Have a personal or library account? Click to login
Changes in 24 h Rhythmicity of Spontaneous Locomotor Activity in the Triple Transgenic Mouse for Alzheimer’s Disease (3xTg-AD) in a Jet Lag Protocol: Correlations with Retinal Sensitivity Cover

Changes in 24 h Rhythmicity of Spontaneous Locomotor Activity in the Triple Transgenic Mouse for Alzheimer’s Disease (3xTg-AD) in a Jet Lag Protocol: Correlations with Retinal Sensitivity

Open Access
|May 2021

References

  1. 1Barnes DE, Yaffe K. The Projected Impact of Risk Factor Reduction on Alzheimer’s Disease Prevalence. Lancet Neurol. 2011; 10: 819828. DOI: 10.1016/S1474-4422(11)70072-2
  2. 2Lane C, Hardy J, Schott J. Alzheimer’s disease. Eur J Neurol. 2018; 25: 5970. DOI: 10.1111/ene.13439
  3. 3Bedrosian T, Herring K, Weil Z, Nelson RJ. Altered temporal patterns of anxiety in aged and amyloid precursor protein (APP) transgenic mice. Proc Natl Acad Sci U S A. 2011; 108: 1168611691. DOI: 10.1073/pnas.1103098108
  4. 4Knight EM, Brown TM, Gümüsgöz S, Smith JCM, Waters EJ, Allan SM, Lawrence CB. Age-related changes in core body temperature and activity in triple-transgenic Alzheimer’s disease (3xTgAD) mice. DMM Dis Model Mech. 2013; 6: 160170. DOI: 10.1242/dmm.010173
  5. 5Musiek ES, Bhimasani M, Zangrilli MA, Morris JC, Holtzman DM, Ju YES. Circadian rest-activity pattern changes in aging and preclinical Alzheimer disease. JAMA Neurol. 2018; 75: 582590. DOI: 10.1001/jamaneurol.2017.4719
  6. 6Wu M, Zhou F, Cao X, Yang J, Bai Y, Yan X, Cao J, Qi J. Abnormal circadian locomotor rhythms and Per gene expression in six-month-old triple transgenic mice model of Alzheimer’s disease. Neurosci Lett. 2018; 676: 1318. DOI: 10.1016/j.neulet.2018.04.008
  7. 7Poggiogalle E, Jamshed H, Peterson C. Circadian Regulation of Glucose, Lipid, and Energy Metabolism in Humans. Metabolism. 2018; 84: 1117. DOI: 10.1016/j.metabol.2017.11.017
  8. 8Volicer L, Harper DG, Manning BC, Goldstein R, Satlin A. Sundowning and circadian rhythms in Alzheimer’s disease. Am J Psychiatry. 2001; 158: 704711. DOI: 10.1176/appi.ajp.158.5.704
  9. 9Mahlberg R, Kunz D, Sutej I, Kühl KP, Hellweg R. Melatonin Treatment of Day-Night Rhythm Disturbances and Sundowning in Alzheimer Disease: an open-label pilot study using actigraphy. J Clin Psychopharmacol. 2004; 24: 456459. DOI: 10.1097/01.jcp.0000132443.12607.fd
  10. 10Lindberg PT, Mitchell JW, Burgoon PW, Beaulé C, Weihe E, Schäfer MKH, Eiden LE, Jiang SZ, Gillette MU. Pituitary Adenylate Cyclase-Activating Peptide (PACAP)-Glutamate Co-transmission Drives Circadian Phase-Advancing Responses to Intrinsically Photosensitive Retinal Ganglion Cell Projections by Suprachiasmatic Nucleus. Front Neurosci. 2019; 13: 113. DOI: 10.3389/fnins.2019.01281
  11. 11Reid KJ, Abbott SM. Jet lag and shift work disorder. Sleep Med Clin. 2015; 10: 523535. DOI: 10.1016/j.jsmc.2015.08.006
  12. 12Diekman CO, Bose A. Reentrainment of the circadian pacemaker during jet lag: East-west asymmetry and the effects of north-south travel. J Theor Biol. 2018; 437: 261285. DOI: 10.1016/j.jtbi.2017.10.002
  13. 13Yamazaki S, Numano R, Abe M, Hida A, Takahashi RI, Ueda M, Block GD, Sakaki Y, Menaker M, Tei H. Resetting central and peripheral circadian oscillators in transgenic rats. Science. 2000; 288: 682685. DOI: 10.1126/science.288.5466.682
  14. 14Casiraghi LP, Oda GA, Chiesa JJ, Friesen WO, Golombek DA. Forced desynchronization of activity rhythms in a model of chronic jet lag in mice. J Biol Rhythms. 2012; 27: 5969. DOI: 10.1177/0748730411429447
  15. 15Coutinho JF, Gonc¸alves OF, Maia L, Vasconcelos CF, Perrone-McGovern K, Simon-Dack S, Hernandez K, Oliveira-Silva P, Mesquita AR, Sampaio A. Differential activation of the default mode network in jet lagged individuals. Chronobiol Int. 2015; 32: 143149. DOI: 10.3109/07420528.2014.955187
  16. 16Iggena D, Winter Y, Steiner B. Melatonin restores hippocampal neural precursor cell proliferation and prevents cognitive deficits induced by jet lag simulation in adult mice. J Pineal Res. 2017; 62: 112. DOI: 10.1111/jpi.12397
  17. 17Myers A, McGonigle, P. Overview of transgenic mouse models for Alzheimer’s disease. Curr. Prot. Neurosc. 2019; 89: e81. DOI: 10.1002/cpns.81
  18. 18Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM. Triple-transgenic model of Alzheimer’s Disease with plaques and tangles: Intracellular Aβ and synaptic dysfunction. Neuron. 2003; 39: 409421. DOI: 10.1016/S0896-6273(03)00434-3
  19. 19Bilkei-Gorzo A. Genetic mouse models of brain ageing and Alzheimer’s disease. Pharmacol Ther. 2014 May; 142(2): 24457. DOI: 10.1016/j.pharmthera.2013.12.009
  20. 20Sterniczuk R, Dyck RH, Laferla FM, Antle MC. Characterization of the 3xTg-AD mouse model of Alzheimer’s disease: Part 1. Circadian changes. Brain Res. 2010; 1348: 139148. DOI: 10.1016/j.brainres.2010.05.013
  21. 21Knight EM, Brown TM, Gümüsgöz S, Smith JC, Waters EJ, Allan SM, Lawrence CB. Age-related changes in core body temperature and activity in triple transgenic Alzheimer’s disease (3xTgAD) mice. Dis Model Mech. 2013; 6(1): 160170. DOI: 10.1242/dmm.010173
  22. 22Bellanti F, Iannelli G, Blonda M, Tamborra R, Villani R, Romano A, Calcagnini S, Mazzoccoli G, Vinciguerra M, Gaetani S, Giudetti AM, Vendemiale G, Cassano T, Serviddio G. Alterations of Clock Gene RNA Expression in Brain Regions of a Triple Transgenic Model of Alzheimer’s Disease. J Alzheimer’s Dis. 2017; 59: 615631. DOI: 10.3233/JAD-160942
  23. 23Floessner T, Hut RA. Basic principles underlying biological oscillations and their entrainment. In Biological Timekeeping: Clock, Rhytms and Behaviour, (Kumar V, ed.) pp 4758, The Netherlands; 2017. DOI: 10.1007/978-81-322-3688-7_3
  24. 24Reid KJ, Abbott SM. Jet lag and shift work disorder. Sleep Med Clin. 2015; 10(4): 523535. DOI: 10.1016/j.jsmc.2015.08.006
  25. 25Chiasseu M, Vargas JLC, Destroismaisons L, Velde C. Vande, Leclerc N, Di Polo A. Tau accumulation, altered phosphorylation, and missorting promote neurodegeneration in glaucoma. J Neurosci. 2016; 36: 57855798. DOI: 10.1523/JNEUROSCI.3986-15.2016
  26. 26Grimaldi A, Brighi C, Peruzzi G, Ragozzino D, Bonanni V, Limatola C, Ruocco G, Di Angelantonio S. Inflammation, neurodegeneration and protein aggregation in the retina as ocular biomarkers for Alzheimer’s disease in the 3xTg-AD mouse model. Cell Death Dis. 2018; 9: 110. DOI: 10.1038/s41419-018-0740-5
  27. 27Mahajan D, Votruba M. Can the retina be used to diagnose and plot the progression of Alzheimer’s disease? Acta Ophthalmol. 2017; 95: 768777. DOI: 10.1111/aos.13472
  28. 28Pérez-Mendoza M, Rivera-Zavala JB, Rodríguez-Guadarrama AH, Montoya-Gómez LM, Carmona-Castro A, Díaz-Muñoz M, Miranda-Anaya M. Daily cycle in hepatic lipid metabolism in obese mice, Neotomodon alstoni: Sex differences. Chronobiol Int. 2018; 35: 643657. DOI: 10.1080/07420528.2018.1424178
  29. 29Sellix MT, Evans JA, Leise TL, Castañón-Cervantes O, Hill DD, DeLisser P, Block GD, Menaker M, Davidson AJ. Aging differentially affects the re-entrainment response of central and peripheral circadian oscillators. J Neurosci. 2012; 32: 1619316202. DOI: 10.1523/JNEUROSCI.3559-12.2012
  30. 30Bittman EL. Effects of the duper mutation on responses to light: parametric and nonparametric responses, range of entrainment, and masking. J. Biol. Rhythms. 2014; 29(2): 97109. DOI: 10.1177/0748730413520399
  31. 31Sokolove PG, Bushell WN. The chi square periodogram: Its utility for analysis of circadian rhythms. J Theor Biol. 1978; 72: 131160. DOI: 10.1016/0022-5193(78)90022-X
  32. 32Díaz-Lezama N, Wu Z, Adán-Castro E, Arnold E, Vázquez-Membrillo M, Arredondo-Zamarripa D, Ledesma-Colunga MG, Moreno-Carranza B, Martinez De La Escalera G, Colosi P, Clapp C. Diabetes enhances the efficacy of AAV2 vectors in the retina: Therapeutic effect of AAV2 encoding vasoinhibin and soluble VEGF receptor 1. Lab Investig. 2016; 96: 283295. DOI: 10.1038/labinvest.2015.135
  33. 33Pfeffer M, Zimmermann Z, Gispert S, Auburger G, Korf HW, von Gall Ch. Impaired photic entrainment of spontaneous locomotor activity in mice overexpressing human mutant-synuclein. Int. J. Mol. Sci. 2018; 19: 1651. DOI: 10.3390/ijms19061651
  34. 34Harrington M, Molyneux P, Soscia S, Prabakar C, McKinley-Brewer J, Lall G. Behavioral and neurochemical sources of variability of circadian period and phase: studies of circadian rhythms of npy-/-mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007; 292: R1306R1314. DOI: 10.1152/ajpregu.00383.2006
  35. 35Leise TL, Harrington ME, Molyneux PC, Song I, Queenan H, Zimmerman E, et al. Voluntary exercise can strengthen the circadian system in aged mice. Age (Dordr.). 2013; 35: 21372152. DOI: 10.1007/s11357-012-9502-y
  36. 36Belfiore R, Rodin A, Ferreira E, Velazquez R, Branca C, Caccamo A, Oddo S. Temporal and regional progression of Alzheimer’s disease-like pathology in 3xTg-AD mice. Aging Cell. 2019; 18: e12873. DOI: 10.1111/acel.12873
  37. 37Do K, Laing BT, Landry T, Bunner W, Mersaud N, Matsubara T, Li P, Yuan Y, Lu Q, Huang H. The effects of exercise on hypothalamic neurodegeneration of Alzheimer’s disease mouse model. PLoS One. 2018; 13: 117. DOI: 10.1371/journal.pone.0190205
  38. 38Novak C, Burghardt P, Levine JA. The use of a running wheel to measure activity in roden: relationship to energy balance, general activity, and reward. Neurosci Biobehav Rev. 2012; 36: 10011004. DOI: 10.1016/j.neubiorev.2011.12.012
  39. 39Duzel E, Van Praag H, Sendtner M. Can physical exercise in old age improve memory and hippocampal function? Brain. 2016; 139: 662673. DOI: 10.1093/brain/awv407
  40. 40Isla AG, Vázquez-Cuevas FG, Peña-Ortega F. Exercise Prevents Amyloid-β-Induced Hippocampal Network Disruption by Inhibiting GSK3β Activation. J Alzheimer’s Dis. 2016; 52: 33343. DOI: 10.1093/brain/awv407
  41. 41Reuss S, Decker K, Hödl P, Sraka S. Anterograde neuronal tracing of retinohypothalamic projections in the hamster -possible innervation of substance P-containing neurons in the suprachiasmatic nucleus. Neurosc. Lett. 1994; 174: 5154. DOI: 10.1016/0304-3940(94)90116-3
  42. 42Davidson AJ, Yamazaki S, Arble DM, Menaker M, Block GD. Resetting of central and peripheral circadian oscillators in aged rats. Neurobiol Aging. 2008; 29: 471477. DOI: 10.1016/j.neurobiolaging.2006.10.018
  43. 43Yamaguchi Y, Okamura H. Vasopressin signal inhibition in aged mice decreases mortality under chronic jet lag. iScience. 2018; 5: 118122. DOI: 10.1016/j.isci.2018.06.008
  44. 44Vercruysse P, Vieau D, Blum D, Petersén Å, Dupuis L. Hypothalamic alterations in neurodegenerative diseases and their relation to abnormal energy metabolism. Front Mol Neurosci. 2018; 11: 116. DOI: 10.3389/fnmol.2018.00002
  45. 45Stopa EG, Volicer L, Kuo-Leblanc V, Harper D, Lathi D, Tate B, Satlin A. Pathological evaluation of the human suprachiasmatic nucleus in severe dementia. J. Neuropathol. Exp. Neurol. 1999; 58(1): 2939. DOI: 10.1097/00005072-199901000-00004
  46. 46Adler P, Mayne J, Walker K, Ning Z, Figeys D. Therapeutic targeting of casein kinase 1δ/in an Alzheimer’s disease mouse model. J Proteome Res. 2019; 18: 33833393. DOI: 10.1021/acs.jproteome.9b00312
  47. 47Sprouse J, Reynolds L, Kleiman R, Tate B, Swanson TA, Pickard GE. Chronic treatment with a selective inhibitor of casein kinase Iδ/yields cumulative phase delays in circadian rhythms. Psychopharmacology (Berl). 2010; 210: 569576. DOI: 10.1007/s00213-010-1860-5
  48. 48Besing RC, Rogers CO, Paul JR, Hablitz LM, Johnson RL, McMahon LL, Gamble KL. GSK3 activity regulates rhythms in hippocampal clock gene expression and synaptic plasticity. Hippocampus. 2017; 27: 890898. DOI: 10.1002/hipo.22739
  49. 49Mercado-Gómez O, Hernández-Fonseca K, Villavicencio-Queijeiro A, Massieu L, Chimal-Monroy J, Arias C. Inhibition of Wnt and PI3K signaling modulates GSK-3β activity and induces morphological changes in cortical neurons: Role of tau phosphorylation. Neurochem Res. 2008; 33: 15991609. DOI: 10.1007/s11064-008-9714-9
  50. 50Gall AJ, Shuboni DD, Yan L, Nunez AA, Smale L. Suprachiasmatic Nucleus and Subparaventricular Zone Lesions Disrupt Circadian Rhythmicity but Not Light-Induced Masking Behavior in Nile Grass Rats. J Biol Rhythms. 2016; 31: 170181. DOI: 10.1177/0748730415626251
  51. 51Redlin U, Hattar S, Mrosovsky N. The circadian Clock mutant mouse: Impaired masking response to light. J Comp Physiol A Neuroethol Sensory, Neural, Behav Physiol. 2005; 191: 5159. DOI: 10.1007/s00359-004-0570-z
  52. 52Mrosovsky N, Thompson S. Negative and positive masking responses to light in retinal degenerate slow (rds/rds) mice during aging. Vision Res. 2008; 48: 12701273. DOI: 10.1016/j.visres.2008.02.016
  53. 53Lazzerini Ospri L, Prusky G, Hattar S. Mood, the Circadian System, and Melanopsin Retinal Ganglion Cells. Annu Rev Neurosci. 2017; 40: 539556. DOI: 10.1146/annurev-neuro-072116-031324
  54. 54Iragui-Madoz. Tests electrofisiológicos en el estudio de la patología visual Electrophysiological tests in the assessment of visual disorders. An Sist Sanit Navar. 2009; 32: 93103. DOI: 10.23938/ASSN.0146
DOI: https://doi.org/10.5334/jcr.214 | Journal eISSN: 1740-3391
Language: English
Submitted on: Mar 6, 2021
Accepted on: May 1, 2021
Published on: May 27, 2021
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Irma Angélica González-Luna, Cinthia Juárez-Tapia, Azucena Aguilar-Vázquez, Edith Arnold, Sofia Díaz-Cintra, Manuel Miranda-Anaya, Mauricio Díaz-Muñoz, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.