI: 10.1162/0898929054021102
  38. Blouw, P., Solodkin, E., Thagard, P., & Eliasmith, C. (2015). Concepts as Semantic Pointers: A Framework and Computational Model. Cognitive Science, 135. DOI: 10.1111/cogs.12265
  39. Bollen, K., Cacioppo, J. T., Kaplan, R. M., Krosnick, J. A., Olds, J. L., & Dean, H. (2015). Social, behavioral, and economic sciences perspectives on robust and reliable science. Report of the Subcommittee on Replicability in Science Advisory Committee to the National Science Foundation Directorate for Social, Behavioral, and Economic Sciences, 3, 4.
  40. Borghi, A. M., Binkofski, F., Castelfranchi, C., Cimatti, F., Scorolli, C., & Tummolini, L. (2017). The challenge of abstract concepts. Psychological Bulletin, 143, 263292. DOI: 10.1037/bul0000089
  41. Bosch, O. J., & Young, L. J. (2018). Oxytocin and Social Relationships: From Attachment to Bond Disruption. In R. Hurlemann & V. Grinevich (Eds.), Behavioral Pharmacology of Neuropeptides: Oxytocin (pp. 97117). Cham: Springer International Publishing. DOI: 10.1007/7854_2017_10
  42. Botvinick, M. M., Niv, Y., & Barto, A. C. (2009). Hierarchically organized behavior and its neural foundations: A reinforcement learning perspective. Cognition, 113, 262280. DOI: 10.1016/j.cognition.2008.08.011
  43. Boucsein, W. (2012). Electrodermal Activity. Springer Science & Business Media. DOI: 10.1007/978-1-4614-1126-0
  44. Bouton, M. E., & Todd, T. P. (2014). A fundamental role for context in instrumental learning and extinction. Behavioural Processes, 104, 1319. DOI: 10.1016/j.beproc.2014.02.012
  45. Brunswik, E. (1947). Systematic and representative design of psychological experiments; with results in physical and social perception. Oxford, England: U. of California Press.
  46. Brunswik, E. (1955). Representative design and probabilistic theory in a functional psychology. Psychological Review, 62, 193217. DOI: 10.1037/h0047470
  47. Bruza, P. D., Wang, Z., & Busemeyer, J. R. (2015). Quantum cognition: A new theoretical approach to psychology. Trends in Cognitive Sciences, 19, 383393. DOI: 10.1016/j.tics.2015.05.001
  48. Cacioppo, J. T., Tassinary, L., & Bernston, G. (Eds.). (2016). Handbook of psychophysiology (4th edition). Cambridge: Cambridge University Press. DOI: 10.1017/9781107415782
  49. Caligiore, D., Borghi, A. M., Parisi, D., & Baldassarre, G. (2010). TRoPICALS: A computational embodied neuroscience model of compatibility effects. Psychological Review, 117, 11881228. DOI: 10.1037/a0020887
  50. Casasanto, D., & Lupyan, G. (2015). All concepts are ad hoc concepts. In E. Margolis & S. Laurence (Eds.), The conceptual mind: New directions in the study of concepts (pp. 543566). Cambridge, MA: MIT Press.
  51. Chapman, S. B., Aslan, S., Spence, J. S., DeFina, L. F., Keebler, M. W., Didehbani, N., & Lu, H. (2013). Shorter term aerobic exercise improves brain, cognition, and cardiovascular fitness in aging. Frontiers in Aging Neuroscience, 5, Article 75. DOI: 10.3389/fnagi.2013.00075
  52. Chen, L., Lambon Ralph, M. A., & Rogers, T. T. (2017). A unified model of human semantic knowledge and its disorders. Nature Human Behaviour, 1. DOI: 10.1038/s41562-016-0039
  53. Chen, J., Papies, E. K., & Barsalou, L. W. (2016). A core eating network and its modulations underlie diverse eating phenomena. Brain and Cognition, 110, 2042. DOI: 10.1016/j.bandc.2016.04.004
  54. Clark, A. (1998). Being There: Putting Brain, Body, and World Together Again. A Bradford Book.
  55. Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36, 173. DOI: 10.1017/S0140525X12000477
  56. Coello, Y., & Fischer, M. H. (Eds.). (2016a). Foundations of embodied cognition: Volume 1. Perceptual and emotional embodiment. Oxford, UK: Routledge. DOI: 10.4324/9781315751979
  57. Coello, Y., & Fischer, M. H. (Eds.). (2016b). Foundations of embodied cognition: Volume 2. Conceptual and interactive embodiment. Oxford, UK: Routledge. DOI: 10.4324/9781315751962
  58. Connell, L., & Lynott, D. (2013). Flexible and fast: Linguistic shortcut affects both shallow and deep conceptual processing. Psychonomic Bulletin & Review, 20, 542550. DOI: 10.3758/s13423-012-0368-x
  59. Connell, L., & Lynott, D. (2014). Principles of representation: Why you can’t represent the same concept twice. Topics in Cognitive Science, 6, 390406. DOI: 10.1111/tops.12097
  60. Connell, L., Lynott, D., & Banks, B. (2018). Interoception: The forgotten modality in perceptual grounding of abstract and concrete concepts. Philosophical Transactions of the Royal Society B: Biological Sciences, 373, 20170143. DOI: 10.1098/rstb.2017.0143
  61. Cotelli, M., Manenti, R., Brambilla, M., & Borroni, B. (2018). The role of the motor system in action naming in patients with neurodegenerative extrapyramidal syndromes. Cortex, 100, 191214. DOI: 10.1016/j.cortex.2017.05.011
  62. Critchley, H. D., Eccles, J., & Garfinkel, S. N. (2013). Chapter 6—Interaction between cognition, emotion, and the autonomic nervous system. In R. M. Buijs & D. F. Swaab (Eds.), Handbook of Clinical Neurology (pp. 5977). Elsevier. DOI: 10.1016/B978-0-444-53491-0.00006-7
  63. Critchley, H. D., & Garfinkel, S. N. (2018). The influence of physiological signals on cognition. Current Opinion in Behavioral Sciences, 19, 1318. DOI: 10.1016/j.cobeha.2017.08.014
  64. Crutch, S. J., Troche, J., Reilly, J., & Ridgway, G. R. (2013). Abstract conceptual feature ratings: The role of emotion, magnitude, and other cognitive domains in the organization of abstract conceptual knowledge. Frontiers in Human Neuroscience, 7, Article 186. DOI: 10.3389/fnhum.2013.00186
  65. Damasio, A. R. (1989). Time-locked multiregional retroactivation: A systems-level proposal for the neural substrates of recall and recognition. Cognition, 33, 2562. DOI: 10.1016/0010-0277(89)90005-X
  66. Dantzig, S., Zeelenberg, R., & Pecher, D. (2009). Unconstraining theories of embodied cognition. Journal of Experimental Social Psychology, 45, 345351. DOI: 10.1016/j.jesp.2008.11.001
  67. Daw, N. D., & Frank, M. J. (2009). Reinforcement learning and higher level cognition: Introduction to special issue. Cognition, 113, 259261. DOI: 10.1016/j.cognition.2009.09.005
  68. De Vega, M., Glenberg, A. M., & Graesser, A. C. (Eds.). (2008). Symbols, embodiment, and meaning. Oxford: Oxford University Press. DOI: 10.1093/acprof:oso/9780199217274.001.0001
  69. Domjan, M. (2014). The principles of learning and behavior. Independence, KY: Cengage Learning.
  70. Dove, G. (2009). Beyond Perceptual Symbols: A Call for Representational Pluralism. Cognition, 110, 412431. DOI: 10.1016/j.cognition.2008.11.016
  71. Duschek, S., Muckenthaler, M., Werner, N., & Reyes del Paso, G. A. (2009). Relationships between features of autonomic cardiovascular control and cognitive performance. Biological Psychology, 81, 110117. DOI: 10.1016/j.biopsycho.2009.03.003
  72. Dutriaux, L., Clark, N., Papies, E. K., Scheepers, C., & Barsalou, L. W. (2019). Establishing individual differences in good and bad habits that reflect personality, conditioning, and reward. Manuscript under review.
  73. Edmiston, P., & Lupyan, G. (2017). Visual interference disrupts visual knowledge. Journal of Memory and Language, 92, 281292. DOI: 10.1016/j.jml.2016.07.002
  74. Edson, E. J. (2004). Narrative processing: Building consumer connections to brands. Journal of Consumer Psychology, 14, 168180. DOI: 10.1207/s15327663jcp1401&;2_19
  75. Eliasmith, C. (2013). How to Build a Brain: A Neural Architecture for Biological Cognition. Oxford University Press. DOI: 10.1093/acprof:oso/9780199794546.001.0001
  76. Epel, E. S., Crosswell, A. D., Mayer, S. E., Prather, A. A., Slavich, G. M., Puterman, E., & Mendes, W. B. (2018). More than a feeling: A unified view of stress measurement for population science. Frontiers in Neuroendocrinology, 49, 146169. DOI: 10.1016/j.yfrne.2018.03.001
  77. Ernst, G. (2017). Heart-Rate Variability—More than Heart Beats? Frontiers in Public Health, 5, Article 240. DOI: 10.3389/fpubh.2017.00240
  78. Estes, Z., & Barsalou, L. W. (2018). A Comprehensive Meta-Analysis of Spatial Interference From Linguistic Cues: Beyond Petrova et al. (2018). Psychological Science, 29, 15581564. DOI: 10.1177/0956797618794131
  79. Fernandino, L., Binder, J. R., Desai, R. H., Pendl, S. L., Humphries, C. J., Gross, W. L., … Seidenberg, M. S. (2016). Concept representation reflects multimodal abstraction: A framework for embodied semantics. Cerebral Cortex, 26, 20182034. DOI: 10.1093/cercor/bhv020
  80. Fernandino, L., Humphries, C. J., Seidenberg, M. S., Gross, W. L., Conant, L. L., & Binder, J. R. (2015). Predicting brain activation patterns associated with individual lexical concepts based on five sensory-motor attributes. Neuropsychologia, 76, 1726. DOI: 10.1016/j.neuropsychologia.2015.04.009
  81. Fodor, J. A. (1975). The language of thought. Harvard University Press.
  82. Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: A critical analysis. Cognition, 28, 371. DOI: 10.1016/0010-0277(88)90031-5
  83. Fredrickson, B. L., Grewen, K. M., Coffey, K. A., Algoe, S. B., Firestine, A. M., Arevalo, J. M. G., … Cole, S. W. (2013). A functional genomic perspective on human well-being. Proceedings of the National Academy of Sciences, 110, 1368413689. DOI: 10.1073/pnas.1305419110
  84. Galland, L. (2014). The Gut Microbiome and the Brain. Journal of Medicinal Food, 17, 12611272. DOI: 10.1089/jmf.2014.7000
  85. Gangestad, S. W., & Grebe, N. M. (2017). Hormonal systems, human social bonding, and affiliation. Hormones and Behavior, 91, 122135. DOI: 10.1016/j.yhbeh.2016.08.005
  86. Garagnani, M., & Pulvermüller, F. (2016). Conceptual grounding of language in action and perception: A neurocomputational model of the emergence of category specificity and semantic hubs. European Journal of Neuroscience, 43, 721737. DOI: 10.1111/ejn.13145
  87. Gawronski, B., & Cesario, J. (2013). Of mice and men: What animal research can tell us about context effects on automatic responses in humans. Personality and Social Psychology Review, 17, 187215. DOI: 10.1177/1088868313480096
  88. Gendron, M., & Barrett, L. F. (2009). Reconstructing the Past: A Century of Ideas About Emotion in Psychology. Emotion Review, 1, 316339. DOI: 10.1177/1754073909338877
  89. Gibson, J. J. (1966). The senses considered as perceptual systems. Oxford, England: Houghton Mifflin.
  90. Gibson, J. J. (1979). The Ecological Approach to Visual Perception. Houghton Mifflin.
  91. Glaser, W. R. (1992). Picture naming. Cognition, 42, 61105. DOI: 10.1016/0010-0277(92)90040-O
  92. Glenberg, A. M. (1997). What memory is for: Creating meaning in the service of action. Behavioral and Brain Sciences, 20, 4150. DOI: 10.1017/S0140525X97470012
  93. Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences, 27, 377396. DOI: 10.1017/S0140525X04000093
  94. Hammond, K. R., & Stewart, T. R. (2001). The Essential Brunswik: Beginnings, Explications, Applications. Oxford: Oxford University Press.
  95. Harnad, S. (1990). The symbol grounding problem. Physica D: Nonlinear Phenomena, 42, 335346. DOI: 10.1016/0167-2789(90)90087-6
  96. Harpaintner, M., Trumpp, N. M., & Kiefer, M. (2018). The Semantic Content of Abstract Concepts: A Property Listing Study of 296 Abstract Words. Frontiers in Psychology, 9. DOI: 10.3389/fpsyg.2018.01748
  97. Hoffman, P., McClelland, J. L., & Lambon Ralph, M. A. (2018). Concepts, control, and context: A connectionist account of normal and disordered semantic cognition. Psychological Review, 125, 293328. DOI: 10.1037/rev0000094
  98. Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849878. DOI: 10.1017/S0140525X01000103
  99. Hurley, S. (2001). Perception and Action: Alternative views. Synthese, 129, 340. DOI: 10.1023/A:1012643006930
  100. Hutchins, E. (1995). Cognition in the Wild. Cambridge, MA: MIT Press.
  101. Hutchinson, K. A. (1995). Androgens and sexuality. The American Journal of Medicine, 98, S111S115. DOI: 10.1016/S0002-9343(99)80068-0
  102. Huth, A. G., de Heer, W. A., Griffiths, T. L., Theunissen, F. E., & Gallant, J. L. (2016). Natural speech reveals the semantic maps that tile human cerebral cortex. Nature, 532, 453458. DOI: 10.1038/nature17637
  103. Huth, A. G., Nishimoto, S., Vu, A. T., & Gallant, J. L. (2012). A continuous semantic space describes the representation of thousands of object and action categories across the human brain. Neuron, 76, 12101224. DOI: 10.1016/j.neuron.2012.10.014
  104. Inagaki, T. K., Muscatell, K. A., Irwin, M. R., Cole, S. W., & Eisenberger, N. I. (2012). Inflammation selectively enhances amygdala activity to socially threatening images. NeuroImage, 59, 32223226. DOI: 10.1016/j.neuroimage.2011.10.090
  105. Ito, M., & Doya, K. (2011). Multiple representations and algorithms for reinforcement learning in the cortico-basal ganglia circuit. Current Opinion in Neurobiology, 21, 368373. DOI: 10.1016/j.conb.2011.04.001
  106. Janowsky, J. S. (2006). Thinking with your gonads: Testosterone and cognition. Trends in Cognitive Sciences, 10, 7782. DOI: 10.1016/j.tics.2005.12.010
  107. Kemmerer, D. (2015). Are the motor features of verb meanings represented in the precentral motor cortices? Yes, but within the context of a flexible, multilevel architecture for conceptual knowledge. Psychonomic Bulletin & Review, 22, 10681075. DOI: 10.3758/s13423-014-0784-1
  108. Kemmerer, D. (2019). Concepts in the Brain: The View From Cross-linguistic Diversity. Oxford: Oxford University Press. DOI: 10.1093/oso/9780190682620.001.0001
  109. Kemmerer, D., Rudrauf, D., Manzel, K., & Tranel, D. (2012). Behavioral patterns and lesion sites associated with impaired processing of lexical and conceptual knowledge of actions. Cortex, 48, 826848. DOI: 10.1016/j.cortex.2010.11.001
  110. Kiecolt-Glaser, J. K., Gouin, J.-P., & Hantsoo, L. (2010). Close Relationships, Inflammation, and Health. Neuroscience and Biobehavioral Reviews, 35, 3338. DOI: 10.1016/j.neubiorev.2009.09.003
  111. Kiefer, M., Adams, S. C., & Zovko, M. (2012). Attentional sensitization of unconscious visual processing: Top-down influences on masked priming. Advances in Cognitive Psychology, 8, 5061. DOI: 10.5709/acp-0102-4
  112. Kiefer, M., & Barsalou, L. W. (2013). Grounding the human conceptual system in perception, action, and internal states. In W. Prinz, M. Beisert & A. Herwig (Eds.), Action science: Foundations of an emerging d iscipline (pp. 381407). Cambridge, MA: MIT Press. DOI: 10.7551/mitpress/9780262018555.003.0015
  113. Kiefer, M., & Pulvermüller, F. (2012). Conceptual representations in mind and brain: Theoretical developments, current evidence and future directions. Cortex, 48, 805825. DOI: 10.1016/j.cortex.2011.04.006
  114. Kim, H.-G., Cheon, E.-J., Bai, D.-S., Lee, Y. H., & Koo, B.-H. (2018). Stress and Heart Rate Variability: A Meta-Analysis and Review of the Literature. Psychiatry Investigation, 15, 235245. DOI: 10.30773/pi.2017.08.17
  115. Kuhnke, P., Kiefer, M., & Hartwigsen, G. (2020). Task-Dependent Recruitment of Modality-Specific and Multimodal Regions during Conceptual Processing. Cerebral Cortex, Online publication. DOI: 10.1093/cercor/bhaa010
  116. Laitin, E. L., Tymoski, M. J., Tenhundfeld, N. L., & Witt, J. K. (2019). The uphill battle for action-specific perception. Attention, Perception, & Psychophysics, 81, 778793. DOI: 10.3758/s13414-018-01652-w
  117. Lakoff, G. (1987). Women, fire, and dangerous things: What categories reveal about the mind. Chicago: University of Chicago Press. DOI: 10.7208/chicago/9780226471013.001.0001
  118. Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago: University of Chicago Press.
  119. Lambon Ralph, M. A., Jefferies, E., Patterson, K., & Rogers, T. T. (2017). The neural and computational bases of semantic cognition. Nature Reviews. Neuroscience, 18, 4255. DOI: 10.1038/nrn.2016.150
  120. Larsen, R. S., & Waters, J. (2018). Neuromodulatory Correlates of Pupil Dilation. Frontiers in Neural Circuits, 12. DOI: 10.3389/fncir.2018.00021
  121. Lebois, L. A. M., Wilson-Mendenhall, C. D., & Barsalou, L. W. (2015). Are automatic conceptual cores the gold standard of semantic processing? The context-dependence of spatial meaning in grounded congruency effects. Cognitive Science, 39, 17641801. DOI: 10.1111/cogs.12174
  122. Lebois, L. A. M., Wilson-Mendenhall, C. D., Simmons, W. K., Barrett, L. F., & Barsalou, L. W. (2018). Learning situated emotions. Neuropsychologia, online publication. DOI: 10.1016/j.neuropsychologia.2018.01.008
  123. Leritz, E. C., McGlinchey, R. E., Kellison, I., Rudolph, J. L., & Milberg, W. P. (2011). Cardiovascular Disease Risk Factors and Cognition in the Elderly. Current Cardiovascular Risk Reports, 5, 407412. DOI: 10.1007/s12170-011-0189-x
  124. Levenson, R. W. (2014). The Autonomic Nervous System and Emotion. Emotion Review, 6, 100112. DOI: 10.1177/1754073913512003
  125. Liu, Y., Dolan, R. J., Kurth-Nelson, Z., & Behrens, T. E. J. (2019). Human Replay Spontaneously Reorganizes Experience. Cell, 178, 640652.e14. DOI: 10.1016/j.cell.2019.06.012
  126. Louwerse, M. M. (2008). Embodied relations are encoded in language. Psychonomic Bulletin & Review, 15, 838844. DOI: 10.3758/PBR.15.4.838
  127. Louwerse, M. M., & Connell, L. (2011). A taste of words: Linguistic context and perceptual simulation predict the modality of words. Cognitive Science, 35, 381398. DOI: 10.1111/j.1551-6709.2010.01157.x
  128. Machery, E. (2007). Concept empiricism: A methodological critique. Cognition, 104, 1946. DOI: 10.1016/j.cognition.2006.05.002
  129. Magnusdottir, E. H., Johannsdottir, K. R., Bean, C., Olafsson, B., & Gudnason, J. (2017). Cognitive workload classification using cardiovascular measures and dynamic features. 2017 8th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), 000351000356. DOI: 10.1109/CogInfoCom.2017.8268269
  130. Mahon, B. Z. (2015). What is embodied about cognition? Language, Cognition and Neuroscience, 30, 420429. DOI: 10.1080/23273798.2014.987791
  131. Mahon, B. Z., & Caramazza, A. (2008). A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. Journal of Physiology-Paris, 102, 5970. DOI: 10.1016/j.jphysparis.2008.03.004
  132. Manderino, L., Carroll, I., Azcarate-Peril, M. A., Rochette, A., Heinberg, L., Peat, C., … Gunstad, J. (2017). Preliminary Evidence for an Association Between the Composition of the Gut Microbiome and Cognitive Function in Neurologically Healthy Older Adults. Journal of the International Neuropsychological Society, 23, 700705. DOI: 10.1017/S1355617717000492
  133. Markman, A. B., & Brendl, C. M. (2005). Constraining theories of embodied cognition. Psychological Science, 16, 610. DOI: 10.1111/j.0956-7976.2005.00772.x
  134. Marslen-Wilson, W., & Tyler, L. K. (1980). The temporal structure of spoken language understanding. Cognition, 8, 171. DOI: 10.1016/0010-0277(80)90015-3
  135. Martin, A. (2007). The representation of object concepts in the brain. Annual Review of Psychology, 58, 2545. DOI: 10.1146/annurev.psych.57.102904.190143
  136. Martin, A. (2016). GRAPES—Grounding representations in action, perception, and emotion systems: How object properties and categories are represented in the human brain. Psychonomic Bulletin & Review, 23, 979990. DOI: 10.3758/s13423-015-0842-3
  137. Martin, A. E., & Baggio, G. (2020). Modelling meaning composition from formalism to mechanism. Philosophical Transactions of the Royal Society B: Biological Sciences, 375, 20190298. DOI: 10.1098/rstb.2019.0298
  138. Mather, M., & Thayer, J. F. (2018). How heart rate variability affects emotion regulation brain networks. Current Opinion in Behavioral Sciences, 19, 98104. DOI: 10.1016/j.cobeha.2017.12.017
  139. Mayer, E. (2016). The mind-gut connection: How the hidden conversation within our bodies impacts our mood, our choices, and our overall health. New York: HarperCollins.
  140. McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: I. An account of basic findings. Psychological Review, 88, 375407. DOI: 10.1037/0033-295X.88.5.375
  141. McEwen, B. S. (2013). The Brain on Stress Toward an Integrative Approach to Brain, Body, and Behavior. Perspectives on Psychological Science, 8, 673675. DOI: 10.1177/1745691613506907
  142. McEwen, B. S. (2018). Redefining neuroendocrinology: Epigenetics of brain-body communication over the life course. Frontiers in Neuroendocrinology, 49, 830. DOI: 10.1016/j.yfrne.2017.11.001
  143. Mehl, M. R., Raison, C. L., Pace, T. W. W., Arevalo, J. M. G., & Cole, S. W. (2017). Natural language indicators of differential gene regulation in the human immune system. Proceedings of the National Academy of Sciences, 114, 1255412559. DOI: 10.1073/pnas.1707373114
  144. Meteyard, L., Cuadrado, S. R., Bahrami, B., & Vigliocco, G. (2012). Coming of age: A review of embodiment and the neuroscience of semantics. Cortex, 48, 788804. DOI: 10.1016/j.cortex.2010.11.002
  145. Meteyard, L., & Vigliocco, G. (2018). Lexico-semantics. In S.-A. Rueschemeyer & M. G. Gaskell (Eds.), The Oxford handbook of psycholinguistics (pp. 7190). DOI: 10.1093/oxfordhb/9780198786825.013.4
  146. Miller, G. A., Galanter, E., & Pribram, K. H. (1960). Plans and the structure of behavior. New York: Holt Reinhart & Winston. DOI: 10.1037/10039-000
  147. Miller, G. E., Chen, E., & Parker, K. J. (2011). Psychological Stress in Childhood and Susceptibility to the Chronic Diseases of Aging: Moving Towards a Model of Behavioral and Biological Mechanisms. Psychological Bulletin, 137, 959997. DOI: 10.1037/a0024768
  148. Miller, L. C., Shaikh, S. J., Jeong, D. C., Wang, L., Gillig, T. K., Godoy, C. G., … Read, S. J. (2019). Causal Inference in Generalizable Environments: Systematic Representative Design. Psychological Inquiry, 30, 173202. DOI: 10.1080/1047840X.2019.1693866
  149. Moreira, D., & Barbosa, F. (2019). Delay discounting in impulsive behavior: A systematic review. European Psychologist, 24, 312321. DOI: 10.1027/1016-9040/a000360
  150. Morey, R. D., et al. (2020). A Pre-registered, Multi-lab Non-replication of the Action sentence Compatibility Effect (ACE). Manuscript under Review.
  151. Muckli, L., De Martino, F., Vizioli, L., Petro, L. S., Smith, F. W., Ugurbil, K., … Yacoub, E. (2015). Contextual Feedback to Superficial Layers of V1. Current Biology, 25, 26902695. DOI: 10.1016/j.cub.2015.08.057
  152. Muckli, L., & Petro, L. S. (2017). The Significance of Memory in Sensory Cortex. Trends in Neurosciences, 40, 255256. DOI: 10.1016/j.tins.2017.03.004
  153. Murray, S. O., Boyaci, H., & Kersten, D. (2006). The representation of perceived angular size in human primary visual cortex. Nature Neuroscience, 9, 429434. DOI: 10.1038/nn1641
  154. Newell, A. (1973). Production systems: Models of control structures. In W. G. Chase (Ed.), Visual Information Processing (pp. 463526). Academic Press. DOI: 10.1016/B978-0-12-170150-5.50016-0
  155. Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.
  156. Newen, A., Bruin, L. D., & Gallagher, S. (Eds.). (2018). The Oxford Handbook of 4E Cognition. Oxford, New York: Oxford University Press. DOI: 10.1093/oxfordhb/9780198735410.001.0001
  157. Newman, M. L., Sellers, J. G., & Josephs, R. A. (2005). Testosterone, cognition, and social status. Hormones and Behavior, 47, 205211. DOI: 10.1016/j.yhbeh.2004.09.008
  158. O’Doherty, J. P. (2012). Beyond simple reinforcement learning: The computational neurobiology of reward-learning and valuation. European Journal of Neuroscience, 35, 987990. DOI: 10.1111/j.1460-9568.2012.08074.x
  159. Öhman, A., Hamm, A., & Hugdahl, K. (2000). Cognition and the autonomic nervous system: Orienting, anticipation, and conditioning. In Handbook of psychophysiology, 2nd ed (pp. 533575). New York, NY, US: Cambridge University Press.
  160. Ostarek, M., & Huettig, F. (2017a). A task-dependent causal role for low-level visual processes in spoken word comprehension. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43, 12151224. DOI: 10.1037/xlm0000375
  161. Ostarek, M., & Huettig, F. (2017b). Spoken words can make the invisible visible—Testing the involvement of low-level visual representations in spoken word processing. Journal of Experimental Psychology: Human Perception and Performance, 43, 499508. DOI: 10.1037/xhp0000313
  162. Ostarek, M., & Huettig, F. (2019). Six Challenges for Embodiment Research: Current Directions in Psychological Science, Online publication. (Sage CA: Los Angeles, CA). DOI: 10.1177/0963721419866441
  163. Ostarek, M., Ishag, A., Joosen, D., & Huettig, F. (2018). Saccade trajectories reveal dynamic interactions of semantic and spatial information during the processing of implicitly spatial words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44, 16581670. DOI: 10.1037/xlm0000536
  164. Ostarek, M., Joosen, D., Ishag, A., de Nijs, M., & Huettig, F. (2019). Are visual processes causally involved in “perceptual simulation” effects in the sentence-picture verification task? Cognition, 182, 8494. DOI: 10.1016/j.cognition.2018.08.017
  165. Paivio, A. (1986). Mental representations: A dual-coding approach. Oxford: Oxford University Press.
  166. Papies, E. K. (2017). Situating interventions to bridge the intention-behaviour gap: A framework for recruiting nonconscious processes for behaviour change. Social and Personality Psychology Compass, 11, e12323. DOI: 10.1111/spc3.12323
  167. Papies, E. K., & Barsalou, L. W. (2015). Grounding desire and motivated behavior: A theoretical framework and review of empirical evidence. In W. Hofmann & L. F. Nordgren, The psychology of desire (pp. 3660). New York: Guilford Press.
  168. Papies, E. K., Best, M., Gelibter, E., & Barsalou, L. W. (2017). The role of simulations in consumer experiences and behavior: Insights from the grounded cognition theory of desire. Journal of the Association for Consumer Research, 2, 402418. DOI: 10.1086/693110
  169. Pecher, D., & Zwaan, R. A. (Eds.). (2005). Grounding cognition: The role of perception and action in memory, language, and thinking. New York: Cambridge University Press. DOI: 10.1017/CBO9780511499968
  170. Perry, B. D., & Grace, D. C. (2015). How Growing Complexity of Consumer Choices and Drivers of Consumption Behaviour Affect Demand for Animal Source Foods. EcoHealth, 12, 703712. DOI: 10.1007/s10393-015-1091-7
  171. Pothos, E. M., & Busemeyer, J. R. (2013). Can quantum probability provide a new direction for cognitive modeling? Behavioral and Brain Sciences, 36, 255274. DOI: 10.1017/S0140525X12001525
  172. Price, H. H. (1953). Thinking and experience. Hutchinson Universal Library.
  173. Proffitt, D. R. (2006). Embodied perception and the economy of action. Perspectives on Psychological Science, 1, 110122. DOI: 10.1111/j.1745-6916.2006.00008.x
  174. Proffitt, D. R. (2013). An Embodied Approach to Perception By What Units Are Visual Perceptions Scaled? Perspectives on Psychological Science, 8, 474483. DOI: 10.1177/1745691613489837
  175. Prokasy, W. (2012). Electrodermal Activity in Psychological Research. Elsevier.
  176. Pulvermüller, F. (1999). Words in the brain’s language. Behavioral and Brain Sciences, 22, 253279. DOI: 10.1017/S0140525X9900182X
  177. Pulvermüller, F. (2005). Brain mechanisms linking language and action. Nature Reviews Neuroscience, 6, 576582. DOI: 10.1038/nrn1706
  178. Pulvermüller, F. (2013). Semantic embodiment, disembodiment or misembodiment? In search of meaning in modules and neuron circuits. Brain and Language, 127, 86103. DOI: 10.1016/j.bandl.2013.05.015
  179. Pulvermüller, F., Garagnani, M., & Wennekers, T. (2014). Thinking in circuits: Toward neurobiological explanation in cognitive neuroscience. Biological Cybernetics, 108, 573593. DOI: 10.1007/s00422-014-0603-9
  180. Pulvermüller, F., Hauk, O., Nikulin, V. V., & Ilmoniemi, R. J. (2005). Functional links between motor and language systems. European Journal of Neuroscience, 21, 793797. DOI: 10.1111/j.1460-9568.2005.03900.x
  181. Pylkkänen, L. (2019). The neural basis of combinatory syntax and semantics. Science, 366, 6266. DOI: 10.1126/science.aax0050
  182. Pylyshyn, Z. W. (1973). What the mind’s eye tells the mind’s brain: A critique of mental imagery. Psychological Bulletin, 80, 124. DOI: 10.1037/h0034650
  183. Pylyshyn, Z. W. (1984). Computation and cognition. Cambridge, MA: MIT Press.
  184. Reese, E., Haden, C. A., Baker-Ward, L., Bauer, P., Fivush, R., & Ornstein, P. A. (2011). Coherence of personal narratives across the lifespan: A multidimensional model and coding method. Journal of Cognition and Development, 12, 424462. DOI: 10.1080/15248372.2011.587854
  185. Repetto, C., Colombo, B., Cipresso, P., & Riva, G. (2013). The effects of rTMS over the primary motor cortex: The link between action and language. Neuropsychologia, 51, 813. DOI: 10.1016/j.neuropsychologia.2012.11.001
  186. Riccardi, N., Yourganov, G., Rorden, C., Fridriksson, J., & Desai, R. (2019a). Degradation of Praxis Brain Networks and Impaired Comprehension of Manipulable Nouns in Stroke. Journal of Cognitive Neuroscience, 32, 467483. DOI: 10.1162/jocn_a_01495
  187. Riccardi, N., Yourganov, G., Rorden, C., Fridriksson, J., & Desai, R. H. (2019b). Dissociating action and abstract verb comprehension post-stroke. Cortex, 120, 131146. DOI: 10.1016/j.cortex.2019.05.013
  188. Rogers, T. T., Lambon Ralph, M. A., Garrard, P., Bozeat, S., McClelland, J. L., Hodges, J. R., & Patterson, K. (2004). Structure and Deterioration of Semantic Memory: A Neuropsychological and Computational Investigation. Psychological Review, 111, 205235. DOI: 10.1037/0033-295X.111.1.205
  189. Rosenbaum, D. A., Carlson, R. A., & Gilmore, R. O. (2001). Acquisition of Intellectual and Perceptual-Motor Skills. Annual Review of Psychology, 52, 453470. DOI: 10.1146/annurev.psych.52.1.453
  190. Rumelhart, D. E., & McClelland, J. L. (1982). An interactive activation model of context effects in letter perception: II. The contextual enhancement effect and some tests and extensions of the model. Psychological Review, 89, 6094. DOI: 10.1037/0033-295X.89.1.60
  191. Samuel, A. G. (1997). Lexical Activation Produces Potent Phonemic Percepts. Cognitive Psychology, 32, 97127. DOI: 10.1006/cogp.1997.0646
  192. Schmälzle, R., Imhof, M. A., Grall, C., Flaisch, T., & Schupp, H. T. (2017). Reliability of fMRI time series: Similarity of neural processing during movie viewing. BioRxiv, 158188. DOI: 10.1101/158188
  193. Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3, 417424. DOI: 10.1017/S0140525X00005756
  194. Shaffer, F., & Ginsberg, J. P. (2017). An Overview of Heart Rate Variability Metrics and Norms. Frontiers in Public Health, 5. DOI: 10.3389/fpubh.2017.00258
  195. Simmons, W. K., & Barsalou, L. W. (2003). The similarity-in-topography principle: Reconciling theories of conceptual deficits. Cognitive Neuropsychology, 20, 451486. DOI: 10.1080/02643290342000032
  196. Six Challenges for Embodiment Research—Markus Ostarek, Falk Huettig, 2019. (n.d.). Retrieved 6 February 2020, from https://journals-sagepub-com.ezproxy.lib.gla.ac.uk/doi/10.1177/0963721419866441
  197. Slavich, G. M., & Cole, S. W. (2013). The Emerging Field of Human Social Genomics. Clinical Psychological Science, 1, 331348. DOI: 10.1177/2167702613478594
  198. Smith, F. W., & Muckli, L. (2010). Nonstimulated early visual areas carry information about surrounding context. Proceedings of the National Academy of Sciences, 107, 2009920103. DOI: 10.1073/pnas.1000233107
  199. Smolensky, P. (1990). Tensor product variable binding and the representation of symbolic structures in connectionist systems. Artificial Intelligence, 46, 159216. DOI: 10.1016/0004-3702(90)90007-M
  200. Solomon, K. O., & Barsalou, L. W. (2001). Representing Properties Locally. Cognitive Psychology, 43, 129169. DOI: 10.1006/cogp.2001.0754
  201. Solomon, K. O., & Barsalou, L. W. (2004). Perceptual simulation in property verification. Memory & Cognition, 32, 244259. DOI: 10.3758/BF03196856
  202. Stein, N. L., & Hernandez, M. W. (2007). Assessing understanding and appraisal during emotional experience. In J. A. Coan & J. J. B. Allen (Eds.), Handbook of emotion elicitation and assessment (pp. 298317). Oxford: Oxford University Press.
  203. Sutton, R. S., & Barto, A. G. (1998). Introduction to reinforcement learning. MIT Press. DOI: 10.1109/TNN.1998.712192
  204. Taylor Browne Luka, C., Dutriaux, L., Hendry, K., Stevenson, J., & Barsalou, L. W. (2019). Using the Situated Assessment Method (SAM2) to measure, predict, and understand trichotillomania. Manuscript in preparation.
  205. Tenhundfeld, N. L., & Witt, J. K. (2017). Distances on hills look farther than distances on flat ground: Evidence from converging measures. Attention, Perception, & Psychophysics, 79, 11651181. DOI: 10.3758/s13414-017-1305-x
  206. Thompson, E. (2010). Mind in Life. Harvard University Press.
  207. Troche, J., Crutch, S., & Reilly, J. (2014). Clustering, hierarchical organization, and the topography of abstract and concrete nouns. Frontiers in Psychology, 5. DOI: 10.3389/fpsyg.2014.00360
  208. Urgesi, C., Candidi, M., & Avenanti, A. (2014). Neuroanatomical substrates of action perception and understanding: An anatomic likelihood estimation meta-analysis of lesion-symptom mapping studies in brain injured patients. Frontiers in Human Neuroscience, 8. DOI: 10.3389/fnhum.2014.00344
  209. Van Bavel, J. J., Mende-Siedlecki, P., Brady, W. J., & Reinero, D. A. (2016). Contextual sensitivity in scientific reproducibility. Proceedings of the National Academy of Sciences, 113, 64546459. DOI: 10.1073/pnas.1521897113
  210. Varela, F. J., Thompson, E., & Rosch, E. (2016). The Embodied Mind: Cognitive Science and Human Experience. MIT Press. DOI: 10.7551/mitpress/9780262529365.001.0001
  211. Varga, S., & Heck, D. H. (2017). Rhythms of the body, rhythms of the brain: Respiration, neural oscillations, and embodied cognition. Consciousness and Cognition, 56, 7790. DOI: 10.1016/j.concog.2017.09.008
  212. Vargas, R., & Just, M. A. (2020). Neural Representations of Abstract Concepts: Identifying Underlying Neurosemantic Dimensions. Cerebral Cortex, 30, 21572166. DOI: 10.1093/cercor/bhz229
  213. Vigliocco, G., Meteyard, L., Andrews, M., & Kousta, S. (2009). Toward a theory of semantic representation. Language and Cognition, 1, 219247. DOI: 10.1515/LANGCOG.2009.011
  214. Villani, C., Lugli, L., Liuzza, M. T., & Borghi, A. M. (2019). Varieties of abstract concepts and their multiple dimensions. Language and Cognition, 11, 403430. DOI: 10.1017/langcog.2019.23
  215. Vukovic, N., Feurra, M., Shpektor, A., Myachykov, A., & Shtyrov, Y. (2017). Primary motor cortex functionally contributes to language comprehension: An online rTMS study. Neuropsychologia, 96, 222229. DOI: 10.1016/j.neuropsychologia.2017.01.025
  216. Vukovic, N., & Shtyrov, Y. (2019). Learning with the wave of the hand: Kinematic and TMS evidence of primary motor cortex role in category-specific encoding of word meaning. NeuroImage, 202, 116179. DOI: 10.1016/j.neuroimage.2019.116179
  217. Wagenmakers, E.-J., Beek, T., Dijkhoff, L., Gronau, Q. F., Acosta, A., Adams, R. B., … Zwaan, R. A. (2016). Registered Replication Report: Strack, Martin, & Stepper (1988). Perspectives on Psychological Science, 11, 917928. DOI: 10.1177/1745691616674458
  218. Wang, X., Wang, B., & Bi, Y. (2019). Close yet independent: Dissociation of social from valence and abstract semantic dimensions in the left anterior temporal lobe. Human Brain Mapping, 40, 47594776. DOI: 10.1002/hbm.24735
  219. Wang, Z., Busemeyer, J. R., Atmanspacher, H., & Pothos, E. M. (2013). The Potential of Using Quantum Theory to Build Models of Cognition. Topics in Cognitive Science, 672688. DOI: 10.1111/tops.12043
  220. Werner, J., Dutriaux, L., Papies, E. K., Gelibter, E., Scheepers, C., Barr, D. J., & Barsalou, L. W. (2019). Using the Situated Assessment Method (SAM2) to measure, predict, and understand eating habits. Manuscript in preparation.
  221. Werning, M., Hinzen, W., & Machery, E. (2012). The Oxford handbook of compositionality. Oxford: Oxford University Press. DOI: 10.1093/oxfordhb/9780199541072.001.0001
  222. Wilson-Mendenhall, C. D., Barrett, L. F., Simmons, W. K., & Barsalou, L. W. (2011). Grounding emotion in situated conceptualization. Neuropsychologia, 49, 11051127. DOI: 10.1016/j.neuropsychologia.2010.12.032
  223. Wilson-Mendenhall, C. D., & Barsalou, L. W. (2016). A fundamental role for the human conceptual system in emotion. In L. F. Barrett, M. Lewis, & J. M. Haviland-Jones (Eds.), Handbook of Emotion (4th Ed.) (pp. 547563). New York: Guilford Press.
  224. Wilson-Mendenhall, C. D., Simmons, W. K., Martin, A., & Barsalou, L. W. (2013). Contextual processing of abstract concepts reveals neural representations of nonlinguistic semantic content. Journal of Cognitive Neuroscience, 25, 920935. DOI: 10.1162/jocn_a_00361
  225. Winter, Y., & Hampton, J. A. (Eds.). (2017). Compositionality and concepts in linguistics and psychology. London: Springer Publishing.
  226. Witt, J. K., Tenhundfeld, N. L., & Tymoski, M. J. (2017). Is There a Chastity Belt on Perception? Psychological Science. DOI: 10.1177/0956797617730892
  227. Wolpert, D. M., & Flanagan, J. R. (2001). Motor prediction. Current Biology, 11, R729R732. DOI: 10.1016/S0960-9822(01)00432-8
  228. Wu, L. L., & Barsalou, L. W. (2009). Perceptual simulation in conceptual combination: Evidence from property generation. Acta Psychologica, 132, 173189. DOI: 10.1016/j.actpsy.2009.02.002
  229. Yarkoni, T. (2019). The Generalizability Crisis [Preprint]. PsyArXiv. DOI: 10.31234/osf.io/jqw35
  230. Yee, E., & Thompson-Schill, S. L. (2016). Putting concepts into context. Psychonomic Bulletin & Review, 23, 10151027. DOI: 10.3758/s13423-015-0948-7
  231. Zelano, C., Jiang, H., Zhou, G., Arora, N., Schuele, S., Rosenow, J., & Gottfried, J. A. (2016). Nasal Respiration Entrains Human Limbic Oscillations and Modulates Cognitive Function. Journal of Neuroscience, 36, 1244812467. DOI: 10.1523/JNEUROSCI.2586-16.2016
  232. Zwaan, R. A., & Pecher, D. (2012). Revisiting Mental Simulation in Language Comprehension: Six Replication Attempts. PloS One, 7, e51382. DOI: 10.1371/journal.pone.0051382
DOI: https://doi.org/10.5334/joc.116 | Journal eISSN: 2514-4820
Language: English
Submitted on: Feb 17, 2020
|
Accepted on: Jul 20, 2020
|
Published on: Sep 29, 2020
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Lawrence W. Barsalou, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.