Have a personal or library account? Click to login
Voluntary Running and Estrous Cycle Modulate ΔFOSB in the Suprachiasmatic Nucleus of the Wistar Rat Cover

Voluntary Running and Estrous Cycle Modulate ΔFOSB in the Suprachiasmatic Nucleus of the Wistar Rat

Open Access
|May 2025

References

  1. Hughes ATL, Piggins HD. Feedback actions of locomotor activity to the circadian clock. Prog Brain Res. 2012;199:30536. DOI: 10.1016/B978-0-444-59427-3.00018-6
  2. Mrosovsky N. Beyond the suprachiasmatic nucleus. Chronobiol Int. 2003;20(1):18. DOI: 10.1081/CBI-120017811
  3. Arida RM, Teixeira-Machado L. The Contribution of Physical Exercise to Brain Resilience. Front Behav Neurosci. 2020;14:626769. DOI: 10.3389/fnbeh.2020.626769
  4. Dishman RK, Berthoud HR, Booth FW, Cotman CW, Edgerton VR, Fleshner MR, et al. Neurobiology of exercise. Obes Silver Spring Md. 2006 Mar;14(3):34556. DOI: 10.1038/oby.2006.46
  5. Farmer J, Zhao X, van Praag H, Wodtke K, Gage FH, Christie BR. Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience. 2004;124(1):719. DOI: 10.1016/j.neuroscience.2003.09.029
  6. Gao Y, Syed M, Zhao X. Mechanisms underlying the effect of voluntary running on adult hippocampal neurogenesis. Hippocampus. 2023 Apr;33(4):37390. DOI: 10.1002/hipo.23520
  7. Greenwood BN, Foley TE, Le TV, Strong PV, Loughridge AB, Day HEW, et al. Long-term voluntary wheel running is rewarding and produces plasticity in the mesolimbic reward pathway. Behav Brain Res. 2011 Mar 1;217(2):35462. DOI: 10.1016/j.bbr.2010.11.005
  8. Mul JD. Voluntary exercise and depression-like behavior in rodents: are we running in the right direction? J Mol Endocrinol. 2018 Apr;60(3):R7795. DOI: 10.1530/JME-17-0165
  9. Deboer T, Tobler I. Running wheel size influences circadian rhythm period and its phase shift in mice. J Comp Physiol [A]. 2000 Oct;186(10):96973. DOI: 10.1007/s003590000150
  10. Edgar DM, Martin CE, Dement WC. Activity feedback to the mammalian circadian pacemaker: influence on observed measures of rhythm period length. J Biol Rhythms. 1991;6(3):18599. DOI: 10.1177/074873049100600301
  11. Yamada N, Shimoda K, Ohi K, Takahashi S, Takahashi K. Free-access to a running wheel shortens the period of free-running rhythm in blinded rats. Physiol Behav. 1988;42(1):8791. DOI: 10.1016/0031-9384(88)90265-X
  12. Van Oosterhout F, Lucassen EA, Houben T, vanderLeest HT, Antle MC, Meijer JH. Amplitude of the SCN Clock Enhanced by the Behavioral Activity Rhythm. In: Yamazaki S, editor. PLoS ONE. 2012 Jun 28;7(6):e39693. DOI: 10.1371/journal.pone.0039693
  13. Pendergast JS, Branecky KL, Huang R, Niswender KD, Yamazaki S. Wheel-running activity modulates circadian organization and the daily rhythm of eating behavior. Front Psychol. 2014;5:177. DOI: 10.3389/fpsyg.2014.00177
  14. Schroeder AM, Truong D, Loh DH, Jordan MC, Roos KP, Colwell CS. Voluntary scheduled exercise alters diurnal rhythms of behaviour, physiology and gene expression in wild-type and vasoactive intestinal peptide-deficient mice. J Physiol. 2012 Dec;590(23):621326. DOI: 10.1113/jphysiol.2012.233676
  15. Nestler EJ. Transcriptional mechanisms of addiction: role of ΔFosB. Philos Trans R Soc B Biol Sci. 2008 Oct 12;363(1507):324555. DOI: 10.1098/rstb.2008.0067
  16. Nestler EJ. Cellular basis of memory for addiction. Dialogues Clin Neurosci. 2013 Dec;15(4):43143. DOI: 10.31887/DCNS.2013.15.4/enestler
  17. Nestler EJ. ∆FosB: a transcriptional regulator of stress and antidepressant responses. Eur J Pharmacol. 2015 Apr 15;753:6672. DOI: 10.1016/j.ejphar.2014.10.034
  18. Nestler EJ, Barrot M, Self DW. ΔFosB: A sustained molecular switch for addiction. Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):110426. DOI: 10.1073/pnas.191352698
  19. Robison AJ, Nestler EJ. Transcriptional and epigenetic mechanisms of addiction. Nat Rev Neurosci. 2011 Oct 12;12(11):62337. DOI: 10.1038/nrn3111
  20. Robison AJ, Nestler EJ. ΔFOSB: A Potentially Druggable Master Orchestrator of Activity-Dependent Gene Expression. ACS Chem Neurosci. 2022 Feb 2;13(3):296307. DOI: 10.1021/acschemneuro.1c00723
  21. Chen J, Kelz MB, Hope BT, Nakabeppu Y, Nestler EJ. Chronic Fos-Related Antigens: Stable Variants of ⌬FosB Induced in Brain by Chronic Treatments. J Neurosci. 1997 Jul 1. DOI: 10.1523/JNEUROSCI.17-13-04933.1997
  22. Hiroi N, Marek GJ, Brown JR, Ye H, Saudou F, Vaidya VA, et al. Essential Role of the fos B Gene in Molecular, Cellular, and Behavioral Actions of Chronic Electroconvulsive Seizures. J Neurosci. 1998 Sep 1;18(17):695262. DOI: 10.1523/JNEUROSCI.18-17-06952.1998
  23. Yin Z, Venkannagari H, Lynch H, Aglyamova G, Bhandari M, Machius M, et al. Self-assembly of the bZIP transcription factor ΔFosB. Curr Res Struct Biol. 2020;2:113. DOI: 10.1016/j.crstbi.2019.12.001
  24. Andersson M, Westin JE, Cenci MA. Time course of striatal ΔFosB-like immunoreactivity and prodynorphin mRNA levels after discontinuation of chronic dopaminomimetic treatment. Eur J Neurosci. 2003 Feb;17(3):6616. DOI: 10.1046/j.1460-9568.2003.02469.x
  25. Carle TL, Ohnishi YN, Ohnishi YH, Alibhai IN, Wilkinson MB, Kumar A, et al. Proteasome-dependent and -independent mechanisms for FosB destabilization: identification of FosB degron domains and implications for ΔFosB stability. Eur J Neurosci. 2007 May;25(10):300919. DOI: 10.1111/j.1460-9568.2007.05575.x
  26. Cates HM, Thibault M, Pfau M, Heller E, Eagle A, Gajewski P, et al. Threonine 149 Phosphorylation Enhances ΔFosB Transcriptional Activity to Control Psychomotor Responses to Cocaine. J Neurosci. 2014 Aug 20;34(34):114619. DOI: 10.1523/JNEUROSCI.1611-14.2014
  27. Hope BT, Nye HE, Kelz MB, Self DW, Iadarola MJ, Nakabeppu Y, et al. Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments. Neuron. 1994 Nov;13(5):123544. DOI: 10.1016/0896-6273(94)90061-2
  28. Kreuter JD, Mattson BJ, Wang B, You ZB, Hope BT. Cocaine-induced Fos expression in rat striatum is blocked by chloral hydrate or urethane. Neuroscience. 2004 Jan;127(1):23342. DOI: 10.1016/j.neuroscience.2004.04.047
  29. Ulery-Reynolds PG, Castillo MA, Vialou V, Russo SJ, Nestler EJ. Phosphorylation of ΔFosB mediates its stability in vivo. Neuroscience. 2009 Jan;158(2):36972. DOI: 10.1016/j.neuroscience.2008.10.059
  30. Lamothe-Molina PJ, Franzelin A, Beck L, Li D, Auksutat L, Fieblinger T, et al. ΔFosB accumulation in hippocampal granule cells drives cFos pattern separation during spatial learning. Nat Commun. 2022 Oct 26;13:6376. DOI: 10.1038/s41467-022-33947-w
  31. McClung CA, Ulery PG, Perrotti LI, Zachariou V, Berton O, Nestler EJ. ΔFosB: a molecular switch for long-term adaptation in the brain. Mol Brain Res. 2004 Dec;132(2):14654. DOI: 10.1016/j.molbrainres.2004.05.014
  32. Patterson JR, Kim EJ, Goudreau JL, Lookingland KJ. FosB and ΔFosB expression in brain regions containing differentially susceptible dopamine neurons following acute neurotoxicant exposure. Brain Res. 2016 Oct;1649:5366. DOI: 10.1016/j.brainres.2016.08.030
  33. Ebling FJP, Maywood ES, Mehta M, Hancock DC, McNULTY S, De Bono J, et al. FosB in the Suprachiasmatic Nucleus of the Syrian and Siberian Hamster. Brain Res Bull. 1996;41(5):25768. DOI: 10.1016/S0361-9230(96)00192-X
  34. Mikkelsen JD, Vrang N, Mrosovsky N. Expression of Fos in the circadian system following nonphotic stimulation. Brain Res Bull. 1998 Nov;47(4):36776. DOI: 10.1016/S0361-9230(98)00121-X
  35. Peters RV, Aronin N, Schwartz WJ. Circadian regulation of Fos B is different from c-Fos in the rat suprachiasmatic nucleus. Mol Brain Res. 1994 Dec;27(2):2438. DOI: 10.1016/0169-328X(94)90006-X
  36. Schwartz WJ, Carpino A, de la Iglesia HO, Baler R, Klein DC, Nakabeppu Y, et al. Differential regulation of fos family genes in the ventrolateral and dorsomedial subdivisions of the rat suprachiasmatic nucleus. Neuroscience. 2000;98(3):53547. DOI: 10.1016/S0306-4522(00)00140-8
  37. Takeuchi J, Shannon W, Aronin N, Schwartz WJ. Compositional changes of AP-1 DNA-binding proteins are regulated by light in a mammalian circadian clock. Neuron. 1993 Nov;11(5):82536. DOI: 10.1016/0896-6273(93)90112-5
  38. Perrotti LI, Hadeishi Y, Ulery PG, Barrot M, Monteggia L, Duman RS, et al. Induction of ΔFosB in Reward-Related Brain Structures after Chronic Stress. J Neurosci. 2004 Nov 24;24(47):10594602. DOI: 10.1523/JNEUROSCI.2542-04.2004
  39. Gordon MN, Osterburg HH, May PC, Finch CE. Effective oral administration of 17 beta-estradiol to female C57BL/6J mice through the drinking water. Biol Reprod. 1986 Dec;35(5):108895. DOI: 10.1095/biolreprod35.5.1088
  40. Lowry NC, Pardon LP, Yates MA, Juraska JM. Effects of long term treatment with 17 β-estradiol and medroxyprogesterone acetate on water maze performance in middle aged female rats. Horm Behav. 2010 Jul;58(2):2007. DOI: 10.1016/j.yhbeh.2010.03.018
  41. Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne PD, et al. QuPath: Open source software for digital pathology image analysis. Sci Rep. 2017 Dec 4;7(1):16878. DOI: 10.1038/s41598-017-17204-5
  42. Colwell CS. Linking neural activity and molecular oscillations in the SCN. Nat Rev Neurosci. 2011 Sep 2;12(10):55369. DOI: 10.1038/nrn3086
  43. Arnold MR, Greenwood BN, McArthur JA, Clark PJ, Fleshner M, Lowry CA. Effects of repeated voluntary or forced exercise on brainstem serotonergic systems in rats. Behav Brain Res. 2020 Jan 27;378:112237. DOI: 10.1016/j.bbr.2019.112237
  44. Carhuatanta KA, Demuro G, Tschöp MH, Pfluger PT, Benoit SC, Obici S. Voluntary exercise improves high-fat diet-induced leptin resistance independent of adiposity. Endocrinology. 2011 Jul;152(7):265564. DOI: 10.1210/en.2010-1340
  45. Greenwood BN, Foley TE, Le TV, Strong PV, Loughridge AB, Day HEW, et al. Long-term voluntary wheel running is rewarding and produces plasticity in the mesolimbic reward pathway. Behav Brain Res. 2011 Mar 1;217(2):35462. DOI: 10.1016/j.bbr.2010.11.005
  46. Herrera JJ, Fedynska S, Ghasem PR, Wieman T, Clark PJ, Gray N, et al. Neurochemical and behavioral indices of exercise reward are independent of exercise controllability. Eur J Neurosci. 2016 May;43(9):1190202. DOI: 10.1111/ejn.13193
  47. Mul JD, Soto M, Cahill ME, Ryan RE, Takahashi H, So K, et al. Voluntary wheel running promotes resilience to chronic social defeat stress in mice: a role for nucleus accumbens ΔFosB. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2018 Aug;43(9):193442. DOI: 10.1038/s41386-018-0103-z
  48. Nishijima T, Kawakami M, Kita I. Long-Term Exercise Is a Potent Trigger for ΔFosB Induction in the Hippocampus along the dorso–ventral Axis. PLOS ONE. 2013 Nov 25;8(11):e81245. DOI: 10.1371/journal.pone.0081245
  49. Obici S, Magrisso IJ, Ghazarian AS, Shirazian A, Miller JR, Loyd CM, et al. Moderate voluntary exercise attenuates the metabolic syndrome in melanocortin-4 receptor-deficient rats showing central dopaminergic dysregulation. Mol Metab. 2015 Jul 17;4(10):692705. DOI: 10.1016/j.molmet.2015.07.003
  50. Triviño-Paredes J, Patten AR, Gil-Mohapel J, Christie BR. The effects of hormones and physical exercise on hippocampal structural plasticity. Front Neuroendocrinol. 2016 Apr;41:2343. DOI: 10.1016/j.yfrne.2016.03.001
  51. Watanasriyakul WT, Normann MC, Akinbo OI, Colburn W, Dagner A, Grippo AJ. Protective neuroendocrine effects of environmental enrichment and voluntary exercise against social isolation: evidence for mediation by limbic structures. Stress. 2019 Sep 3;22(5):60318. DOI: 10.1080/10253890.2019.1617691
  52. Werme M, Messer C, Olson L, Gilden L, Thorén P, Nestler EJ, et al. ΔFosB Regulates Wheel Running. J Neurosci. 2002 Sep 15;22(18):81338. DOI: 10.1523/JNEUROSCI.22-18-08133.2002
  53. McClung CA, Nestler EJ. Regulation of gene expression and cocaine reward by CREB and DeltaFosB. Nat Neurosci. 2003 Nov;6(11):120815. DOI: 10.1038/nn1143
  54. Corbett BF, You JC, Zhang X, Pyfer MS, Tosi U, Iascone DM, et al. ΔFosB Regulates Gene Expression and Cognitive Dysfunction in a Mouse Model of Alzheimer’s Disease. Cell Rep. 2017 Jul 11;20(2):34455. DOI: 10.1016/j.celrep.2017.06.040
  55. Renthal W, Carle TL, Maze I, Covington HE, Truong HT, Alibhai I, et al. ΔFosB Mediates Epigenetic Desensitization of the c-fos Gene After Chronic Amphetamine Exposure. J Neurosci. 2008 Jul 16;28(29):73449. DOI: 10.1523/JNEUROSCI.1043-08.2008
  56. Eagle AL, Williams ES, Beatty JA, Cox CL, Robison AJ. ΔFosB Decreases Excitability of Dorsal Hippocampal CA1 Neurons. eNeuro. 2018 Aug 3;5(4):ENEURO.0104-18.2018. DOI: 10.1523/ENEURO.0104-18.2018
  57. Chen J, Zhang Y, Kelz MB, Steffen C, Ang ES, Zeng L, et al. Induction of cyclin-dependent kinase 5 in the hippocampus by chronic electroconvulsive seizures: role of [Delta]FosB. J Neurosci Off J Soc Neurosci. 2000 Dec 15;20(24):896571. DOI: 10.1523/JNEUROSCI.20-24-08965.2000
  58. Kelz MB, Chen J, Carlezon WA, Whisler K, Gilden L, Beckmann AM, et al. Expression of the transcription factor deltaFosB in the brain controls sensitivity to cocaine. Nature. 1999 Sep 16;401(6750):2726. DOI: 10.1038/45790
  59. Robison AJ, Vialou V, Mazei-Robison M, Feng J, Kourrich S, Collins M, et al. Behavioral and Structural Responses to Chronic Cocaine Require a Feedforward Loop Involving ΔFosB and Calcium/Calmodulin-Dependent Protein Kinase II in the Nucleus Accumbens Shell. J Neurosci. 2013 Mar 6;33(10):4295307. DOI: 10.1523/JNEUROSCI.5192-12.2013
  60. Robison AJ, Vialou V, Sun HS, Labonte B, A Golden S, Dias C, et al. Fluoxetine Epigenetically Alters the CaMKIIα Promoter in Nucleus Accumbens to Regulate ΔFosB Binding and Antidepressant Effects. Neuropsychopharmacology. 2014 Apr;39(5):117886. DOI: 10.1038/npp.2013.319
  61. Vialou V, Robison AJ, LaPlant QC, Covington HE, Dietz DM, Ohnishi YN, et al. ΔFosB in brain reward circuits mediates resilience to stress and antidepressant responses. Nat Neurosci. 2010 Jun;13(6):74552. DOI: 10.1038/nn.2551
  62. Oneda S, Cao S, Haraguchi A, Sasaki H, Shibata S. Wheel-Running Facilitates Phase Advances in Locomotor and Peripheral Circadian Rhythm in Social Jet Lag Model Mice. Front Physiol. 2022;13:821199. Published 2022 Feb 16. DOI: 10.3389/fphys.2022.821199
  63. Janse van Rensburg DC, Jansen van Rensburg A, Fowler PM, Bender AM, Stevens D, Sullivan KO, et al. Managing Travel Fatigue and Jet Lag in Athletes: A Review and Consensus Statement. Sports Med. 2021 Oct 1;51(10):202950. DOI: 10.1007/s40279-021-01502-0
  64. Alibhai IN, Green TA, Potashkin JA, Nestler EJ. Regulation of fosB and DeltafosB mRNA expression: in vivo and in vitro studies. Brain Res. 2007 Apr 27;1143:2233. DOI: 10.1016/j.brainres.2007.01.069
  65. Krapacher FA, Fernández-Suárez D, Andersson A, Carrier-Ruiz A, Ibáñez CF. Convergent dopamine and ALK4 signaling to PCBP1 controls FosB alternative splicing and cocaine behavioral sensitization. EMBO J. 2022 Aug;41(15):e110721. DOI: 10.15252/embj.2022110721
  66. Grippo RM, Purohit AM, Zhang Q, Zweifel LS, Güler AD. Direct Midbrain Dopamine Input to the Suprachiasmatic Nucleus Accelerates Circadian Entrainment. Curr Biol. 2017 Aug;27(16):24652475.e3. DOI: 10.1016/j.cub.2017.06.084
  67. Jones JR, Tackenberg MC, McMahon DG. Manipulating circadian clock neuron firing rate resets molecular circadian rhythms and behavior. Nat Neurosci. 2015 Mar;18(3):3735. DOI: 10.1038/nn.3937
  68. Scharfman HE, Mercurio TC, Goodman JH, Wilson MA, MacLusky NJ. Hippocampal Excitability Increases during the Estrous Cycle in the Rat: A Potential Role for Brain-Derived Neurotrophic Factor. J Neurosci. 2003 Dec 17;23(37):1164152. DOI: 10.1523/JNEUROSCI.23-37-11641.2003
  69. Smith MS, Freeman ME, Neill JD. The Control of Progesterone Secretion During the Estrous Cycle and Early Pseudopregnancy in the Rat: Prolactin, Gonadotropin and Steroid Levels Associated with Rescue of the Corpus Luteum of Pseudopregnancy. Endocrinology. 1975 Jan;96(1):21926. DOI: 10.1210/endo-96-1-219
  70. Walmer DK, Wrona MA, Hughes CL, Nelson KG. Lactoferrin expression in the mouse reproductive tract during the natural estrous cycle: correlation with circulating estradiol and progesterone. Endocrinology. 1992 Sep;131(3):145866. DOI: 10.1210/endo.131.3.1505477
  71. Mathis V, Wegman-Points L, Pope B, Lee CMJ, Mohamed M, Rhodes JS, et al. Estrogen-mediated individual differences in female rat voluntary running behavior. J Appl Physiol. 2024 Mar;136(3):592605. DOI: 10.1152/japplphysiol.00611.2023
  72. Murphy ZC, Pezuk P, Menaker M, Sellix MT. Effects of Ovarian Hormones on Internal Circadian Organization in Rats. Biol Reprod. 2013 Aug;89(2):35. DOI: 10.1095/biolreprod.113.109322
  73. Morin LP, Fitzgerald KM, Zucker I. Estradiol shortens the period of hamster circadian rhythms. Science. 1977 Apr 15;196(4287):3057. DOI: 10.1126/science.557840
  74. Albers HE, Gerall AA, Axelson JF. Effect of reproductive state on circadian periodicity in the rat. Physiol Behav. 1981 Jan;26(1):215. DOI: 10.1016/0031-9384(81)90073-1
  75. Perrin JS, Segall LA, Harbour VL, Woodside B, Amir S. The expression of the clock protein PER2 in the limbic forebrain is modulated by the estrous cycle. Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):55916. DOI: 10.1073/pnas.0601310103
  76. Krajnak K, Kashon ML, Rosewell KL, Wise PM. Sex differences in the daily rhythm of vasoactive intestinal polypeptide but not arginine vasopressin messenger ribonucleic acid in the suprachiasmatic nuclei. Endocrinology. 1998 Oct;139(10):418996. DOI: 10.1210/en.139.10.4189
  77. Fatehi M, Fatehi-Hassanabad Z. Effects of 17beta-estradiol on neuronal cell excitability and neurotransmission in the suprachiasmatic nucleus of rat. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2008 May;33(6):135464. DOI: 10.1038/sj.npp.1301523
  78. Alvord V, Kantra E, Pendergast JS. Estrogens and the Circadian System. Semin Cell Dev Biol. 2022 Jun;126:5665. DOI: 10.1016/j.semcdb.2021.04.010
  79. Peterfi Z, Churchill L, Hajdu I, Jr FO, Krueger JM, Parducz A. Fos-immunoreactivity in the hypothalamus: dependency on the diurnal rhythm, sleep, gender, and estrogen. Neuroscience. 2004 Jan 1;124(3):695707. DOI: 10.1016/j.neuroscience.2003.10.047
  80. Takamata A, Torii K, Miyake K, Morimoto K. Chronic oestrogen replacement in ovariectomised rats attenuates food intake and augments c-Fos expression in the suprachiasmatic nucleus specifically during the light phase. Br J Nutr. 2011 Oct;106(8):12839. DOI: 10.1017/S0007114511001607
  81. Morssinkhof MWL, Zwager A, van der Tuuk K, den Heijer M, van der Werf YD, Stenvers DJ, et al. Chronotype changes after sex hormone use: A prospective cohort study in transgender users of gender-affirming hormones. Chronobiol Int. 2024 May 3;41(5):65868. DOI: 10.1080/07420528.2024.2339989
  82. Foster WB, Beach KF, Carson PF, Harris KC, Alonso BL, Costa LT, et al. Estradiol withdrawal following a hormone simulated pregnancy induces deficits in affective behaviors and increases ∆FosB in D1 and D2 neurons in the nucleus accumbens core in mice. Horm Behav. 2023 Mar 1;149:105312. DOI: 10.1016/j.yhbeh.2023.105312
  83. Rocks D, Jaric I, Bellia F, Cham H, Greally JM, Suzuki M, et al. Early-life stress and ovarian hormones alter transcriptional regulation in the nucleus accumbens resulting in sex-specific responses to cocaine. Cell Rep. 2023 Oct 31;42(10):113187. DOI: 10.1016/j.celrep.2023.113187
  84. Roenneberg T, Kuehnle T, Pramstaller PP, Ricken J, Havel M, Guth A, et al. A marker for the end of adolescence. Curr Biol CB. 2004 Dec 29;14(24):R10381039. DOI: 10.1016/j.cub.2004.11.039
  85. Li Y, Androulakis IP. Light entrainment of the SCN circadian clock and implications for personalized alterations of corticosterone rhythms in shift work and jet lag. Sci Rep. 2021 Sep 9;11(1):17929. DOI: 10.1038/s41598-021-97019-7
  86. Yan L, Karatsoreos I, LeSauter J, Welsh DK, Kay S, Foley D, et al. Exploring Spatiotemporal Organization of SCN Circuits. Cold Spring Harb Symp Quant Biol. 2007;72:52741. DOI: 10.1101/sqb.2007.72.037
  87. Bailey M, Silver R. Sex differences in circadian timing systems: implications for disease. Front Neuroendocrinol. 2014 Jan;35(1):11139. DOI: 10.1016/j.yfrne.2013.11.003
  88. LeSauter J, Silver R. Localization of a suprachiasmatic nucleus subregion regulating locomotor rhythmicity. J Neurosci Off J Soc Neurosci. 1999 Jul 1;19(13):557485. DOI: 10.1523/JNEUROSCI.19-13-05574.1999
  89. Beaulé C, Amir S. Effect of 192 IgG-saporin on circadian activity rhythms, expression of P75 neurotrophin receptors, calbindin-D28K, and light-induced Fos in the suprachiasmatic nucleus in rats. Exp Neurol. 2002 Aug;176(2):37789. DOI: 10.1006/exnr.2002.7969
DOI: https://doi.org/10.5334/jcr.257 | Journal eISSN: 1740-3391
Language: English
Submitted on: Feb 20, 2025
|
Accepted on: May 4, 2025
|
Published on: May 19, 2025
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Ayano Shiba, Marene H. Hardonk, Ewout Foppen, Tess Kool, Susanne E. la Fleur, Paul J. Lucassen, Chun-Xia Yi, Dirk Jan Stenvers, Joram D. Mul, Andries Kalsbeek, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.