Have a personal or library account? Click to login

References

  1. 1Edgar RS, Green EW, Zhao Y, van Ooijen G, Olmedo M, Qin X, et al. Peroxiredoxins are conserved markers of circadian rhythms. Nature. 2012; 485: 45964. DOI: 10.1038/nature11088
  2. 2O’Neill JS, Reddy AB. Circadian clocks in human red blood cells. Nature. 2011; 469: 498503. DOI: 10.1038/nature09702
  3. 3Cho C-S, Yoon HJ, Kim JY, Woo HA, Rhee SG. Circadian rhythm of hyperoxidized peroxiredoxin II is determined by hemoglobin autoxidation and the 20S proteasome in red blood cells. Proc Natl Acad Sci U S A. 2014; 111: 120438. DOI: 10.1073/pnas.1401100111
  4. 4Beale AD, Hayter EA, Crosby P, Valekunja UK, Edgar RS, Chesham JE, et al. Mechanisms and physiological function of daily haemoglobin oxidation rhythms in red blood cells. EMBO J. 2023; 42: e114164. DOI: 10.15252/embj.2023114164
  5. 5Putker M, Crosby P, Feeney KA, Hoyle NP, Costa ASH, Gaude E, et al. Mammalian Circadian Period, But Not Phase and Amplitude, Is Robust Against Redox and Metabolic Perturbations. Antioxid Redox Signal. 2018; 28: 50720. DOI: 10.1089/ars.2016.6911
  6. 6Putker M, O’Neill JS. Reciprocal Control of the Circadian Clock and Cellular Redox State – a Critical Appraisal. Mol Cells. 2016; 39: 619. DOI: 10.14348/molcells.2016.2323
  7. 7Stangherlin A, Seinkmane E, O’Neill JS. Understanding circadian regulation of mammalian cell function, protein homeostasis, and metabolism. Curr Opin Syst Biol. 2021; 28: None. DOI: 10.1016/j.coisb.2021.100391
  8. 8Moore A, Zielinski T, Millar AJ. Online period estimation and determination of rhythmicity in circadian data, using the BioDare data infrastructure. Methods Mol Biol. 2014; 1158: 1344. DOI: 10.1007/978-1-4939-0700-7_2
  9. 9Embleton J, Knight MI, Ombao H. Multiscale spectral modelling for nonstationary time series within an ordered multiple-trial experiment. Aoas. 2022; 16: 2774803. DOI: 10.1214/22-AOAS1614
  10. 10Hargreaves JK, Knight MI, Pitchford JW, Oakenfull RJ, Davis SJ. Clustering Nonstationary Circadian Rhythms using Locally Stationary Wavelet Representations. Multiscale Model Simul. 2018; 16: 184214. DOI: 10.1137/16M1108078
  11. 11Embleton J, Knight MI, Ombao H. Wavelet testing for a replicate-effect within an ordered multiple-trial experiment. Comput Stat Data Anal. 2022; 174: 107456. DOI: 10.1016/j.csda.2022.107456
  12. 12Hargreaves JK, Knight MI, Pitchford JW, Oakenfull RJ, Chawla S, Munns J, et al. Wavelet spectral testing: Application to nonstationary circadian rhythms. Aoas. 2019; 13: 181746. DOI: 10.1214/19-AOAS1246
  13. 13Knight MI, Nunes MA. Long memory estimation for complex-valued time series. Stat Comput. 2019; 29: 51736. DOI: 10.1007/s11222-018-9820-8
  14. 14Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet. 2008; 40: 7617. DOI: 10.1038/ng.143
  15. 15Xu M, Yamagishi N, Zhao C, Takeshima R, Kasai M, Watanabe S, et al. The Soybean-Specific Maturity Gene E1 Family of Floral Repressors Controls Night-Break Responses through Down-Regulation of FLOWERING LOCUS T Orthologs. Plant Physiol. 2015; 168: 173546. DOI: 10.1104/pp.15.00763
  16. 16Li Y, Hou Z, Li W, Li H, Lu S, Gan Z, et al. The legume-specific transcription factor E1 controls leaf morphology in soybean. BMC Plant Biol. 2021; 21: 531. DOI: 10.1186/s12870-021-03301-1
  17. 17Zong W, Ren D, Huang M, Sun K, Feng J, Zhao J, et al. Strong photoperiod sensitivity is controlled by cooperation and competition among Hd1, Ghd7 and DTH8 in rice heading. New Phytol. 2021; 229: 163549. DOI: 10.1111/nph.16946
  18. 18Zhao J, Huang X, Ouyang X, Chen W, Du A, Zhu L, et al. OsELF3-1, an ortholog of Arabidopsis early flowering 3, regulates rice circadian rhythm and photoperiodic flowering. PLoS One. 2012; 7: e43705. DOI: 10.1371/journal.pone.0043705
  19. 19Ning Y, Shi X, Wang R, Fan J, Park CH, Zhang C, et al. OsELF3-2, an Ortholog of Arabidopsis ELF3, Interacts with the E3 Ligase APIP6 and Negatively Regulates Immunity against Magnaporthe oryzae in Rice. Mol Plant. 2015; 8: 167982. DOI: 10.1016/j.molp.2015.08.004
  20. 20Wang X, He Y, Wei H, Wang L. A clock regulatory module is required for salt tolerance and control of heading date in rice. Plant Cell Environ. 2021; 44: 3283301. DOI: 10.1111/pce.14167
  21. 21Dallmann R, Touma C, Palme R, Albrecht U, Steinlechner S. Impaired daily glucocorticoid rhythm in Per1 (Brd) mice. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006; 192: 76975. DOI: 10.1007/s00359-006-0114-9
  22. 22Bechstein P, Rehbach N-J, Yuhasingham G, Schürmann C, Göpfert M, Kössl M, et al. The clock gene Period1 regulates innate routine behaviour in mice. Proc Biol Sci. 2014; 281: 20140034. DOI: 10.1098/rspb.2014.0034
  23. 23Cermakian N, Monaco L, Pando MP, Dierich A, Sassone-Corsi P. Altered behavioral rhythms and clock gene expression in mice with a targeted mutation in the Period1 gene. EMBO J 2001; 20: 396774. DOI: 10.1093/emboj/20.15.3967
  24. 24Noordally ZB, Millar AJ. Clocks in algae. Biochemistry. 2015; 54: 17183. DOI: 10.1021/bi501089x
  25. 25Petersen J, Rredhi A, Szyttenholm J, Oldemeyer S, Kottke T, Mittag M. The World of Algae Reveals a Broad Variety of Cryptochrome Properties and Functions. Front Plant Sci. 2021; 12: 766509. DOI: 10.3389/fpls.2021.766509
  26. 26Schweiger E, Wallraff HG, Schweiger HG. Endogenous Circadian Rhythm in Cytoplasm of Acetabularia: Influence of the Nucleus. Science. 1964; 146: 6589. DOI: 10.1126/science.146.3644.658
  27. 27Sweeney BM, Haxo FT. Persistence of a Photosynthetic Rhythm in Enucleated Acetabularia. Science. 1961; 134: 13613. DOI: 10.1126/science.134.3487.1361
  28. 28Feeney KA, Hansen LL, Putker M, Olivares-Yañez C, Day J, Eades LJ, et al. Daily magnesium fluxes regulate cellular timekeeping and energy balance. Nature. 2016; 532: 3759. DOI: 10.1038/nature17407
  29. 29O’Neill JS, van Ooijen G, Dixon LE, Troein C, Corellou F, Bouget F-Y, et al. Circadian rhythms persist without transcription in a eukaryote. Nature. 2011; 469: 5548. DOI: 10.1038/nature09654
  30. 30Chapman RL. Algae: the world’s most important “plants”—an introduction. Mitigation and Adaptation Strategies for Global Change. 2013; 18: 512. DOI: 10.1007/s11027-010-9255-9
  31. 31Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998; 281: 23740. DOI: 10.1126/science.281.5374.237
  32. 32Shin Y, Brangwynne CP. Liquid phase condensation in cell physiology and disease. Science. 2017; 357. DOI: 10.1126/science.aaf4382
  33. 33Jang C, Lahens NF, Hogenesch JB, Sehgal A. Ribosome profiling reveals an important role for translational control in circadian gene expression. Genome Res. 2015; 25: 183647. DOI: 10.1101/gr.191296.115
  34. 34Malcolm M, Saad L, Penazzi LG, Garbarino-Pico E. Processing Bodies Oscillate in Neuro 2A Cells. Front Cell Neurosci. 2019; 13: 487. DOI: 10.3389/fncel.2019.00487
  35. 35Standart N, Weil D. P-Bodies: Cytosolic Droplets for Coordinated mRNA Storage. Trends Genet. 2018; 34: 61226. DOI: 10.1016/j.tig.2018.05.005
  36. 36Riggs CL, Kedersha N, Ivanov P, Anderson P. Mammalian stress granules and P bodies at a glance. J Cell Sci. 2020; 133. DOI: 10.1242/jcs.242487
  37. 37Forbes Beadle L, Love JC, Shapovalova Y, Artemev A, Rattray M, Ashe HL. Combined modelling of mRNA decay dynamics and single-molecule imaging in the Drosophila embryo uncovers a role for P-bodies in 5’ to 3’ degradation. PLoS Biol. 2023; 21: e3001956. DOI: 10.1371/journal.pbio.3001956
  38. 38Wang R, Jiang X, Bao P, Qin M, Xu J. Circadian control of stress granules by oscillating EIF2α. Cell Death Dis. 2019; 10: 215. DOI: 10.1038/s41419-019-1471-y
  39. 39Pathak SS, Liu D, Li T, de Zavalia N, Zhu L, Li J, et al. The eIF2α Kinase GCN2 Modulates Period and Rhythmicity of the Circadian Clock by Translational Control of Atf4. Neuron. 2019; 104: 72435.e6. DOI: 10.1016/j.neuron.2019.08.007
  40. 40Karki S, Castillo K, Ding Z, Kerr O, Lamb TM, Wu C, et al. Circadian clock control of eIF2α phosphorylation is necessary for rhythmic translation initiation. Proc Natl Acad Sci U S A. 2020; 117: 1093545. DOI: 10.1073/pnas.1918459117
  41. 41Castillo KD, Wu C, Ding Z, Lopez-Garcia OK, Rowlinson E, Sachs MS, et al. A circadian clock translational control mechanism targets specific mRNAs to cytoplasmic messenger ribonucleoprotein granules. Cell Rep. 2022; 41: 111879. DOI: 10.1016/j.celrep.2022.111879
  42. 42Sinturel F, Gerber A, Mauvoisin D, Wang J, Gatfield D, Stubblefield JJ, et al. Diurnal oscillations in liver mass and cell size accompany ribosome assembly cycles. Cell. 2017; 169: 65163.e14. DOI: 10.1016/j.cell.2017.04.015
  43. 43Stangherlin A, Watson JL, Wong DCS, Barbiero S, Zeng A, Seinkmane E, et al. Compensatory ion transport buffers daily protein rhythms to regulate osmotic balance and cellular physiology. Nat Commun. 2021; 12: 6035. DOI: 10.1038/s41467-021-25942-4
  44. 44Dyar KA, Lutter D, Artati A, Ceglia NJ, Liu Y, Armenta D, et al. Atlas of circadian metabolism reveals system-wide coordination and communication between clocks. Cell. 2018; 174: 157185.e11. DOI: 10.1016/j.cell.2018.08.042
  45. 45Swan JA, Golden SS, LiWang A, Partch CL. Structure, function, and mechanism of the core circadian clock in cyanobacteria. J Biol Chem. 2018; 293: 502634. DOI: 10.1074/jbc.TM117.001433
  46. 46Partch CL. Orchestration of Circadian Timing by Macromolecular Protein Assemblies. J Mol Biol. 2020; 432: 342648. DOI: 10.1016/j.jmb.2019.12.046
  47. 47Merbitz-Zahradnik T, Wolf E. How is the inner circadian clock controlled by interactive clock proteins?: Structural analysis of clock proteins elucidates their physiological role. FEBS Lett. 2015; 589: 151629. DOI: 10.1016/j.febslet.2015.05.024
  48. 48Aryal RP, Kwak PB, Tamayo AG, Gebert M, Chiu P-L, Walz T, et al. Macromolecular Assemblies of the Mammalian Circadian Clock. Mol Cell. 2017; 67: 77082.e6. DOI: 10.1016/j.molcel.2017.07.017
  49. 49Diernfellner ACR, Brunner M. Phosphorylation Timers in the Neurospora crassa Circadian Clock. J Mol Biol. 2020; 432: 344965. DOI: 10.1016/j.jmb.2020.04.004
  50. 50Narasimamurthy R, Virshup DM. The phosphorylation switch that regulates ticking of the circadian clock. Mol Cell. 2021; 81: 113346. DOI: 10.1016/j.molcel.2021.01.006
  51. 51Xing W, Busino L, Hinds TR, Marionni ST, Saifee NH, Bush MF, et al. SCF(FBXL3) ubiquitin ligase targets cryptochromes at their cofactor pocket. Nature. 2013; 496: 648. DOI: 10.1038/nature11964
  52. 52Miller S, Hirota T. Pharmacological Interventions to Circadian Clocks and Their Molecular Bases. J Mol Biol. 2020; 432: 3498514. DOI: 10.1016/j.jmb.2020.01.003
  53. 53Miller S, Kesherwani M, Chan P, Nagai Y, Yagi M, Cope J, et al. CRY2 isoform selectivity of a circadian clock modulator with antiglioblastoma efficacy. Proc Natl Acad Sci U S A. 2022; 119: e2203936119. DOI: 10.1073/pnas.2203936119
  54. 54Hao Y, Zhang X, Liu Y, Ma M, Huang X, Liu H, et al. Cryo-EM structure of the CRY2 and CIB1 fragment complex provides insights into CIB1-mediated photosignaling. Plant Commun. 2023; 4: 100475. DOI: 10.1016/j.xplc.2022.100475
  55. 55Ma L, Wang X, Guan Z, Wang L, Wang Y, Zheng L, et al. Structural insights into BIC-mediated inactivation of Arabidopsis cryptochrome 2. Nat Struct Mol Biol. 2020; 27: 4729. DOI: 10.1038/s41594-020-0410-z
  56. 56Li H, Burgie ES, Gannam ZTK, Li H, Vierstra RD. Plant phytochrome B is an asymmetric dimer with unique signalling potential. Nature. 2022; 604: 12733. DOI: 10.1038/s41586-022-04529-z
  57. 57Kwon E, Pathak D, Dahal P, Tandukar S, Jung HS, Kim W-Y, et al. Structural analysis of the regulation of blue-light receptors by GIGANTEA. Cell Rep. 2022; 39: 110700. DOI: 10.1016/j.celrep.2022.110700
  58. 58Silva CS, Nayak A, Lai X, Hutin S, Hugouvieux V, Jung J-H, et al. Molecular mechanisms of Evening Complex activity in Arabidopsis. Proc Natl Acad Sci U S A. 2020; 117: 69019. DOI: 10.1073/pnas.1920972117
  59. 59Nohales MA, Kay SA. Molecular mechanisms at the core of the plant circadian oscillator. Nat Struct Mol Biol. 2016; 23: 10619. DOI: 10.1038/nsmb.3327
  60. 60Saini R, Jaskolski M, Davis SJ. Circadian oscillator proteins across the kingdoms of life: structural aspects. BMC Biol. 2019; 17: 13. DOI: 10.1186/s12915-018-0623-3
  61. 61Felder-Schmittbuhl M-P, Buhr ED, Dkhissi-Benyahya O, Hicks D, Peirson SN, Ribelayga CP, et al. Ocular Clocks: Adapting Mechanisms for Eye Functions and Health. Invest Ophthalmol Vis Sci. 2018; 59: 485670. DOI: 10.1167/iovs.18-24957
  62. 62Tosini G, Menaker M. Circadian rhythms in cultured mammalian retina. Science. 1996; 272: 41921. DOI: 10.1126/science.272.5260.419
  63. 63Grace MS, Wang LM, Pickard GE, Besharse JC, Menaker M. The tau mutation shortens the period of rhythmic photoreceptor outer segment disk shedding in the hamster. Brain Res. 1996; 735: 93100. DOI: 10.1016/0006-8993(96)00600-2
  64. 64Doyle SE, Grace MS, McIvor W, Menaker M. Circadian rhythms of dopamine in mouse retina: the role of melatonin. Vis Neurosci. 2002; 19: 593601. DOI: 10.1017/S0952523802195058
  65. 65Organisciak DT, Darrow RM, Barsalou L, Kutty RK, Wiggert B. Circadian-dependent retinal light damage in rats. Invest Ophthalmol Vis Sci. 2000; 41: 3694701.
  66. 66Baba K, Pozdeyev N, Mazzoni F, Contreras-Alcantara S, Liu C, Kasamatsu M, et al. Melatonin modulates visual function and cell viability in the mouse retina via the MT1 melatonin receptor. Proc Natl Acad Sci U S A. 2009; 106: 150438. DOI: 10.1073/pnas.0904400106
  67. 67Bobu C, Hicks D. Regulation of retinal photoreceptor phagocytosis in a diurnal mammal by circadian clocks and ambient lighting. Invest Ophthalmol Vis Sci. 2009; 50: 3495502. DOI: 10.1167/iovs.08-3145
  68. 68Storch K-F, Paz C, Signorovitch J, Raviola E, Pawlyk B, Li T, et al. Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell. 2007; 130: 73041. DOI: 10.1016/j.cell.2007.06.045
  69. 69Mure LS, Le HD, Benegiamo G, Chang MW, Rios L, Jillani N, et al. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science. 2018; 359. DOI: 10.1126/science.aao0318
  70. 70Lahouaoui H, Coutanson C, Cooper HM, Bennis M, Dkhissi-Benyahya O. Diabetic retinopathy alters light-induced clock gene expression and dopamine levels in the mouse retina. Mol Vis. 2016; 22: 95969.
  71. 71Felder-Schmittbuhl M-P, Calligaro H, Dkhissi-Benyahya O. The retinal clock in mammals: role in health and disease. Chronophysiology Ther. 2017; 7: 3345. DOI: 10.2147/CPT.S115251
  72. 72Adam D. Core Concept: Emerging science of chronotherapy offers big opportunities to optimize drug delivery. Proc Natl Acad Sci U S A. 2019; 116: 219579. DOI: 10.1073/pnas.1916118116
  73. 73Perkel JM. Single-cell analysis enters the multiomics age. Nature. 2021; 595: 6146. DOI: 10.1038/d41586-021-01994-w
  74. 74Moses L, Pachter L. Museum of spatial transcriptomics. Nat Methods. 2022; 19: 53446. DOI: 10.1038/s41592-022-01409-2
  75. 75Braun R, Kath WL, Iwanaszko M, Kula-Eversole E, Abbott SM, Reid KJ, et al. Universal method for robust detection of circadian state from gene expression. Proc Natl Acad Sci U S A. 2018; 115: E924756. DOI: 10.1073/pnas.1800314115
  76. 76Wittenbrink N, Ananthasubramaniam B, Münch M, Koller B, Maier B, Weschke C, et al. High-accuracy determination of internal circadian time from a single blood sample. J Clin Invest. 2018; 128: 382639. DOI: 10.1172/JCI120874
  77. 77Agostinelli F, Ceglia N, Shahbaba B, Sassone-Corsi P, Baldi P. What time is it? Deep learning approaches for circadian rhythms. Bioinformatics. 2016; 32: i817. DOI: 10.1093/bioinformatics/btw243
  78. 78Ueda HR, Chen W, Minami Y, Honma S, Honma K, Iino M, et al. Molecular-timetable methods for detection of body time and rhythm disorders from single-time-point genome-wide expression profiles. Proc Natl Acad Sci U S A. 2004; 101: 1122732. DOI: 10.1073/pnas.0401882101
  79. 79Hughey JJ, Hastie T, Butte AJ. ZeitZeiger: supervised learning for high-dimensional data from an oscillatory system. Nucleic Acids Res. 2016; 44: e80. DOI: 10.1093/nar/gkw030
  80. 80Phillips NE, Hugues A, Yeung J, Durandau E, Nicolas D, Naef F. The circadian oscillator analysed at the single-transcript level. Mol Syst Biol. 2021; 17: e10135. DOI: 10.15252/msb.202010135
  81. 81Akashi M, Soma H, Yamamoto T, Tsugitomi A, Yamashita S, Yamamoto T, et al. Noninvasive method for assessing the human circadian clock using hair follicle cells. Proc Natl Acad Sci U S A. 2010; 107: 156438. DOI: 10.1073/pnas.1003878107
  82. 82Wu G, Ruben MD, Schmidt RE, Francey LJ, Smith DF, Anafi RC, et al. Population-level rhythms in human skin with implications for circadian medicine. Proc Natl Acad Sci U S A. 2018; 115: 123138. DOI: 10.1073/pnas.1809442115
  83. 83Innominato PF, Focan C, Gorlia T, Moreau T, Garufi C, Waterhouse J, et al. Circadian rhythm in rest and activity: a biological correlate of quality of life and a predictor of survival in patients with metastatic colorectal cancer. Cancer Res. 2009; 69: 47007. DOI: 10.1158/0008-5472.CAN-08-4747
  84. 84van Someren EJ, Hagebeuk EE, Lijzenga C, Scheltens P, de Rooij SE, Jonker C, et al. Circadian rest-activity rhythm disturbances in Alzheimer’s disease. Biol Psychiatry. 1996; 40: 25970. DOI: 10.1016/0006-3223(95)00370-3
  85. 85Kripke DF, Elliott JA, Youngstedt SD, Rex KM. Circadian phase response curves to light in older and young women and men. J Circadian Rhythms. 2007; 5: 4. DOI: 10.1186/1740-3391-5-4
  86. 86Youngstedt SD, Elliott J, Patel S, Zi-Ching Mak N, Raiewski E, Malek E, et al. Circadian acclimatization of performance, sleep, and 6-sulfatoxymelatonin using multiple phase shifting stimuli. Front Endocrinol. 2022; 13: 964681. DOI: 10.3389/fendo.2022.964681
  87. 87Davidson AJ, Sellix MT, Daniel J, Yamazaki S, Menaker M, Block GD. Chronic jet-lag increases mortality in aged mice. Curr Biol. 2006; 16: R9146. DOI: 10.1016/j.cub.2006.09.058
  88. 88Castanon-Cervantes O, Wu M, Ehlen JC, Paul K, Gamble KL, Johnson RL, et al. Dysregulation of inflammatory responses by chronic circadian disruption. J Immunol. 2010; 185: 5796805. DOI: 10.4049/jimmunol.1001026
  89. 89Walker WH, Bumgarner JR, Becker-Krail DD, May LE, Liu JA, Nelson RJ. Light at night disrupts biological clocks, calendars, and immune function. Semin Immunopathol. 2022; 44: 16573. DOI: 10.1007/s00281-021-00899-0
  90. 90Acosta-Rodríguez V, Rijo-Ferreira F, Izumo M, Xu P, Wight-Carter M, Green CB, et al. Circadian alignment of early onset caloric restriction promotes longevity in male C57BL/6J mice. Science. 2022; 376: 1192202. DOI: 10.1126/science.abk0297
  91. 91Burkot TR, Russell TL, Reimer LJ, Bugoro H, Beebe NW, Cooper RD, et al. Barrier screens: a method to sample blood-fed and host-seeking exophilic mosquitoes. Malar J. 2013; 12: 49. DOI: 10.1186/1475-2875-12-49
  92. 92Russell TL, Beebe NW, Cooper RD, Lobo NF, Burkot TR. Successful malaria elimination strategies require interventions that target changing vector behaviours. Malar J. 2013; 12: 56. DOI: 10.1186/1475-2875-12-56
  93. 93Moiroux N, Gomez MB, Pennetier C, Elanga E, Djènontin A, Chandre F, et al. Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in Benin. J Infect Dis. 2012; 206: 16229. DOI: 10.1093/infdis/jis565
  94. 94Sougoufara S, Diédhiou SM, Doucouré S, Diagne N, Sembène PM, Harry M, et al. Biting by Anopheles funestus in broad daylight after use of long-lasting insecticidal nets: a new challenge to malaria elimination. Malar J. 2014; 13: 125. DOI: 10.1186/1475-2875-13-125
  95. 95Thomsen EK, Koimbu G, Pulford J, Jamea-Maiasa S, Ura Y, Keven JB, et al. Mosquito Behavior Change After Distribution of Bednets Results in Decreased Protection Against Malaria Exposure. J Infect Dis. 2017; 215: 7907. DOI: 10.1093/infdis/jiw615
  96. 96Harris AF, Matias-Arnéz A, Hill N. Biting time of Anopheles darlingi in the Bolivian Amazon and implications for control of malaria. Trans R Soc Trop Med Hyg. 2006; 100: 457. DOI: 10.1016/j.trstmh.2005.07.001
  97. 97Rund SSC, Hou TY, Ward SM, Collins FH, Duffield GE. Genome-wide profiling of diel and circadian gene expression in the malaria vector Anopheles gambiae. Proc Natl Acad Sci U S A. 2011; 108: E42130. DOI: 10.1073/pnas.1100584108
  98. 98Rund SS, Gentile JE, Duffield GE. Extensive circadian and light regulation of the transcriptome in the malaria mosquito Anopheles gambiae. BMC Genomics 2013; 14: 218. DOI: 10.1186/1471-2164-14-218
  99. 99Leming MT, Rund SSC, Behura SK, Duffield GE, O’Tousa JE. A database of circadian and diel rhythmic gene expression in the yellow fever mosquito Aedes aegypti. BMC Genomics. 2014; 15: 1128. DOI: 10.1186/1471-2164-15-1128
  100. 100Chadee DD, Martinez R. Landing periodicity of Aedes aegypti with implications for dengue transmission in Trinidad, West Indies. J Vector Ecol. 2000; 25: 15863.
  101. 101Rund SSC, Labb LF, Benefiel OM, Duffield GE. Artificial Light at Night Increases Aedes aegypti Mosquito Biting Behavior with Implications for Arboviral Disease Transmission. Am J Trop Med Hyg. 2020; 103: 24502. DOI: 10.4269/ajtmh.20-0885
  102. 102Palmer JD. Review of the Dual-Clock Control of Tidal Rhythms and the Hypothesis that the Same Clock Governs Both Circatidal and Circadian Rhythms. Chronobiol Int. 1995; 12: 299310. DOI: 10.3109/07420529509057279
  103. 103Andreatta G, Tessmar-Raible K. The Still Dark Side of the Moon: Molecular Mechanisms of Lunar-Controlled Rhythms and Clocks. J Mol Biol. 2020; 432: 352546. DOI: 10.1016/j.jmb.2020.03.009
  104. 104Rock A, Wilcockson D, Last KS. Towards an Understanding of Circatidal Clocks. Front Physiol. 2022; 13: 830107. DOI: 10.3389/fphys.2022.830107
  105. 105Chabot CC, Ramberg-Pihl NC, Watson WH. Circalunidian clocks control tidal rhythms of locomotion in the American horseshoe crab, Limulus polyphemus. Mar Freshw Behav Physiol. 2016; 49: 7591. DOI: 10.1080/10236244.2015.1127679
  106. 106Zhang L, Hastings MH, Green EW, Tauber E, Sladek M, Webster SG, et al. Dissociation of circadian and circatidal timekeeping in the marine crustacean Eurydice pulchra. Curr Biol. 2013; 23: 186373. DOI: 10.1016/j.cub.2013.08.038
  107. 107Kwiatkowski ER, Schnytzer Y, Rosenthal JJC, Emery P. Behavioral circatidal rhythms require Bmal1 in Parhyale hawaiensis. Curr Biol. 2023; 33: 186782.e5. DOI: 10.1016/j.cub.2023.03.015
  108. 108Kaiser TS, Neumann J. Circalunar clocks-Old experiments for a new era. Bioessays. 2021; 43: e2100074. DOI: 10.1002/bies.202100074
  109. 109Schenk S, Bannister SC, Sedlazeck FJ, Anrather D, Minh BQ, Bileck A, et al. Combined transcriptome and proteome profiling reveals specific molecular brain signatures for sex, maturation and circalunar clock phase. Elife. 2019; 8. DOI: 10.7554/eLife.41556
  110. 110Gwinner E. Circannual rhythms in birds. Curr Opin Neurobiol. 2003; 13: 7708. DOI: 10.1016/j.conb.2003.10.010
  111. 111Schwartz C, Andrews MT. Circannual transitions in gene expression: lessons from seasonal adaptations. Curr Top Dev Biol. 2013; 105: 24773. DOI: 10.1016/B978-0-12-396968-2.00009-9
DOI: https://doi.org/10.5334/jcr.237 | Journal eISSN: 1740-3391
Language: English
Submitted on: Jan 15, 2024
Accepted on: Jan 17, 2024
Published on: Apr 2, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Sangeeta Chawla, John O’Neill, Marina I. Knight, Yuqing He, Lei Wang, Erik Maronde, Sergio Gil Rodríguez, Gerben van Ooijen, Eduardo Garbarino-Pico, Eva Wolf, Ouria Dkhissi-Benyahya, Anjoom Nikhat, Shaon Chakrabarti, Shawn D. Youngstedt, Natalie Zi-Ching Mak, Ignacio Provencio, Henrik Oster, Namni Goel, Mario Caba, Maria Oosthuizen, Giles E. Duffield, Christopher Chabot, Seth J. Davis, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.