Have a personal or library account? Click to login
Discovery and Visualization of Age-Dependent Patterns in the Diurnal Transcriptome of Drosophila Cover

Discovery and Visualization of Age-Dependent Patterns in the Diurnal Transcriptome of Drosophila

Open Access
|Dec 2022

References

  1. 1Bass J, Lazar MA. Circadian time signatures of fitness and disease. Science. 2016; 354(6315): 9949. DOI: 10.1126/science.aah4965
  2. 2Giebultowicz JM. Circadian regulation of metabolism and healthspan in Drosophila. Free Radic Biol Med. 2018; 119: 628. DOI: 10.1016/j.freeradbiomed.2017.12.025
  3. 3Gong C, Li C, Qi X, Song Z, Wu J, Hughes ME, et al. The daily rhythms of mitochondrial gene expression and oxidative stress regulation are altered by aging in the mouse liver. Chronobiol Int. 2015; 32(9): 125463. DOI: 10.3109/07420528.2015.1085388
  4. 4Krishnan N, Rakshit K, Chow ES, Wentzell JS, Kretzschmar D, Giebultowicz JM. Loss of circadian clock accelerates aging in neurodegeneration-prone mutants. Neurobiology of disease. 2012; 45(3): 112935. DOI: 10.1016/j.nbd.2011.12.034
  5. 5Kondratova AA, Kondratov RV. The circadian clock and pathology of the ageing brain. Nat Rev Neurosci. 2012; 13(5): 32535. DOI: 10.1038/nrn3208
  6. 6Sato S, Solanas G, Peixoto FO, Bee L, Symeonidi A, Schmidt MS, et al. Circadian Reprogramming in the Liver Identifies Metabolic Pathways of Aging. Cell. 2017; 170(4): 66477.e11. DOI: 10.1016/j.cell.2017.07.042
  7. 7Solanas G, Peixoto FO, Perdiguero E, Jardi M, Ruiz-Bonilla V, Datta D, et al. Aged Stem Cells Reprogram Their Daily Rhythmic Functions to Adapt to Stress. Cell. 2017; 170(4): 67892.e20. DOI: 10.1016/j.cell.2017.07.035
  8. 8Kuintzle RC, Chow ES, Westby TN, Gvakharia BO, Giebultowicz JM, Hendrix DA. Circadian deep sequencing reveals stress-response genes that adopt robust rhythmic expression during aging. Nature Communications. 2017; 8(1): 110 ARTN 14529. DOI: 10.1038/ncomms14529
  9. 9Yang J, Hendrix DA, Giebultowicz JM. The dark side of artificial light. The Biochemist. 2020; 42(5): 325. DOI: 10.1042/BIO20200060
  10. 10Hall H, Ma J, Shekhar S, Leon-Salas WD, Weake VM. Blue light induces a neuroprotective gene expression program in Drosophila photoreceptors. BMC Neurosci. 2018; 19(1): 43. DOI: 10.1186/s12868-018-0443-y
  11. 11Nash TR, Chow ES, Law AD, Fu SD, Fuszara E, Bilska A, et al. Daily blue-light exposure shortens lifespan and causes brain neurodegeneration in Drosophila. NPJ Aging Mech Dis. 2019; 5(1): 8. DOI: 10.1038/s41514-019-0038-6
  12. 12Chen CY, Logan RW, Ma T, Lewis DA, Tseng GC, Sibille E, et al. Effects of aging on circadian patterns of gene expression in the human prefrontal cortex. Proc Natl Acad Sci U S A. 2016; 113(1): 20611. DOI: 10.1073/pnas.1508249112
  13. 13Wijnen H, Naef F, Young MW. Molecular and statistical tools for circadian transcript profiling. Methods in enzymology. Elsevier. 2005; 393: 34165. DOI: 10.1016/S0076-6879(05)93015-2
  14. 14Hughes ME, Hogenesch JB, Kornacker K. JTK_CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. J Biol Rhythms. 2010; 25(5): 37280. DOI: 10.1177/0748730410379711
  15. 15Thaben PF, Westermark PO. Detecting rhythms in time series with RAIN. J Biol Rhythms. 2014; 29(6): 391400. DOI: 10.1177/0748730414553029
  16. 16Yang R, Su Z. Analyzing circadian expression data by harmonic regression based on autoregressive spectral estimation. Bioinformatics. 2010; 26(12): i16874. DOI: 10.1093/bioinformatics/btq189
  17. 17Rodriguez J, Tang CH, Khodor YL, Vodala S, Menet JS, Rosbash M. Nascent-Seq analysis of Drosophila cycling gene expression. Proc Natl Acad Sci U S A. 2013; 110(4): E27584. DOI: 10.1073/pnas.1219969110
  18. 18Kolmogorov A. Sulla determinazione empirica di una lgge di distribuzione. Inst Ital Attuari, Giorn. 1933; 4: 8391
  19. 19Hsu PY, Harmer SL. Circadian Phase Has Profound Effects on Differential Expression Analysis. PloS one. 2012; 7(11): e49853 ARTN e49853. DOI: 10.1371/journal.pone.0049853
  20. 20Koike N, Yoo SH, Huang HC, Kumar V, Lee C, Kim TK, et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science. 2012; 338(6105): 34954. DOI: 10.1126/science.1226339
  21. 21Rutila JE, Suri V, Le M, So WV, Rosbash M, Hall JC. CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell. 1998; 93(5): 80514. DOI: 10.1016/S0092-8674(00)81441-5
  22. 22Goh GH, Blache D, Mark PJ, Kennington WJ, Maloney SK. Daily temperature cycles prolong lifespan and have sex-specific effects on peripheral clock gene expression in Drosophila melanogaster. Journal of Experimental Biology. 2021; 224(10): ARTN jeb233213. DOI: 10.1242/jeb.233213
  23. 23Hughes ME, Grant GR, Paquin C, Qian J, Nitabach MN. Deep sequencing the circadian and diurnal transcriptome of Drosophila brain. Genome research. 2012; 22(7): 126681. DOI: 10.1101/gr.128876.111
  24. 24Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022; 10. DOI: 10.1093/nar/gkac194
  25. 25Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research. 2009; 37(1): 113. DOI: 10.1093/nar/gkn923
  26. 26Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007; 35(Web Server issue): W16975. DOI: 10.1093/nar/gkm415
  27. 27Francis MJ, Roche S, Cho MJ, Beall E, Min B, Panganiban RP, et al. Drosophila IRBP bZIP heterodimer binds P-element DNA and affects hybrid dysgenesis. Proc Natl Acad Sci U S A. 2016; 113(46): 130038. DOI: 10.1073/pnas.1613508113
  28. 28Chung H, Kim AK, Jung SA, Kim SW, Yu K, Lee JH. The Drosophila homolog of methionine sulfoxide reductase A extends lifespan and increases nuclear localization of FOXO. FEBS Lett. 2010; 584(16): 360914. DOI: 10.1016/j.febslet.2010.07.033
  29. 29Long DM, Frame AK, Reardon PN, Cumming RC, Hendrix DA, Kretzschmar D, et al. Lactate dehydrogenase expression modulates longevity and neurodegeneration in Drosophila melanogaster. Aging (Albany NY). 2020; 12(11): 1004158. DOI: 10.18632/aging.103373
  30. 30Wang HD, Kazemi-Esfarjani P, Benzer S. Multiple-stress analysis for isolation of Drosophila longevity genes. Proc Natl Acad Sci U S A. 2004; 101(34): 126105. DOI: 10.1073/pnas.0404648101
  31. 31Gronke S, Clarke DF, Broughton S, Andrews TD, Partridge L. Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genet. 2010; 6(2): e1000857. DOI: 10.1371/journal.pgen.1000857
  32. 32Weiss S, Kohn E, Dadon D, Katz B, Peters M, Lebendiker M, et al. Compartmentalization and Ca2+ buffering are essential for prevention of light-induced retinal degeneration. J Neurosci. 2012; 32(42): 14696708. DOI: 10.1523/JNEUROSCI.2456-12.2012
  33. 33Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif. Bioinformatics. 2011; 27(7): 10178. DOI: 10.1093/bioinformatics/btr064
  34. 34Schneiderman JI, Goldstein S, Ahmad K. Perturbation analysis of heterochromatin-mediated gene silencing and somatic inheritance. PLoS Genet. 2010; 6(9): e1001095. DOI: 10.1371/journal.pgen.1001095
  35. 35Hao H, Allen DL, Hardin PE. A circadian enhancer mediates PER-dependent mRNA cycling in Drosophila melanogaster. Mol Cell Biol. 1997; 17(7): 368793. DOI: 10.1128/MCB.17.7.3687
  36. 36Abruzzi KC, Rodriguez J, Menet JS, Desrochers J, Zadina A, Luo W, et al. Drosophila CLOCK target gene characterization: implications for circadian tissue-specific gene expression. Genes Dev. 2011; 25(22): 237486. DOI: 10.1101/gad.178079.111
  37. 37Mezan S, Feuz JD, Deplancke B, Kadener S. PDF Signaling Is an Integral Part of the Drosophila Circadian Molecular Oscillator. Cell Reports. 2016; 17(3): 70819. DOI: 10.1016/j.celrep.2016.09.048
  38. 38Bloomquist BT, Shortridge RD, Schneuwly S, Perdew M, Montell C, Steller H, et al. Isolation of a putative phospholipase C gene of Drosophila, norpA, and its role in phototransduction. Cell. 1988; 54(5): 72333. DOI: 10.1016/S0092-8674(88)80017-5
  39. 39Neufeld-Cohen A, Robles MS, Aviram R, Manella G, Adamovich Y, Ladeuix B, et al. Circadian control of oscillations in mitochondrial rate-limiting enzymes and nutrient utilization by PERIOD proteins. Proc Natl Acad Sci U S A. 2016; 113(12): E167382. DOI: 10.1073/pnas.1519650113
  40. 40Duffy JF, Czeisler CA. Age-related change in the relationship between circadian period, circadian phase, and diurnal preference in humans. Neuroscience Letters. 2002; 318(3): 11720. DOI: 10.1016/S0304-3940(01)02427-2
  41. 41Baillon L, Germani F, Rockel C, Hilchenbach J, Basler K. Xrp1 is a transcription factor required for cell competition-driven elimination of loser cells. Scientific Reports. 2018; 8(1): 110 ARTN 17712. DOI: 10.1038/s41598-018-36277-4
  42. 42Ma D, Przybylski D, Abruzzi KC, Schlichting M, Li Q, Long X, et al. A transcriptomic taxonomy of Drosophila circadian neurons around the clock. Elife. 2021; 10: e63056. DOI: 10.7554/eLife.63056
  43. 43Beaver LM, Klichko VI, Chow ES, Kotwica-Rolinska J, Williamson M, Orr WC, et al. Circadian regulation of glutathione levels and biosynthesis in Drosophila melanogaster. PloS one. 2012; 7(11): e50454. DOI: 10.1371/journal.pone.0050454
  44. 44Klichko VI, Chow ES, Kotwica-Rolinska J, Orr WC, Giebultowicz JM, Radyuk SN. Aging alters circadian regulation of redox in Drosophila. Frontiers in genetics. 2015; 6: 83. DOI: 10.3389/fgene.2015.00083
  45. 45Brown B, Mitra S, Roach FD, Vasudevan D, Ryoo HD. The transcription factor Xrp1 is required for PERK-mediated antioxidant gene induction in Drosophila. Elife. 2021; 10: e74047 ARTN. DOI: 10.7554/eLife.74047; https://doi.org/10.7554/eLife.74047.sa1; https://doi.org/10.7554/eLife.74047.sa2
  46. 46Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019; 37(8): 90715. DOI: 10.1038/s41587-019-0201-4
  47. 47Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nature Biotechnology. 2013; 31(1): 46+. DOI: 10.1038/nbt.2450
  48. 48Rivera J, Keranen SVE, Gallo SM, Halfon MS. REDfly: the transcriptional regulatory element database for Drosophila. Nucleic Acids Res. 2019; 47(D1): D828D34. DOI: 10.1093/nar/gky957
  49. 49Noyes MB, Meng XD, Wakabayashi A, Sinha S, Brodsky MH, Wolfe SA. A systematic characterization of factors that regulate Drosophila segmentation via a bacterial one-hybrid system. Nucleic Acids Research. 2008; 36(8): 254760. DOI: 10.1093/nar/gkn048
  50. 50Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, Van Der Lee R, et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic acids research. 2018; 46(D1): D260D6. DOI: 10.1093/nar/gkx1126
  51. 51Machanick P, Bailey TL. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics. 2011; 27(12): 16967. DOI: 10.1093/bioinformatics/btr189
  52. 52Nitta KR, Jolma A, Yin Y, Morgunova E, Kivioja T, Akhtar J, et al. Conservation of transcription factor binding specificities across 600 million years of bilateria evolution. Elife. 2015; 4: e04837. DOI: 10.7554/eLife.04837
DOI: https://doi.org/10.5334/jcr.218 | Journal eISSN: 1740-3391
Language: English
Submitted on: Mar 5, 2022
Accepted on: Oct 6, 2022
Published on: Dec 8, 2022
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Benjamin Sebastian, Rosalyn M. Fey, Patrick Morar, Brittany Lasher, Jadwiga M. Giebultowicz, David A. Hendrix, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.

Volume 20 (2022): Issue 0