References
- 1Konopka RJ, Benzer S. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1971; 68: 2112–2116. DOI: 10.1073/pnas.68.9.2112
- 2Benzer S. From the gene to behavior. JAMA. 1971; 218: 1015–1022. DOI: 10.1001/jama.1971.03190200047010
- 3Benzer S. BEHAVIORAL MUTANTS OF Drosophila ISOLATED BY COUNTERCURRENT DISTRIBUTION. Proc Natl Acad Sci U S A. 1967; 58: 1112–1119. DOI: 10.1073/pnas.58.3.1112
- 4Liu X, Zwiebel LJ, Hinton D, Benzer S, Hall JC, Rosbash M. The period gene encodes a predominantly nuclear protein in adult Drosophila. J Neurosci. 1992; 12: 2735–2744. DOI: 10.1523/JNEUROSCI.12-07-02735.1992
- 5Price JL, Blau J, Rothenfluh A, Abodeely M, Kloss B, Young MW. double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell. 1998; 94: 83–95. DOI: 10.1016/S0092-8674(00)81224-6
- 6Gekakis N, Saez L, Delahaye-Brown AM, Myers MP, Sehgal A, Young MW, Weitz CJ. Isolation of timeless by PER protein interaction: defective interaction between timeless protein and long-period mutant PERL. Science. 1995; 270: 811–815. DOI: 10.1126/science.270.5237.811
- 7Vosshall LB, Price JL, Sehgal A, Saez L, Young MW. Block in nuclear localization of period protein by a second clock mutation, timeless. Science. 1994; 263: 1606–1609. DOI: 10.1126/science.8128247
- 8Hardin PE, Hall JC, Rosbash M. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature. 1990; 343: 536–540. DOI: 10.1038/343536a0
- 9Suri V, Lanjuin A, Rosbash M. TIMELESS-dependent positive and negative autoregulation in the Drosophila circadian clock. EMBO J. 1999; 18: 675–686. DOI: 10.1093/emboj/18.3.675
- 10King DP, Zhao Y, Sangoram AM, et al. Positional cloning of the mouse circadian clock gene. Cell. 1997; 89: 641–653. DOI: 10.1016/S0092-8674(00)80245-7
- 11Tei H, Okamura H, Shigeyoshi Y, Fukuhara C, Ozawa R, Hirose M, Sakaki Y. Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature. 1997; 389: 512–516. DOI: 10.1038/39086
- 12Shigeyoshi Y, Taguchi K, Yamamoto S, et al. Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell. 1997; 91: 1043–1053. DOI: 10.1016/S0092-8674(00)80494-8
- 13Shearman LP, Zylka MJ, Weaver DR, Kolakowski LF
Jr , Reppert SM. Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron. 1997; 19: 1261–1269. DOI: 10.1016/S0896-6273(00)80417-1 - 14Sun ZS, Albrecht U, Zhuchenko O, Bailey J, Eichele G, Lee CC. RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell. 1997; 90: 1003–1011. DOI: 10.1016/S0092-8674(00)80366-9
- 15Gotter AL, Manganaro T, Weaver DR, Kolakowski LF
Jr , Possidente B, Sriram S, MacLaughlin DT, Reppert SM. A time-less function for mouse timeless. Nat Neurosci. 2000; 3: 755–756. DOI: 10.1038/77653 - 16Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, Block GD, Sakaki Y, Menaker M, Tei H. Resetting central and peripheral circadian oscillators in transgenic rats. Science. 2000; 288: 682–685. DOI: 10.1126/science.288.5466.682
- 17Balsalobre A, Damiola F, Schibler U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell. 1998. 93: 929–937. DOI: 10.1016/S0092-8674(00)81199-X
- 18Zylka MJ, Shearman LP, Weaver DR, Reppert SM. Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron. 1998; 20: 1103–1110. DOI: 10.1016/S0896-6273(00)80492-4
- 19Zheng B, Larkin DW, Albrecht U, Sun ZS, Sage M, Eichele G, Lee CC, Bradley A. The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature. 1999; 400: 169–173. DOI: 10.1038/22118
- 20Takumi T, Matsubara C, Shigeyoshi Y, Taguchi K, Yagita K, Maebayashi Y, Sakakida Y, Okumura K, Takashima N, Okamura H. A new mammalian period gene predominantly expressed in the suprachiasmatic nucleus. Genes Cells. 1998; 3: 167–176. DOI: 10.1046/j.1365-2443.1998.00178.x
- 21Albrecht U, Sun ZS, Eichele G, Lee CC. A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell. 1997; 91: 1055–1064. DOI: 10.1016/S0092-8674(00)80495-X
- 22Maywood ES, Mrosovsky N, Field MD, Hastings MH. Rapid down-regulation of mammalian period genes during behavioral resetting of the circadian clock. Proc Natl Acad Sci U S A. 1999; 96: 15211–15216. DOI: 10.1073/pnas.96.26.15211
- 23Bae K, Jin X, Maywood ES, Hastings MH, Reppert SM, Weaver DR. Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron. 2001; 30: 525–536. DOI: 10.1016/S0896-6273(01)00302-6
- 24Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, Virshup DM, Ptácek LJ, Fu YH. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science. 2001; 291: 1040–1043. DOI: 10.1126/science.1057499
- 25Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell. 2002; 110: 251–260. DOI: 10.1016/S0092-8674(02)00825-5
- 26Honma S, Kawamoto T, Takagi Y, Fujimoto K, Sato F, Noshiro M, Kato Y, Honma K-I. Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature. 2002; 419: 841–844. DOI: 10.1038/nature01123
- 27Millar AJ, Short SR, Chua NH, Kay SA. A novel circadian phenotype based on firefly luciferase expression in transgenic plants. Plant Cell. 1992; 4: 1075–1087. DOI: 10.1105/tpc.4.9.1075
- 28Kondo T, Strayer CA, Kulkarni RD, Taylor W, Ishiura M, Golden SS, Johnson CH. Circadian rhythms in prokaryotes: luciferase as a reporter of circadian gene expression in cyanobacteria. Proc Natl Acad Sci U S A. 1993; 90: 5672–5676. DOI: 10.1073/pnas.90.12.5672
- 29Millar AJ, Straume M, Chory J, Chua NH, Kay SA. The regulation of circadian period by phototransduction pathways in Arabidopsis. Science. 1995; 267: 1163–1166. DOI: 10.1126/science.7855596
- 30Hicks KA, Millar AJ, Carré IA, Somers DE, Straume M, Meeks-Wagner DR, Kay SA. Conditional circadian dysfunction of the Arabidopsis early-flowering 3 mutant. Science. 1996; 274: 790–792. DOI: 10.1126/science.274.5288.790
- 31Darrah C, Taylor BL, Edwards KD, Brown PE, Hall A, McWatters HG. Analysis of phase of LUCIFERASE expression reveals novel circadian quantitative trait loci in Arabidopsis. Plant Physiol. 2006; 140: 1464–1474. DOI: 10.1104/pp.105.074518
- 32Rubin MJ, Brock MT, Davis AM, German ZM, Knapp M, Welch SM, Harmer SL, Maloof JN, Davis SJ, Weinig C. Circadian rhythms vary over the growing season and correlate with fitness components. Mol Ecol. 2017; 26: 5528–5540. DOI: 10.1111/mec.14287
- 33Rubin MJ, Brock MT, Davis SJ, Weinig C. QTL Underlying Circadian Clock Parameters Under Seasonally Variable Field Settings in Arabidopsis thaliana. G3. 2019; 9: 1131–1139. DOI: 10.1534/g3.118.200770
- 34Brandes C, Plautz JD, Stanewsky R, Jamison CF, Straume M, Wood KV, Kay SA, Hall JC. Novel features of drosophila period Transcription revealed by real-time luciferase reporting. Neuron. 1996; 16: 687–692. DOI: 10.1016/S0896-6273(00)80088-4
- 35Geusz ME, Fletcher C, Block GD, Straume M, Copeland NG, Jenkins NA, Kay SA, Day RN. Long-term monitoring of circadian rhythms in c-fos gene expression from suprachiasmatic nucleus cultures. Curr Biol. 1997; 7: 758–766. DOI: 10.1016/S0960-9822(06)00334-4
- 36Putker M, O’Neill JS. Reciprocal Control of the Circadian Clock and Cellular Redox State – a Critical Appraisal. Mol Cells. 2016; 39: 6–19. DOI: 10.14348/molcells.2016.2323
- 37Milev NB, Reddy AB. Circadian redox oscillations and metabolism. Trends Endocrinol Metab. 2015; 26: 430–437. DOI: 10.1016/j.tem.2015.05.012
- 38Edgar RS, Green EW, Zhao Y, et al. Peroxiredoxins are conserved markers of circadian rhythms. Nature. 2012; 485: 459–464. DOI: 10.1038/nature11088
- 39Guido ME, Monjes NM, Wagner PM, Salvador GA. Circadian Regulation and Clock-Controlled Mechanisms of Glycerophospholipid Metabolism from Neuronal Cells and Tissues to Fibroblasts. Mol Neurobiol. 2022; 59: 326–353. DOI: 10.1007/s12035-021-02595-4
- 40O’Neill JS, Reddy AB. Circadian clocks in human red blood cells. Nature. 2011; 469: 498–503. DOI: 10.1038/nature09702
- 41Monjes NM, Wagner PM, Guido ME. “Disruption of the molecular clock severely affects lipid metabolism in a hepatocellular carcinoma cell model.” J Biol Chem. 2022; 298: 102551. DOI: 10.1016/j.jbc.2022.102551
- 42Wagner PM, Sosa Alderete LG, Gorné LD, Gaveglio V, Salvador G, Pasquaré S, Guido ME. Proliferative Glioblastoma Cancer Cells Exhibit Persisting Temporal Control of Metabolism and Display Differential Temporal Drug Susceptibility in Chemotherapy. Mol Neurobiol. 2019; 56: 1276–1292. DOI: 10.1007/s12035-018-1152-3
- 43McMenamin TM. A time to work: recent trends in shift work and flexible schedules. Mon Labor Rev. 2007; 130: 3.
- 44Van Cauter E, Spiegel K, Tasali E, Leproult R. Metabolic consequences of sleep and sleep loss. Sleep Med 2008; 9(Suppl 1): S23–8. DOI: 10.1016/S1389-9457(08)70013-3
- 45Puttonen S, Härmä M, Hublin C. Shift work and cardiovascular disease – pathways from circadian stress to morbidity. Scand J Work Environ Health. 2010; 36: 96–108. DOI: 10.5271/sjweh.2894
- 46Karatsoreos IN, Bhagat S, Bloss EB, Morrison JH, McEwen BS. Disruption of circadian clocks has ramifications for metabolism, brain, and behavior. Proc Natl Acad Sci U S A. 2011; 108: 1657–1662. DOI: 10.1073/pnas.1018375108
- 47Acosta-Rodríguez VA, Rijo-Ferreira F, Green CB, Takahashi JS. Importance of circadian timing for aging and longevity. Nat Commun. 2021; 12: 2862. DOI: 10.1038/s41467-021-22922-6
- 48LaVail MM. Rod outer segment disk shedding in rat retina: relationship to cyclic lighting. Science. 1976; 194: 1071–1074. DOI: 10.1126/science.982063
- 49Besharse JC, Iuvone PM. Circadian clock in Xenopus eye controlling retinal serotonin N-acetyltransferase. Nature. 1983; 305: 133–135. DOI: 10.1038/305133a0
- 50Pierce ME, Sheshberadaran H, Zhang Z, Fox LE, Applebury ML, Takahashi JS. Circadian regulation of iodopsin gene expression in embryonic photoreceptors in retinal cell culture. Neuron. 1993; 10: 579–584. DOI: 10.1016/0896-6273(93)90161-J
- 51Tosini G, Menaker M. Circadian rhythms in cultured mammalian retina. Science. 1996; 272: 419–421. DOI: 10.1126/science.272.5260.419
- 52Tosini G, Menaker M. The clock in the mouse retina: melatonin synthesis and photoreceptor degeneration. Brain Res. 1998; 789: 221–228. DOI: 10.1016/S0006-8993(97)01446-7
- 53Felder-Schmittbuhl M-P, Buhr ED, Dkhissi-Benyahya O, Hicks D, Peirson SN, Ribelayga CP, Sandu C, Spessert R, Tosini G. Ocular Clocks: Adapting Mechanisms for Eye Functions and Health. Invest Ophthalmol Vis Sci. 2018; 59: 4856–4870. DOI: 10.1167/iovs.18-24957
- 54Dkhissi-Benyahya O, Coutanson C, Knoblauch K, Lahouaoui H, Leviel V, Rey C, Bennis M, Cooper HM. The absence of melanopsin alters retinal clock function and dopamine regulation by light. Cell Mol Life Sci. 2013; 70: 3435–3447. DOI: 10.1007/s00018-013-1338-9
- 55Jaeger C, Sandu C, Malan A, Mellac K, Hicks D, Felder-Schmittbuhl M-P. Circadian organization of the rodent retina involves strongly coupled, layer-specific oscillators. FASEB J. 2015; 29: 1493–1504. DOI: 10.1096/fj.14-261214
- 56Buhr ED, Yue WWS, Ren X, et al. Neuropsin (OPN5)-mediated photoentrainment of local circadian oscillators in mammalian retina and cornea. Proc Natl Acad Sci U S A. 2015; 112: 13093–13098. DOI: 10.1073/pnas.1516259112
- 57Calligaro H, Coutanson C, Najjar RP, Mazzaro N, Cooper HM, Haddjeri N, Felder-Schmittbuhl M-P, Dkhissi-Benyahya O. Rods contribute to the light-induced phase shift of the retinal clock in mammals. PLoS Biol. 2019; 17:
e2006211 . DOI: 10.1371/journal.pbio.2006211 - 58Ebihara S, Tsuji K. Entrainment of the circadian activity rhythm to the light cycle: effective light intensity for a Zeitgeber in the retinal degenerate C3H mouse and the normal C57BL mouse. Physiol Behav. 1980; 24: 523–527. DOI: 10.1016/0031-9384(80)90246-2
- 59Foster RG, Provencio I, Hudson D, Fiske S, De Grip W, Menaker M. Circadian photoreception in the retinally degenerate mouse (rd/rd). J Comp Physiol A. 1991; 169: 39–50. DOI: 10.1007/BF00198171
- 60Czeisler CA, Shanahan TL, Klerman EB, Martens H, Brotman DJ, Emens JS, Klein T, Rizzo JF
3rd . Suppression of melatonin secretion in some blind patients by exposure to bright light. N Engl J Med. 1995; 332: 6–11. DOI: 10.1056/NEJM199501053320102 - 61Nelson RJ, Zucker I. Absence of extraocular photoreception in diurnal and nocturnal rodents exposed to direct sunlight. Comp Biochem Physiol A Physiol. 1981; 69: 145–148. DOI: 10.1016/0300-9629(81)90651-4
- 62Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science. 2002; 295: 1070–1073. DOI: 10.1126/science.1067262
- 63Do MTH. Melanopsin and the Intrinsically Photosensitive Retinal Ganglion Cells: Biophysics to Behavior. Neuron. 2019; 104: 205–226. DOI: 10.1016/j.neuron.2019.07.016
- 64Mrosovsky N, Reebs SG, Honrado GI, Salmon PA. Behavioural entrainment of circadian rhythms. Experientia. 1989; 45: 696–702. DOI: 10.1007/BF01974561
- 65Reebs SG, Mrosovsky N. Effects of induced wheel running on the circadian activity rhythms of Syrian hamsters: entrainment and phase response curve. J Biol Rhythms. 1989; 4: 39–48. DOI: 10.1177/074873048900400103
- 66Mrosovsky N. Double-pulse experiments with nonphotic and photic phase-shifting stimuli. J Biol Rhythms. 1991; 6: 167–179. DOI: 10.1177/074873049100600207
- 67Marchant EG, Mistlberger RE. Entrainment and phase shifting of circadian rhythms in mice by forced treadmill running. Physiol Behav. 1996; 60: 657–663. DOI: 10.1016/S0031-9384(96)80045-X
- 68Mistlberger RE, Marchant EG, Sinclair SV. Nonphotic phase-shifting and the motivation to run: cold exposure reexamined. J Biol Rhythms. 1996; 11: 208–215. DOI: 10.1177/074873049601100303
- 69Mistlberger RE, Antle MC. Behavioral inhibition of light-induced circadian phase resetting is phase and serotonin dependent. Brain Res. 1998; 786: 31–38. DOI: 10.1016/S0006-8993(97)01269-9
- 70Eastman CI, Hoese EK, Youngstedt SD, Liu L. Phase-shifting human circadian rhythms with exercise during the night shift. Physiol Behav. 1995; 58: 1287–1291. DOI: 10.1016/0031-9384(95)02031-4
- 71Youngstedt SD, Kripke DF, Elliott JA. Circadian phase-delaying effects of bright light alone and combined with exercise in humans. Am J Physiol Regul Integr Comp Physiol. 2002; 282: R259–66. DOI: 10.1152/ajpregu.00473.2001
- 72Youngstedt SD, Kline CE, Elliott JA, Zielinski MR, Devlin TM, Moore TA. Circadian phase-shifting effects of bright light, exercise, and bright light + exercise. J Circadian Rhythms. 2016; 14: 2. DOI: 10.5334/jcr.137
- 73Youngstedt SD, Elliott JA, Kripke DF. Human circadian phase-response curves for exercise. J Physiol. 2019; 597: 2253–2268. DOI: 10.1113/JP276943
- 74Youngstedt SD, Elliott J, Patel S, et al. Circadian acclimatization of performance, sleep, and 6-sulfatoxymelatonin using multiple phase shifting stimuli. Front Endocrinol. 2022; 13: 964681. DOI: 10.3389/fendo.2022.964681
- 75Goel N, Lee TM. Sex differences and effects of social cues on daily rhythms following phase advances in Octodon degus. Physiol Behav. 1995; 58: 205–213. DOI: 10.1016/0031-9384(95)00051-J
- 76Goel N, Lee TM. Relationship of circadian activity and social behaviors to reentrainment rates in diurnal Octodon degus (Rodentia). Physiol Behav. 1996; 59: 817–826. DOI: 10.1016/0031-9384(95)02141-8
- 77Goel N, Lee TM. Social cues modulate free-running circadian activity rhythms in the diurnal rodent, Octodon degus. Am J Physiol. 1997; 273: R797–804. DOI: 10.1152/ajpregu.1997.273.2.R797
- 78Goel N, Lee TM, Pieper DR. Removal of the olfactory bulbs delays photic reentrainment of circadian activity rhythms and modifies the reproductive axis in male Octodon degus. Brain Res. 1998; 792: 229–236. DOI: 10.1016/S0006-8993(98)00134-6
- 79Goel N, Lee TM, Smale L. Suprachiasmatic nucleus and intergeniculate leaflet in the diurnal rodent Octodon degus: retinal projections and immunocytochemical characterization. Neuroscience. 1999; 92: 1491–1509. DOI: 10.1016/S0306-4522(99)00056-1
- 80Goel N, Governale MM, Jechura TJ, Lee TM. Effects of intergeniculate leaflet lesions on circadian rhythms in Octodon degus. Brain Res. 2000; 877: 306–313. DOI: 10.1016/S0006-8993(00)02696-2
- 81Mistlberger RE. Circadian food-anticipatory activity: formal models and physiological mechanisms. Neurosci Biobehav Rev. 1994; 18: 171–195. DOI: 10.1016/0149-7634(94)90023-X
- 82Stephan FK. The “other” circadian system: food as a Zeitgeber. J Biol Rhythms. 2002; 17: 284–292. DOI: 10.1177/074873002129002591
- 83Caba M, Huerta C, Meza E, Hernández M, Rovirosa-Hernández MJ. Oxytocinergic Cells of the Hypothalamic Paraventricular Nucleus Are Involved in Food Entrainment. Front Neurosci. 2020; 14: 49. DOI: 10.3389/fnins.2020.00049
- 84Caba M, Lehman MN, Caba-Flores MD. Food Entrainment, Arousal, and Motivation in the Neonatal Rabbit Pup. Front Neurosci. 2021; 15: 636764. DOI: 10.3389/fnins.2021.636764
- 85Mistlberger RE. Food as circadian time cue for appetitive behavior. F1000Res. DOI: 10.12688/f1000research.20829.1
- 86Buijs R, Salgado R, Sabath E, Escobar C. Peripheral circadian oscillators: time and food. Prog Mol Biol Transl Sci. 2013; 119: 83–103. DOI: 10.1016/B978-0-12-396971-2.00004-X
- 87Caba M, Meza E, Escobar C, Jiménez A, Caba-Flores MD, Moreno-Cortés ML, Melo AI. Oxytocinergic cells of the posterior hypothalamic paraventricular nucleus participate in the food entrained clock. Sci Rep. 2021; 11: 19957. DOI: 10.1038/s41598-021-99266-0
- 88Daan S.
A History of Chronobiological Concepts . In: Albrecht U (ed.), The Circadian Clock. New York, NY: Springer New York. 2002. pp. 1–35. DOI: 10.1007/978-1-4419-1262-6_1 - 89Pittendrigh CS. Perspectives in the study of biological clocks.: Perspective in Marine Biology.
https://www.scienceopen.com/book?vid=9174297d-c930-4855-90bb-5075f4da3462 . Accessed 15 Dec 2023. - 90Pavlidis T. Biological Oscillators: Their Mathematical Analysis. Elsevier; 2012.
- 91Winfree AT. Integrated view of resetting a circadian clock. J Theor Biol. 1970; 28: 327–374. DOI: 10.1016/0022-5193(70)90075-5
- 92Gonze D, Bernard S, Waltermann C, Kramer A, Herzel H. Spontaneous synchronization of coupled circadian oscillators. Biophys J. 2005; 89: 120–129. DOI: 10.1529/biophysj.104.058388
- 93Abraham U, Granada AE, Westermark PO, Heine M, Kramer A, Herzel H. Coupling governs entrainment range of circadian clocks. Mol Syst Biol. 2010; 6: 438. DOI: 10.1038/msb.2010.92
- 94Granada AE, Bordyugov G, Kramer A, Herzel H. Human chronotypes from a theoretical perspective. PLoS One. 2013; 8:
e59464 . DOI: 10.1371/journal.pone.0059464 - 95Gérard C, Goldbeter A. Entrainment of the mammalian cell cycle by the circadian clock: modeling two coupled cellular rhythms. PLoS Comput Biol. 2012; 8:
e1002516 . DOI: 10.1371/journal.pcbi.1002516 - 96Yan J, Goldbeter A. Robust synchronization of the cell cycle and the circadian clock through bidirectional coupling. J R Soc Interface. 2019; 16: 20190376. DOI: 10.1098/rsif.2019.0376
- 97Sulli G, Lam MTY, Panda S. Interplay between Circadian Clock and Cancer: New Frontiers for Cancer Treatment. Trends Cancer Res. 2019; 5: 475–494. DOI: 10.1016/j.trecan.2019.07.002
- 98Shostak A. Circadian Clock, Cell Division, and Cancer: From Molecules to Organism. Int J Mol Sci; 2017. DOI: 10.3390/ijms18040873
- 99Gaucher J, Montellier E, Sassone-Corsi P. Molecular Cogs: Interplay between Circadian Clock and Cell Cycle. Trends Cell Biol. 2018; 28: 368–379. DOI: 10.1016/j.tcb.2018.01.006
- 100Lu S, Dong L, Fang C, et al. Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nat Genet. 2020; 52: 428–436. DOI: 10.1038/s41588-020-0604-7
- 101Lu S, Zhao X, Hu Y, et al. Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nat Genet. 2017; 49: 773–779. DOI: 10.1038/ng.3819
- 102Bu T, Lu S, Wang K, et al. A critical role of the soybean evening complex in the control of photoperiod sensitivity and adaptation. Proc Natl Acad Sci U S A. 2021. DOI: 10.1073/pnas.2010241118
- 103Dong L, Fang C, Cheng Q, et al. Genetic basis and adaptation trajectory of soybean from its temperate origin to tropics. Nat Commun. 2021; 12: 5445. DOI: 10.1038/s41467-021-25800-3
- 104Guo Z, Song Y, Zhou R, Ren Z, Jia J. Discovery, evaluation and distribution of haplotypes of the wheat Ppd-D1 gene. New Phytol. 2010; 185: 841–851. DOI: 10.1111/j.1469-8137.2009.03099.x
- 105Zhang W, Zhao G, Gao L, Kong X, Guo Z, Wu B, Jia J. Functional Studies of Heading Date-Related Gene TaPRR73, a Paralog of Ppd1 in Common Wheat. Front Plant Sci. 2016; 7: 772. DOI: 10.3389/fpls.2016.00772
- 106Koo B-H, Yoo S-C, Park J-W, Kwon C-T, Lee B-D, An G, Zhang Z, Li J, Li Z, Paek N-C. Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes. Mol Plant. 2013; 6: 1877–1888. DOI: 10.1093/mp/sst088
- 107Gao H, Jin M, Zheng X-M, et al. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc Natl Acad Sci U S A. 2014; 111: 16337–16342. DOI: 10.1073/pnas.1418204111
- 108Wang F, Han T, Song Q, Ye W, Song X, Chu J, Li J, Chen ZJ. The Rice Circadian Clock Regulates Tiller Growth and Panicle Development Through Strigolactone Signaling and Sugar Sensing. Plant Cell. 2020; 32: 3124–3138. DOI: 10.1105/tpc.20.00289
- 109Wang X, He Y, Wei H, Wang L. A clock regulatory module is required for salt tolerance and control of heading date in rice. Plant Cell Environ. 2021; 44: 3283–3301. DOI: 10.1111/pce.14167
- 110Wei H, Wang X, He Y, Xu H, Wang L. Clock component OsPRR73 positively regulates rice salt tolerance by modulating OsHKT2;1-mediated sodium homeostasis. EMBO J. 2021; 40:
e105086 . DOI: 10.15252/embj.2020105086 - 111Wei H, Xu H, Su C, Wang X, Wang L. Rice CIRCADIAN CLOCK ASSOCIATED 1 transcriptionally regulates ABA signaling to confer multiple abiotic stress tolerance. Plant Physiol. 2022; 190: 1057–1073. DOI: 10.1093/plphys/kiac196
