References
- 1Barnes DE, Yaffe K. The Projected Impact of Risk Factor Reduction on Alzheimer’s Disease Prevalence. Lancet Neurol. 2011; 10: 819–828. DOI: 10.1016/S1474-4422(11)70072-2
- 2Lane C, Hardy J, Schott J. Alzheimer’s disease. Eur J Neurol. 2018; 25: 59–70. DOI: 10.1111/ene.13439
- 3Bedrosian T, Herring K, Weil Z, Nelson RJ. Altered temporal patterns of anxiety in aged and amyloid precursor protein (APP) transgenic mice. Proc Natl Acad Sci U S A. 2011; 108: 11686–11691. DOI: 10.1073/pnas.1103098108
- 4Knight EM, Brown TM, Gümüsgöz S, Smith JCM, Waters EJ, Allan SM, Lawrence CB. Age-related changes in core body temperature and activity in triple-transgenic Alzheimer’s disease (3xTgAD) mice. DMM Dis Model Mech. 2013; 6: 160–170. DOI: 10.1242/dmm.010173
- 5Musiek ES, Bhimasani M, Zangrilli MA, Morris JC, Holtzman DM, Ju YES. Circadian rest-activity pattern changes in aging and preclinical Alzheimer disease. JAMA Neurol. 2018; 75: 582–590. DOI: 10.1001/jamaneurol.2017.4719
- 6Wu M, Zhou F, Cao X, Yang J, Bai Y, Yan X, Cao J, Qi J. Abnormal circadian locomotor rhythms and Per gene expression in six-month-old triple transgenic mice model of Alzheimer’s disease. Neurosci Lett. 2018; 676: 13–18. DOI: 10.1016/j.neulet.2018.04.008
- 7Poggiogalle E, Jamshed H, Peterson C. Circadian Regulation of Glucose, Lipid, and Energy Metabolism in Humans. Metabolism. 2018; 84: 11–17. DOI: 10.1016/j.metabol.2017.11.017
- 8Volicer L, Harper DG, Manning BC, Goldstein R, Satlin A. Sundowning and circadian rhythms in Alzheimer’s disease. Am J Psychiatry. 2001; 158: 704–711. DOI: 10.1176/appi.ajp.158.5.704
- 9Mahlberg R, Kunz D, Sutej I, Kühl KP, Hellweg R. Melatonin Treatment of Day-Night Rhythm Disturbances and Sundowning in Alzheimer Disease: an open-label pilot study using actigraphy. J Clin Psychopharmacol. 2004; 24: 456–459. DOI: 10.1097/01.jcp.0000132443.12607.fd
- 10Lindberg PT, Mitchell JW, Burgoon PW, Beaulé C, Weihe E, Schäfer MKH, Eiden LE, Jiang SZ, Gillette MU. Pituitary Adenylate Cyclase-Activating Peptide (PACAP)-Glutamate Co-transmission Drives Circadian Phase-Advancing Responses to Intrinsically Photosensitive Retinal Ganglion Cell Projections by Suprachiasmatic Nucleus. Front Neurosci. 2019; 13: 1–13. DOI: 10.3389/fnins.2019.01281
- 11Reid KJ, Abbott SM. Jet lag and shift work disorder. Sleep Med Clin. 2015; 10: 523–535. DOI: 10.1016/j.jsmc.2015.08.006
- 12Diekman CO, Bose A. Reentrainment of the circadian pacemaker during jet lag: East-west asymmetry and the effects of north-south travel. J Theor Biol. 2018; 437: 261–285. DOI: 10.1016/j.jtbi.2017.10.002
- 13Yamazaki S, Numano R, Abe M, Hida A, Takahashi RI, Ueda M, Block GD, Sakaki Y, Menaker M, Tei H. Resetting central and peripheral circadian oscillators in transgenic rats. Science. 2000; 288: 682–685. DOI: 10.1126/science.288.5466.682
- 14Casiraghi LP, Oda GA, Chiesa JJ, Friesen WO, Golombek DA. Forced desynchronization of activity rhythms in a model of chronic jet lag in mice. J Biol Rhythms. 2012; 27: 59–69. DOI: 10.1177/0748730411429447
- 15Coutinho JF, Gonc¸alves OF, Maia L, Vasconcelos CF, Perrone-McGovern K, Simon-Dack S, Hernandez K, Oliveira-Silva P, Mesquita AR, Sampaio A. Differential activation of the default mode network in jet lagged individuals. Chronobiol Int. 2015; 32: 143–149. DOI: 10.3109/07420528.2014.955187
- 16Iggena D, Winter Y, Steiner B. Melatonin restores hippocampal neural precursor cell proliferation and prevents cognitive deficits induced by jet lag simulation in adult mice. J Pineal Res. 2017; 62: 1–12. DOI: 10.1111/jpi.12397
- 17Myers A, McGonigle, P. Overview of transgenic mouse models for Alzheimer’s disease. Curr. Prot. Neurosc. 2019; 89: e81. DOI: 10.1002/cpns.81
- 18Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM. Triple-transgenic model of Alzheimer’s Disease with plaques and tangles: Intracellular Aβ and synaptic dysfunction. Neuron. 2003; 39: 409–421. DOI: 10.1016/S0896-6273(03)00434-3
- 19Bilkei-Gorzo A. Genetic mouse models of brain ageing and Alzheimer’s disease. Pharmacol Ther. 2014 May; 142(2): 244–57. DOI: 10.1016/j.pharmthera.2013.12.009
- 20Sterniczuk R, Dyck RH, Laferla FM, Antle MC. Characterization of the 3xTg-AD mouse model of Alzheimer’s disease: Part 1. Circadian changes. Brain Res. 2010; 1348: 139–148. DOI: 10.1016/j.brainres.2010.05.013
- 21Knight EM, Brown TM, Gümüsgöz S, Smith JC, Waters EJ, Allan SM, Lawrence CB. Age-related changes in core body temperature and activity in triple transgenic Alzheimer’s disease (3xTgAD) mice. Dis Model Mech. 2013; 6(1): 160–170. DOI: 10.1242/dmm.010173
- 22Bellanti F, Iannelli G, Blonda M, Tamborra R, Villani R, Romano A, Calcagnini S, Mazzoccoli G, Vinciguerra M, Gaetani S, Giudetti AM, Vendemiale G, Cassano T, Serviddio G. Alterations of Clock Gene RNA Expression in Brain Regions of a Triple Transgenic Model of Alzheimer’s Disease. J Alzheimer’s Dis. 2017; 59: 615–631. DOI: 10.3233/JAD-160942
- 23Floessner T, Hut RA.
Basic principles underlying biological oscillations and their entrainment . In Biological Timekeeping: Clock, Rhytms and Behaviour, (Kumar V, ed.) pp 47–58, The Netherlands; 2017. DOI: 10.1007/978-81-322-3688-7_3 - 24Reid KJ, Abbott SM. Jet lag and shift work disorder. Sleep Med Clin. 2015; 10(4): 523–535. DOI: 10.1016/j.jsmc.2015.08.006
- 25Chiasseu M, Vargas JLC, Destroismaisons L, Velde C. Vande, Leclerc N, Di Polo A. Tau accumulation, altered phosphorylation, and missorting promote neurodegeneration in glaucoma. J Neurosci. 2016; 36: 5785–5798. DOI: 10.1523/JNEUROSCI.3986-15.2016
- 26Grimaldi A, Brighi C, Peruzzi G, Ragozzino D, Bonanni V, Limatola C, Ruocco G, Di Angelantonio S. Inflammation, neurodegeneration and protein aggregation in the retina as ocular biomarkers for Alzheimer’s disease in the 3xTg-AD mouse model. Cell Death Dis. 2018; 9: 1–10. DOI: 10.1038/s41419-018-0740-5
- 27Mahajan D, Votruba M. Can the retina be used to diagnose and plot the progression of Alzheimer’s disease? Acta Ophthalmol. 2017; 95: 768–777. DOI: 10.1111/aos.13472
- 28Pérez-Mendoza M, Rivera-Zavala JB, Rodríguez-Guadarrama AH, Montoya-Gómez LM, Carmona-Castro A, Díaz-Muñoz M, Miranda-Anaya M. Daily cycle in hepatic lipid metabolism in obese mice, Neotomodon alstoni: Sex differences. Chronobiol Int. 2018; 35: 643–657. DOI: 10.1080/07420528.2018.1424178
- 29Sellix MT, Evans JA, Leise TL, Castañón-Cervantes O, Hill DD, DeLisser P, Block GD, Menaker M, Davidson AJ. Aging differentially affects the re-entrainment response of central and peripheral circadian oscillators. J Neurosci. 2012; 32: 16193–16202. DOI: 10.1523/JNEUROSCI.3559-12.2012
- 30Bittman EL. Effects of the duper mutation on responses to light: parametric and nonparametric responses, range of entrainment, and masking. J. Biol. Rhythms. 2014; 29(2): 97–109. DOI: 10.1177/0748730413520399
- 31Sokolove PG, Bushell WN. The chi square periodogram: Its utility for analysis of circadian rhythms. J Theor Biol. 1978; 72: 131–160. DOI: 10.1016/0022-5193(78)90022-X
- 32Díaz-Lezama N, Wu Z, Adán-Castro E, Arnold E, Vázquez-Membrillo M, Arredondo-Zamarripa D, Ledesma-Colunga MG, Moreno-Carranza B, Martinez De La Escalera G, Colosi P, Clapp C. Diabetes enhances the efficacy of AAV2 vectors in the retina: Therapeutic effect of AAV2 encoding vasoinhibin and soluble VEGF receptor 1. Lab Investig. 2016; 96: 283–295. DOI: 10.1038/labinvest.2015.135
- 33Pfeffer M, Zimmermann Z, Gispert S, Auburger G, Korf HW, von Gall Ch. Impaired photic entrainment of spontaneous locomotor activity in mice overexpressing human mutant-synuclein. Int. J. Mol. Sci. 2018; 19: 1651. DOI: 10.3390/ijms19061651
- 34Harrington M, Molyneux P, Soscia S, Prabakar C, McKinley-Brewer J, Lall G. Behavioral and neurochemical sources of variability of circadian period and phase: studies of circadian rhythms of npy-/-mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007; 292: R1306–R1314. DOI: 10.1152/ajpregu.00383.2006
- 35Leise TL, Harrington ME, Molyneux PC, Song I, Queenan H, Zimmerman E, et al. Voluntary exercise can strengthen the circadian system in aged mice. Age (Dordr.). 2013; 35: 2137–2152. DOI: 10.1007/s11357-012-9502-y
- 36Belfiore R, Rodin A, Ferreira E, Velazquez R, Branca C, Caccamo A, Oddo S. Temporal and regional progression of Alzheimer’s disease-like pathology in 3xTg-AD mice. Aging Cell. 2019; 18: e12873. DOI: 10.1111/acel.12873
- 37Do K, Laing BT, Landry T, Bunner W, Mersaud N, Matsubara T, Li P, Yuan Y, Lu Q, Huang H. The effects of exercise on hypothalamic neurodegeneration of Alzheimer’s disease mouse model. PLoS One. 2018; 13: 1–17. DOI: 10.1371/journal.pone.0190205
- 38Novak C, Burghardt P, Levine JA. The use of a running wheel to measure activity in roden: relationship to energy balance, general activity, and reward. Neurosci Biobehav Rev. 2012; 36: 1001–1004. DOI: 10.1016/j.neubiorev.2011.12.012
- 39Duzel E, Van Praag H, Sendtner M. Can physical exercise in old age improve memory and hippocampal function? Brain. 2016; 139: 662–673. DOI: 10.1093/brain/awv407
- 40Isla AG, Vázquez-Cuevas FG, Peña-Ortega F. Exercise Prevents Amyloid-β-Induced Hippocampal Network Disruption by Inhibiting GSK3β Activation. J Alzheimer’s Dis. 2016; 52: 333–43. DOI: 10.1093/brain/awv407
- 41Reuss S, Decker K, Hödl P, Sraka S. Anterograde neuronal tracing of retinohypothalamic projections in the hamster -possible innervation of substance P-containing neurons in the suprachiasmatic nucleus. Neurosc. Lett. 1994; 174: 51–54. DOI: 10.1016/0304-3940(94)90116-3
- 42Davidson AJ, Yamazaki S, Arble DM, Menaker M, Block GD. Resetting of central and peripheral circadian oscillators in aged rats. Neurobiol Aging. 2008; 29: 471–477. DOI: 10.1016/j.neurobiolaging.2006.10.018
- 43Yamaguchi Y, Okamura H. Vasopressin signal inhibition in aged mice decreases mortality under chronic jet lag. iScience. 2018; 5: 118–122. DOI: 10.1016/j.isci.2018.06.008
- 44Vercruysse P, Vieau D, Blum D, Petersén Å, Dupuis L. Hypothalamic alterations in neurodegenerative diseases and their relation to abnormal energy metabolism. Front Mol Neurosci. 2018; 11: 1–16. DOI: 10.3389/fnmol.2018.00002
- 45Stopa EG, Volicer L, Kuo-Leblanc V, Harper D, Lathi D, Tate B, Satlin A. Pathological evaluation of the human suprachiasmatic nucleus in severe dementia. J. Neuropathol. Exp. Neurol. 1999; 58(1): 29–39. DOI: 10.1097/00005072-199901000-00004
- 46Adler P, Mayne J, Walker K, Ning Z, Figeys D. Therapeutic targeting of casein kinase 1δ/in an Alzheimer’s disease mouse model. J Proteome Res. 2019; 18: 3383–3393. DOI: 10.1021/acs.jproteome.9b00312
- 47Sprouse J, Reynolds L, Kleiman R, Tate B, Swanson TA, Pickard GE. Chronic treatment with a selective inhibitor of casein kinase Iδ/yields cumulative phase delays in circadian rhythms. Psychopharmacology (Berl). 2010; 210: 569–576. DOI: 10.1007/s00213-010-1860-5
- 48Besing RC, Rogers CO, Paul JR, Hablitz LM, Johnson RL, McMahon LL, Gamble KL. GSK3 activity regulates rhythms in hippocampal clock gene expression and synaptic plasticity. Hippocampus. 2017; 27: 890–898. DOI: 10.1002/hipo.22739
- 49Mercado-Gómez O, Hernández-Fonseca K, Villavicencio-Queijeiro A, Massieu L, Chimal-Monroy J, Arias C. Inhibition of Wnt and PI3K signaling modulates GSK-3β activity and induces morphological changes in cortical neurons: Role of tau phosphorylation. Neurochem Res. 2008; 33: 1599–1609. DOI: 10.1007/s11064-008-9714-9
- 50Gall AJ, Shuboni DD, Yan L, Nunez AA, Smale L. Suprachiasmatic Nucleus and Subparaventricular Zone Lesions Disrupt Circadian Rhythmicity but Not Light-Induced Masking Behavior in Nile Grass Rats. J Biol Rhythms. 2016; 31: 170–181. DOI: 10.1177/0748730415626251
- 51Redlin U, Hattar S, Mrosovsky N. The circadian Clock mutant mouse: Impaired masking response to light. J Comp Physiol A Neuroethol Sensory, Neural, Behav Physiol. 2005; 191: 51–59. DOI: 10.1007/s00359-004-0570-z
- 52Mrosovsky N, Thompson S. Negative and positive masking responses to light in retinal degenerate slow (rds/rds) mice during aging. Vision Res. 2008; 48: 1270–1273. DOI: 10.1016/j.visres.2008.02.016
- 53Lazzerini Ospri L, Prusky G, Hattar S. Mood, the Circadian System, and Melanopsin Retinal Ganglion Cells. Annu Rev Neurosci. 2017; 40: 539–556. DOI: 10.1146/annurev-neuro-072116-031324
- 54Iragui-Madoz. Tests electrofisiológicos en el estudio de la patología visual Electrophysiological tests in the assessment of visual disorders. An Sist Sanit Navar. 2009; 32: 93–103. DOI: 10.23938/ASSN.0146
