References
- 1Edgar RS, Green EW, Zhao Y, van Ooijen G, Olmedo M, Qin X, et al. Peroxiredoxins are conserved markers of circadian rhythms. Nature. 2012; 485: 459–64. DOI: 10.1038/nature11088
- 2O’Neill JS, Reddy AB. Circadian clocks in human red blood cells. Nature. 2011; 469: 498–503. DOI: 10.1038/nature09702
- 3Cho C-S, Yoon HJ, Kim JY, Woo HA, Rhee SG. Circadian rhythm of hyperoxidized peroxiredoxin II is determined by hemoglobin autoxidation and the 20S proteasome in red blood cells. Proc Natl Acad Sci U S A. 2014; 111: 12043–8. DOI: 10.1073/pnas.1401100111
- 4Beale AD, Hayter EA, Crosby P, Valekunja UK, Edgar RS, Chesham JE, et al. Mechanisms and physiological function of daily haemoglobin oxidation rhythms in red blood cells. EMBO J. 2023; 42:
e114164 . DOI: 10.15252/embj.2023114164 - 5Putker M, Crosby P, Feeney KA, Hoyle NP, Costa ASH, Gaude E, et al. Mammalian Circadian Period, But Not Phase and Amplitude, Is Robust Against Redox and Metabolic Perturbations. Antioxid Redox Signal. 2018; 28: 507–20. DOI: 10.1089/ars.2016.6911
- 6Putker M, O’Neill JS. Reciprocal Control of the Circadian Clock and Cellular Redox State – a Critical Appraisal. Mol Cells. 2016; 39: 6–19. DOI: 10.14348/molcells.2016.2323
- 7Stangherlin A, Seinkmane E, O’Neill JS. Understanding circadian regulation of mammalian cell function, protein homeostasis, and metabolism. Curr Opin Syst Biol. 2021; 28: None. DOI: 10.1016/j.coisb.2021.100391
- 8Moore A, Zielinski T, Millar AJ. Online period estimation and determination of rhythmicity in circadian data, using the BioDare data infrastructure. Methods Mol Biol. 2014; 1158: 13–44. DOI: 10.1007/978-1-4939-0700-7_2
- 9Embleton J, Knight MI, Ombao H. Multiscale spectral modelling for nonstationary time series within an ordered multiple-trial experiment. Aoas. 2022; 16: 2774–803. DOI: 10.1214/22-AOAS1614
- 10Hargreaves JK, Knight MI, Pitchford JW, Oakenfull RJ, Davis SJ. Clustering Nonstationary Circadian Rhythms using Locally Stationary Wavelet Representations. Multiscale Model Simul. 2018; 16: 184–214. DOI: 10.1137/16M1108078
- 11Embleton J, Knight MI, Ombao H. Wavelet testing for a replicate-effect within an ordered multiple-trial experiment. Comput Stat Data Anal. 2022; 174: 107456. DOI: 10.1016/j.csda.2022.107456
- 12Hargreaves JK, Knight MI, Pitchford JW, Oakenfull RJ, Chawla S, Munns J, et al. Wavelet spectral testing: Application to nonstationary circadian rhythms. Aoas. 2019; 13: 1817–46. DOI: 10.1214/19-AOAS1246
- 13Knight MI, Nunes MA. Long memory estimation for complex-valued time series. Stat Comput. 2019; 29: 517–36. DOI: 10.1007/s11222-018-9820-8
- 14Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet. 2008; 40: 761–7. DOI: 10.1038/ng.143
- 15Xu M, Yamagishi N, Zhao C, Takeshima R, Kasai M, Watanabe S, et al. The Soybean-Specific Maturity Gene E1 Family of Floral Repressors Controls Night-Break Responses through Down-Regulation of FLOWERING LOCUS T Orthologs. Plant Physiol. 2015; 168: 1735–46. DOI: 10.1104/pp.15.00763
- 16Li Y, Hou Z, Li W, Li H, Lu S, Gan Z, et al. The legume-specific transcription factor E1 controls leaf morphology in soybean. BMC Plant Biol. 2021; 21: 531. DOI: 10.1186/s12870-021-03301-1
- 17Zong W, Ren D, Huang M, Sun K, Feng J, Zhao J, et al. Strong photoperiod sensitivity is controlled by cooperation and competition among Hd1, Ghd7 and DTH8 in rice heading. New Phytol. 2021; 229: 1635–49. DOI: 10.1111/nph.16946
- 18Zhao J, Huang X, Ouyang X, Chen W, Du A, Zhu L, et al. OsELF3-1, an ortholog of Arabidopsis early flowering 3, regulates rice circadian rhythm and photoperiodic flowering. PLoS One. 2012; 7:
e43705 . DOI: 10.1371/journal.pone.0043705 - 19Ning Y, Shi X, Wang R, Fan J, Park CH, Zhang C, et al. OsELF3-2, an Ortholog of Arabidopsis ELF3, Interacts with the E3 Ligase APIP6 and Negatively Regulates Immunity against Magnaporthe oryzae in Rice. Mol Plant. 2015; 8: 1679–82. DOI: 10.1016/j.molp.2015.08.004
- 20Wang X, He Y, Wei H, Wang L. A clock regulatory module is required for salt tolerance and control of heading date in rice. Plant Cell Environ. 2021; 44: 3283–301. DOI: 10.1111/pce.14167
- 21Dallmann R, Touma C, Palme R, Albrecht U, Steinlechner S. Impaired daily glucocorticoid rhythm in Per1 (Brd) mice. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006; 192: 769–75. DOI: 10.1007/s00359-006-0114-9
- 22Bechstein P, Rehbach N-J, Yuhasingham G, Schürmann C, Göpfert M, Kössl M, et al. The clock gene Period1 regulates innate routine behaviour in mice. Proc Biol Sci. 2014; 281: 20140034. DOI: 10.1098/rspb.2014.0034
- 23Cermakian N, Monaco L, Pando MP, Dierich A, Sassone-Corsi P. Altered behavioral rhythms and clock gene expression in mice with a targeted mutation in the Period1 gene. EMBO J 2001; 20: 3967–74. DOI: 10.1093/emboj/20.15.3967
- 24Noordally ZB, Millar AJ. Clocks in algae. Biochemistry. 2015; 54: 171–83. DOI: 10.1021/bi501089x
- 25Petersen J, Rredhi A, Szyttenholm J, Oldemeyer S, Kottke T, Mittag M. The World of Algae Reveals a Broad Variety of Cryptochrome Properties and Functions. Front Plant Sci. 2021; 12: 766509. DOI: 10.3389/fpls.2021.766509
- 26Schweiger E, Wallraff HG, Schweiger HG. Endogenous Circadian Rhythm in Cytoplasm of Acetabularia: Influence of the Nucleus. Science. 1964; 146: 658–9. DOI: 10.1126/science.146.3644.658
- 27Sweeney BM, Haxo FT. Persistence of a Photosynthetic Rhythm in Enucleated Acetabularia. Science. 1961; 134: 1361–3. DOI: 10.1126/science.134.3487.1361
- 28Feeney KA, Hansen LL, Putker M, Olivares-Yañez C, Day J, Eades LJ, et al. Daily magnesium fluxes regulate cellular timekeeping and energy balance. Nature. 2016; 532: 375–9. DOI: 10.1038/nature17407
- 29O’Neill JS, van Ooijen G, Dixon LE, Troein C, Corellou F, Bouget F-Y, et al. Circadian rhythms persist without transcription in a eukaryote. Nature. 2011; 469: 554–8. DOI: 10.1038/nature09654
- 30Chapman RL. Algae: the world’s most important “plants”—an introduction. Mitigation and Adaptation Strategies for Global Change. 2013; 18: 5–12. DOI: 10.1007/s11027-010-9255-9
- 31Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998; 281: 237–40. DOI: 10.1126/science.281.5374.237
- 32Shin Y, Brangwynne CP. Liquid phase condensation in cell physiology and disease. Science. 2017; 357. DOI: 10.1126/science.aaf4382
- 33Jang C, Lahens NF, Hogenesch JB, Sehgal A. Ribosome profiling reveals an important role for translational control in circadian gene expression. Genome Res. 2015; 25: 1836–47. DOI: 10.1101/gr.191296.115
- 34Malcolm M, Saad L, Penazzi LG, Garbarino-Pico E. Processing Bodies Oscillate in Neuro 2A Cells. Front Cell Neurosci. 2019; 13: 487. DOI: 10.3389/fncel.2019.00487
- 35Standart N, Weil D. P-Bodies: Cytosolic Droplets for Coordinated mRNA Storage. Trends Genet. 2018; 34: 612–26. DOI: 10.1016/j.tig.2018.05.005
- 36Riggs CL, Kedersha N, Ivanov P, Anderson P. Mammalian stress granules and P bodies at a glance. J Cell Sci. 2020; 133. DOI: 10.1242/jcs.242487
- 37Forbes Beadle L, Love JC, Shapovalova Y, Artemev A, Rattray M, Ashe HL. Combined modelling of mRNA decay dynamics and single-molecule imaging in the Drosophila embryo uncovers a role for P-bodies in 5’ to 3’ degradation. PLoS Biol. 2023; 21:
e3001956 . DOI: 10.1371/journal.pbio.3001956 - 38Wang R, Jiang X, Bao P, Qin M, Xu J. Circadian control of stress granules by oscillating EIF2α. Cell Death Dis. 2019; 10: 215. DOI: 10.1038/s41419-019-1471-y
- 39Pathak SS, Liu D, Li T, de Zavalia N, Zhu L, Li J, et al. The eIF2α Kinase GCN2 Modulates Period and Rhythmicity of the Circadian Clock by Translational Control of Atf4. Neuron. 2019; 104: 724–35.e6. DOI: 10.1016/j.neuron.2019.08.007
- 40Karki S, Castillo K, Ding Z, Kerr O, Lamb TM, Wu C, et al. Circadian clock control of eIF2α phosphorylation is necessary for rhythmic translation initiation. Proc Natl Acad Sci U S A. 2020; 117: 10935–45. DOI: 10.1073/pnas.1918459117
- 41Castillo KD, Wu C, Ding Z, Lopez-Garcia OK, Rowlinson E, Sachs MS, et al. A circadian clock translational control mechanism targets specific mRNAs to cytoplasmic messenger ribonucleoprotein granules. Cell Rep. 2022; 41: 111879. DOI: 10.1016/j.celrep.2022.111879
- 42Sinturel F, Gerber A, Mauvoisin D, Wang J, Gatfield D, Stubblefield JJ, et al. Diurnal oscillations in liver mass and cell size accompany ribosome assembly cycles. Cell. 2017; 169: 651–63.e14. DOI: 10.1016/j.cell.2017.04.015
- 43Stangherlin A, Watson JL, Wong DCS, Barbiero S, Zeng A, Seinkmane E, et al. Compensatory ion transport buffers daily protein rhythms to regulate osmotic balance and cellular physiology. Nat Commun. 2021; 12: 6035. DOI: 10.1038/s41467-021-25942-4
- 44Dyar KA, Lutter D, Artati A, Ceglia NJ, Liu Y, Armenta D, et al. Atlas of circadian metabolism reveals system-wide coordination and communication between clocks. Cell. 2018; 174: 1571–85.e11. DOI: 10.1016/j.cell.2018.08.042
- 45Swan JA, Golden SS, LiWang A, Partch CL. Structure, function, and mechanism of the core circadian clock in cyanobacteria. J Biol Chem. 2018; 293: 5026–34. DOI: 10.1074/jbc.TM117.001433
- 46Partch CL. Orchestration of Circadian Timing by Macromolecular Protein Assemblies. J Mol Biol. 2020; 432: 3426–48. DOI: 10.1016/j.jmb.2019.12.046
- 47Merbitz-Zahradnik T, Wolf E. How is the inner circadian clock controlled by interactive clock proteins?: Structural analysis of clock proteins elucidates their physiological role. FEBS Lett. 2015; 589: 1516–29. DOI: 10.1016/j.febslet.2015.05.024
- 48Aryal RP, Kwak PB, Tamayo AG, Gebert M, Chiu P-L, Walz T, et al. Macromolecular Assemblies of the Mammalian Circadian Clock. Mol Cell. 2017; 67: 770–82.e6. DOI: 10.1016/j.molcel.2017.07.017
- 49Diernfellner ACR, Brunner M. Phosphorylation Timers in the Neurospora crassa Circadian Clock. J Mol Biol. 2020; 432: 3449–65. DOI: 10.1016/j.jmb.2020.04.004
- 50Narasimamurthy R, Virshup DM. The phosphorylation switch that regulates ticking of the circadian clock. Mol Cell. 2021; 81: 1133–46. DOI: 10.1016/j.molcel.2021.01.006
- 51Xing W, Busino L, Hinds TR, Marionni ST, Saifee NH, Bush MF, et al. SCF(FBXL3) ubiquitin ligase targets cryptochromes at their cofactor pocket. Nature. 2013; 496: 64–8. DOI: 10.1038/nature11964
- 52Miller S, Hirota T. Pharmacological Interventions to Circadian Clocks and Their Molecular Bases. J Mol Biol. 2020; 432: 3498–514. DOI: 10.1016/j.jmb.2020.01.003
- 53Miller S, Kesherwani M, Chan P, Nagai Y, Yagi M, Cope J, et al. CRY2 isoform selectivity of a circadian clock modulator with antiglioblastoma efficacy. Proc Natl Acad Sci U S A. 2022; 119:
e2203936119 . DOI: 10.1073/pnas.2203936119 - 54Hao Y, Zhang X, Liu Y, Ma M, Huang X, Liu H, et al. Cryo-EM structure of the CRY2 and CIB1 fragment complex provides insights into CIB1-mediated photosignaling. Plant Commun. 2023; 4: 100475. DOI: 10.1016/j.xplc.2022.100475
- 55Ma L, Wang X, Guan Z, Wang L, Wang Y, Zheng L, et al. Structural insights into BIC-mediated inactivation of Arabidopsis cryptochrome 2. Nat Struct Mol Biol. 2020; 27: 472–9. DOI: 10.1038/s41594-020-0410-z
- 56Li H, Burgie ES, Gannam ZTK, Li H, Vierstra RD. Plant phytochrome B is an asymmetric dimer with unique signalling potential. Nature. 2022; 604: 127–33. DOI: 10.1038/s41586-022-04529-z
- 57Kwon E, Pathak D, Dahal P, Tandukar S, Jung HS, Kim W-Y, et al. Structural analysis of the regulation of blue-light receptors by GIGANTEA. Cell Rep. 2022; 39: 110700. DOI: 10.1016/j.celrep.2022.110700
- 58Silva CS, Nayak A, Lai X, Hutin S, Hugouvieux V, Jung J-H, et al. Molecular mechanisms of Evening Complex activity in Arabidopsis. Proc Natl Acad Sci U S A. 2020; 117: 6901–9. DOI: 10.1073/pnas.1920972117
- 59Nohales MA, Kay SA. Molecular mechanisms at the core of the plant circadian oscillator. Nat Struct Mol Biol. 2016; 23: 1061–9. DOI: 10.1038/nsmb.3327
- 60Saini R, Jaskolski M, Davis SJ. Circadian oscillator proteins across the kingdoms of life: structural aspects. BMC Biol. 2019; 17: 13. DOI: 10.1186/s12915-018-0623-3
- 61Felder-Schmittbuhl M-P, Buhr ED, Dkhissi-Benyahya O, Hicks D, Peirson SN, Ribelayga CP, et al. Ocular Clocks: Adapting Mechanisms for Eye Functions and Health. Invest Ophthalmol Vis Sci. 2018; 59: 4856–70. DOI: 10.1167/iovs.18-24957
- 62Tosini G, Menaker M. Circadian rhythms in cultured mammalian retina. Science. 1996; 272: 419–21. DOI: 10.1126/science.272.5260.419
- 63Grace MS, Wang LM, Pickard GE, Besharse JC, Menaker M. The tau mutation shortens the period of rhythmic photoreceptor outer segment disk shedding in the hamster. Brain Res. 1996; 735: 93–100. DOI: 10.1016/0006-8993(96)00600-2
- 64Doyle SE, Grace MS, McIvor W, Menaker M. Circadian rhythms of dopamine in mouse retina: the role of melatonin. Vis Neurosci. 2002; 19: 593–601. DOI: 10.1017/S0952523802195058
- 65Organisciak DT, Darrow RM, Barsalou L, Kutty RK, Wiggert B. Circadian-dependent retinal light damage in rats. Invest Ophthalmol Vis Sci. 2000; 41: 3694–701.
- 66Baba K, Pozdeyev N, Mazzoni F, Contreras-Alcantara S, Liu C, Kasamatsu M, et al. Melatonin modulates visual function and cell viability in the mouse retina via the MT1 melatonin receptor. Proc Natl Acad Sci U S A. 2009; 106: 15043–8. DOI: 10.1073/pnas.0904400106
- 67Bobu C, Hicks D. Regulation of retinal photoreceptor phagocytosis in a diurnal mammal by circadian clocks and ambient lighting. Invest Ophthalmol Vis Sci. 2009; 50: 3495–502. DOI: 10.1167/iovs.08-3145
- 68Storch K-F, Paz C, Signorovitch J, Raviola E, Pawlyk B, Li T, et al. Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell. 2007; 130: 730–41. DOI: 10.1016/j.cell.2007.06.045
- 69Mure LS, Le HD, Benegiamo G, Chang MW, Rios L, Jillani N, et al. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science. 2018; 359. DOI: 10.1126/science.aao0318
- 70Lahouaoui H, Coutanson C, Cooper HM, Bennis M, Dkhissi-Benyahya O. Diabetic retinopathy alters light-induced clock gene expression and dopamine levels in the mouse retina. Mol Vis. 2016; 22: 959–69.
- 71Felder-Schmittbuhl M-P, Calligaro H, Dkhissi-Benyahya O. The retinal clock in mammals: role in health and disease. Chronophysiology Ther. 2017; 7: 33–45. DOI: 10.2147/CPT.S115251
- 72Adam D. Core Concept: Emerging science of chronotherapy offers big opportunities to optimize drug delivery. Proc Natl Acad Sci U S A. 2019; 116: 21957–9. DOI: 10.1073/pnas.1916118116
- 73Perkel JM. Single-cell analysis enters the multiomics age. Nature. 2021; 595: 614–6. DOI: 10.1038/d41586-021-01994-w
- 74Moses L, Pachter L. Museum of spatial transcriptomics. Nat Methods. 2022; 19: 534–46. DOI: 10.1038/s41592-022-01409-2
- 75Braun R, Kath WL, Iwanaszko M, Kula-Eversole E, Abbott SM, Reid KJ, et al. Universal method for robust detection of circadian state from gene expression. Proc Natl Acad Sci U S A. 2018; 115: E9247–56. DOI: 10.1073/pnas.1800314115
- 76Wittenbrink N, Ananthasubramaniam B, Münch M, Koller B, Maier B, Weschke C, et al. High-accuracy determination of internal circadian time from a single blood sample. J Clin Invest. 2018; 128: 3826–39. DOI: 10.1172/JCI120874
- 77Agostinelli F, Ceglia N, Shahbaba B, Sassone-Corsi P, Baldi P. What time is it? Deep learning approaches for circadian rhythms. Bioinformatics. 2016; 32: i8–17. DOI: 10.1093/bioinformatics/btw243
- 78Ueda HR, Chen W, Minami Y, Honma S, Honma K, Iino M, et al. Molecular-timetable methods for detection of body time and rhythm disorders from single-time-point genome-wide expression profiles. Proc Natl Acad Sci U S A. 2004; 101: 11227–32. DOI: 10.1073/pnas.0401882101
- 79Hughey JJ, Hastie T, Butte AJ. ZeitZeiger: supervised learning for high-dimensional data from an oscillatory system. Nucleic Acids Res. 2016; 44:
e80 . DOI: 10.1093/nar/gkw030 - 80Phillips NE, Hugues A, Yeung J, Durandau E, Nicolas D, Naef F. The circadian oscillator analysed at the single-transcript level. Mol Syst Biol. 2021; 17:
e10135 . DOI: 10.15252/msb.202010135 - 81Akashi M, Soma H, Yamamoto T, Tsugitomi A, Yamashita S, Yamamoto T, et al. Noninvasive method for assessing the human circadian clock using hair follicle cells. Proc Natl Acad Sci U S A. 2010; 107: 15643–8. DOI: 10.1073/pnas.1003878107
- 82Wu G, Ruben MD, Schmidt RE, Francey LJ, Smith DF, Anafi RC, et al. Population-level rhythms in human skin with implications for circadian medicine. Proc Natl Acad Sci U S A. 2018; 115: 12313–8. DOI: 10.1073/pnas.1809442115
- 83Innominato PF, Focan C, Gorlia T, Moreau T, Garufi C, Waterhouse J, et al. Circadian rhythm in rest and activity: a biological correlate of quality of life and a predictor of survival in patients with metastatic colorectal cancer. Cancer Res. 2009; 69: 4700–7. DOI: 10.1158/0008-5472.CAN-08-4747
- 84van Someren EJ, Hagebeuk EE, Lijzenga C, Scheltens P, de Rooij SE, Jonker C, et al. Circadian rest-activity rhythm disturbances in Alzheimer’s disease. Biol Psychiatry. 1996; 40: 259–70. DOI: 10.1016/0006-3223(95)00370-3
- 85Kripke DF, Elliott JA, Youngstedt SD, Rex KM. Circadian phase response curves to light in older and young women and men. J Circadian Rhythms. 2007; 5: 4. DOI: 10.1186/1740-3391-5-4
- 86Youngstedt SD, Elliott J, Patel S, Zi-Ching Mak N, Raiewski E, Malek E, et al. Circadian acclimatization of performance, sleep, and 6-sulfatoxymelatonin using multiple phase shifting stimuli. Front Endocrinol. 2022; 13: 964681. DOI: 10.3389/fendo.2022.964681
- 87Davidson AJ, Sellix MT, Daniel J, Yamazaki S, Menaker M, Block GD. Chronic jet-lag increases mortality in aged mice. Curr Biol. 2006; 16: R914–6. DOI: 10.1016/j.cub.2006.09.058
- 88Castanon-Cervantes O, Wu M, Ehlen JC, Paul K, Gamble KL, Johnson RL, et al. Dysregulation of inflammatory responses by chronic circadian disruption. J Immunol. 2010; 185: 5796–805. DOI: 10.4049/jimmunol.1001026
- 89Walker WH, Bumgarner JR, Becker-Krail DD, May LE, Liu JA, Nelson RJ. Light at night disrupts biological clocks, calendars, and immune function. Semin Immunopathol. 2022; 44: 165–73. DOI: 10.1007/s00281-021-00899-0
- 90Acosta-Rodríguez V, Rijo-Ferreira F, Izumo M, Xu P, Wight-Carter M, Green CB, et al. Circadian alignment of early onset caloric restriction promotes longevity in male C57BL/6J mice. Science. 2022; 376: 1192–202. DOI: 10.1126/science.abk0297
- 91Burkot TR, Russell TL, Reimer LJ, Bugoro H, Beebe NW, Cooper RD, et al. Barrier screens: a method to sample blood-fed and host-seeking exophilic mosquitoes. Malar J. 2013; 12: 49. DOI: 10.1186/1475-2875-12-49
- 92Russell TL, Beebe NW, Cooper RD, Lobo NF, Burkot TR. Successful malaria elimination strategies require interventions that target changing vector behaviours. Malar J. 2013; 12: 56. DOI: 10.1186/1475-2875-12-56
- 93Moiroux N, Gomez MB, Pennetier C, Elanga E, Djènontin A, Chandre F, et al. Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in Benin. J Infect Dis. 2012; 206: 1622–9. DOI: 10.1093/infdis/jis565
- 94Sougoufara S, Diédhiou SM, Doucouré S, Diagne N, Sembène PM, Harry M, et al. Biting by Anopheles funestus in broad daylight after use of long-lasting insecticidal nets: a new challenge to malaria elimination. Malar J. 2014; 13: 125. DOI: 10.1186/1475-2875-13-125
- 95Thomsen EK, Koimbu G, Pulford J, Jamea-Maiasa S, Ura Y, Keven JB, et al. Mosquito Behavior Change After Distribution of Bednets Results in Decreased Protection Against Malaria Exposure. J Infect Dis. 2017; 215: 790–7. DOI: 10.1093/infdis/jiw615
- 96Harris AF, Matias-Arnéz A, Hill N. Biting time of Anopheles darlingi in the Bolivian Amazon and implications for control of malaria. Trans R Soc Trop Med Hyg. 2006; 100: 45–7. DOI: 10.1016/j.trstmh.2005.07.001
- 97Rund SSC, Hou TY, Ward SM, Collins FH, Duffield GE. Genome-wide profiling of diel and circadian gene expression in the malaria vector Anopheles gambiae. Proc Natl Acad Sci U S A. 2011; 108: E421–30. DOI: 10.1073/pnas.1100584108
- 98Rund SS, Gentile JE, Duffield GE. Extensive circadian and light regulation of the transcriptome in the malaria mosquito Anopheles gambiae. BMC Genomics 2013; 14: 218. DOI: 10.1186/1471-2164-14-218
- 99Leming MT, Rund SSC, Behura SK, Duffield GE, O’Tousa JE. A database of circadian and diel rhythmic gene expression in the yellow fever mosquito Aedes aegypti. BMC Genomics. 2014; 15: 1128. DOI: 10.1186/1471-2164-15-1128
- 100Chadee DD, Martinez R. Landing periodicity of Aedes aegypti with implications for dengue transmission in Trinidad, West Indies. J Vector Ecol. 2000; 25: 158–63.
- 101Rund SSC, Labb LF, Benefiel OM, Duffield GE. Artificial Light at Night Increases Aedes aegypti Mosquito Biting Behavior with Implications for Arboviral Disease Transmission. Am J Trop Med Hyg. 2020; 103: 2450–2. DOI: 10.4269/ajtmh.20-0885
- 102Palmer JD. Review of the Dual-Clock Control of Tidal Rhythms and the Hypothesis that the Same Clock Governs Both Circatidal and Circadian Rhythms. Chronobiol Int. 1995; 12: 299–310. DOI: 10.3109/07420529509057279
- 103Andreatta G, Tessmar-Raible K. The Still Dark Side of the Moon: Molecular Mechanisms of Lunar-Controlled Rhythms and Clocks. J Mol Biol. 2020; 432: 3525–46. DOI: 10.1016/j.jmb.2020.03.009
- 104Rock A, Wilcockson D, Last KS. Towards an Understanding of Circatidal Clocks. Front Physiol. 2022; 13: 830107. DOI: 10.3389/fphys.2022.830107
- 105Chabot CC, Ramberg-Pihl NC, Watson WH. Circalunidian clocks control tidal rhythms of locomotion in the American horseshoe crab, Limulus polyphemus. Mar Freshw Behav Physiol. 2016; 49: 75–91. DOI: 10.1080/10236244.2015.1127679
- 106Zhang L, Hastings MH, Green EW, Tauber E, Sladek M, Webster SG, et al. Dissociation of circadian and circatidal timekeeping in the marine crustacean Eurydice pulchra. Curr Biol. 2013; 23: 1863–73. DOI: 10.1016/j.cub.2013.08.038
- 107Kwiatkowski ER, Schnytzer Y, Rosenthal JJC, Emery P. Behavioral circatidal rhythms require Bmal1 in Parhyale hawaiensis. Curr Biol. 2023; 33: 1867–82.e5. DOI: 10.1016/j.cub.2023.03.015
- 108Kaiser TS, Neumann J. Circalunar clocks-Old experiments for a new era. Bioessays. 2021; 43:
e2100074 . DOI: 10.1002/bies.202100074 - 109Schenk S, Bannister SC, Sedlazeck FJ, Anrather D, Minh BQ, Bileck A, et al. Combined transcriptome and proteome profiling reveals specific molecular brain signatures for sex, maturation and circalunar clock phase. Elife. 2019; 8. DOI: 10.7554/eLife.41556
- 110Gwinner E. Circannual rhythms in birds. Curr Opin Neurobiol. 2003; 13: 770–8. DOI: 10.1016/j.conb.2003.10.010
- 111Schwartz C, Andrews MT. Circannual transitions in gene expression: lessons from seasonal adaptations. Curr Top Dev Biol. 2013; 105: 247–73. DOI: 10.1016/B978-0-12-396968-2.00009-9
