Have a personal or library account? Click to login
Daily and Estral Regulation of RFRP-3 Neurons in the Female Mice Cover

Daily and Estral Regulation of RFRP-3 Neurons in the Female Mice

Open Access
|Apr 2021

References

  1. 1Close FT, Freeman ME. Effects of ovarian steroid hormones on dopamine-controlled prolactin secretory responses in vitro. Neuroendocrinology. juin 1997; 65(6): 430435. DOI: 10.1159/000127206
  2. 2Moenter SM, Brand RC, Karsch FJ. Dynamics of gonadotropin-releasing hormone (GnRH) secretion during the GnRH surge: insights into the mechanism of GnRH surge induction. Endocrinology. mai 1992; 130(5): 29782984. DOI: 10.1210/endo.130.5.1572305
  3. 3Brown-Grant K, Raisman G. Abnormalities in reproductive function associated with the destruction of the suprachiasmatic nuclei in female rats. Proc. R. Soc. Lond. B, Biol. Sci. sept. 1977; 198(1132): 279296. DOI: 10.1098/rspb.1977.0098
  4. 4Miller BH, Olson SL, Turek FW, Levine JE, Horton TH, Takahashi JS. Circadian Clock Mutation Disrupts Estrous Cyclicity and Maintenance of Pregnancy. Current Biology. août 2004; 14(15): 13671373. DOI: 10.1016/j.cub.2004.07.055
  5. 5Everett JW, Sawyer CH. A 24-hour periodicity in the “LH-release apparatus” of female rats, disclosed by barbiturate sedation. Endocrinology. sept. 1950; 47(3): 198218. DOI: 10.1210/endo-47-3-198
  6. 6Christian CA, Mobley JL, Moenter SM. Diurnal and estradiol-dependent changes in gonadotropin-releasing hormone neuron firing activity. Proc. Natl. Acad. Sci. U.S.A. oct. 2005; 102(43): 1568215687. DOI: 10.1073/pnas.0504270102
  7. 7Christian CA, Moenter SM. The neurobiology of preovulatory and estradiol-induced gonadotropin-releasing hormone surges. Endocr. Rev. août 2010; 31(4): 544577. DOI: 10.1210/er.2009-0023
  8. 8Leon S, Tena-Sempere M. Dissecting the Roles of Gonadotropin-Inhibitory Hormone in Mammals: Studies Using Pharmacological Tools and Genetically Modified Mouse Models. Front Endocrinol (Lausanne). 2015; 6(189): DOI: 10.3389/fendo.2015.00189
  9. 9Smith JT, Cunningham MJ, Rissman EF, Clifton DK, Steiner RA. Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology. sept. 2005; 146(9): 36863692. DOI: 10.1210/en.2005-0488
  10. 10Kriegsfeld LJ, et al. Identification and characterization of a gonadotropin-inhibitory system in the brains of mammals. Proc. Natl. Acad. Sci. U.S.A. févr. 2006; 103(7): 24102415. DOI: 10.1073/pnas.0511003103
  11. 11Poling MC, Kim J, Dhamija S, Kauffman AS. Development, Sex Steroid Regulation, and Phenotypic Characterization of RFamide-Related Peptide (Rfrp) Gene Expression and RFamide Receptors in the Mouse Hypothalamus. Endocrinology. avr. 2012; 153(4): 18271840. DOI: 10.1210/en.2011-2049
  12. 12Angelopoulou E, Quignon C, Kriegsfeld LJ, Simonneaux V. Functional Implications of RFRP-3 in the Central Control of Daily and Seasonal Rhythms in Reproduction. Front Endocrinol (Lausanne). avr. 2019; (10). DOI: 10.3389/fendo.2019.00183
  13. 13Clarkson J, Herbison AE. Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology. déc. 2006; 147(12): 58175825. DOI: 10.1210/en.2006-0787
  14. 14Yip SH, Boehm U, Herbison AE, Campbell RE. Conditional Viral Tract Tracing Delineates the Projections of the Distinct Kisspeptin Neuron Populations to Gonadotropin-Releasing Hormone (GnRH) Neurons in the Mouse. Endocrinology. juill. 2015; 156(7): 25822594. DOI: 10.1210/en.2015-1131
  15. 15Pielecka-Fortuna J, Chu Z, Moenter SM. Kisspeptin Acts Directly and Indirectly to Increase Gonadotropin-Releasing Hormone Neuron Activity and Its Effects Are Modulated by Estradiol. Endocrinology. avr. 2008; 149(4): 19791986. DOI: 10.1210/en.2007-1365
  16. 16Piet R, Kalil B, McLennan T, Porteous R, Czieselsky K, Herbison AE. Dominant Neuropeptide Cotransmission in Kisspeptin-GABA Regulation of GnRH Neuron Firing Driving Ovulation. J. Neurosci. 11 2018; 38(28): 63106322, DOI: 10.1523/JNEUROSCI.0658-18.2018
  17. 17Gottsch ML, et al. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology. sept. 2004; 145(9): 40734077. DOI: 10.1210/en.2004-0431
  18. 18Navarro VM, et al. Characterization of the potent luteinizing hormone-releasing activity of KiSS-1 peptide, the natural ligand of GPR54. Endocrinology. janv. 2005; 146(1): 156163. DOI: 10.1210/en.2004-0836
  19. 19Smith JT, Popa SM, Clifton DK, Hoffman GE, Steiner RA. Kiss1 Neurons in the Forebrain as Central Processors for Generating the Preovulatory Luteinizing Hormone Surge. J. Neurosci. juin 2006; 26(25): 66876694. DOI: 10.1523/JNEUROSCI.1618-06.2006
  20. 20Chassard D, Bur I, Poirel VJ, Mendoza J, Simonneaux V. Evidence for a Putative Circadian Kiss-Clock in the Hypothalamic AVPV in Female Mice. Endocrinology. août 2015; 156(8): 29993011. DOI: 10.1210/en.2014-1769
  21. 21Henningsen JB, Ancel C, Mikkelsen JD, Gauer F, Simonneaux V. Roles of RFRP-3 in the Daily and Seasonal Regulation of Reproductive Activity in Female Syrian Hamsters. Endocrinology. 01 2017; 158(3): 652663. DOI: 10.1210/en.2016-1689
  22. 22Poling MC, Luo EY, Kauffman AS. Sex Differences in Steroid Receptor Coexpression and Circadian-Timed Activation of Kisspeptin and RFRP-3 Neurons May Contribute to the Sexually Dimorphic Basis of the LH Surge. Endocrinology. 01 2017; 158(10): 35653578. DOI: 10.1210/en.2017-00405
  23. 23Robertson JL, Clifton DK, de la Iglesia HO, Steiner RA, Kauffman AS. Circadian regulation of Kiss1 neurons: implications for timing the preovulatory gonadotropin-releasing hormone/luteinizing hormone surge. Endocrinology. août 2009; 150(8): 36643671. DOI: 10.1210/en.2009-0247
  24. 24Tsutsui K, et al. A novel avian hypothalamic peptide inhibiting gonadotropin release. Biochem. Biophys. Res. Commun. août 2000; 275(2): 661667. DOI: 10.1006/bbrc.2000.3350
  25. 25Ukena K, Iwakoshi E, Minakata H, Tsutsui K. A novel rat hypothalamic RFamide-related peptide identified by immunoaffinity chromatography and mass spectrometry. FEBS Letters. 2002; 512(1–3): 255258. DOI: 10.1016/S0014-5793(02)02275-5
  26. 26Henningsen JB, Gauer F, Simonneaux V. RFRP Neurons – The Doorway to Understanding Seasonal Reproduction in Mammals. Front Endocrinol (Lausanne). mai 2016; 7. DOI: 10.3389/fendo.2016.00036
  27. 27Rizwan MZ, et al. RFamide-related peptide-3 receptor gene expression in GnRH and kisspeptin neurons and GnRH-dependent mechanism of action. Endocrinology. août 2012; 153(8): 37703779. DOI: 10.1210/en.2012-1133
  28. 28Smith JT, et al. Variation in Kisspeptin and RFamide-Related Peptide (RFRP) Expression and Terminal Connections to Gonadotropin-Releasing Hormone Neurons in the Brain: A Novel Medium for Seasonal Breeding in the Sheep. Endocrinology. nov. 2008; 149(11): 57705782. DOI: 10.1210/en.2008-0581
  29. 29Ubuka T, et al. Identification, expression, and physiological functions of Siberian hamster gonadotropin-inhibitory hormone. Endocrinology. janv. 2012; 153(1): 373385. DOI: 10.1210/en.2011-1110
  30. 30Poling MC, Quennell JH, Anderson GM, Kauffman AS. Kisspeptin neurones do not directly signal to RFRP-3 neurones but RFRP-3 may directly modulate a subset of hypothalamic kisspeptin cells in mice. J. Neuroendocrinol. oct. 2013; 25(10): 876886. DOI: 10.1111/jne.12084
  31. 31Anderson GM, Relf HL, Rizwan MZ, Evans JJ. Central and peripheral effects of RFamide-related peptide-3 on luteinizing hormone and prolactin secretion in rats. Endocrinology. avr. 2009; 150(4): 18341840. DOI: 10.1210/en.2008-1359
  32. 32Clarke IJ, et al. Potent action of RFamide-related peptide-3 on pituitary gonadotropes indicative of a hypophysiotropic role in the negative regulation of gonadotropin secretion. Endocrinology. 149(11): nov. 2008; 58115821. DOI: 10.1210/en.2008-0575
  33. 33Ducret E, Anderson GM, Herbison AE. RFamide-related peptide-3, a mammalian gonadotropin-inhibitory hormone ortholog, regulates gonadotropin-releasing hormone neuron firing in the mouse. Endocrinology. juin 2009; 150(6): 27992804. DOI: 10.1210/en.2008-1623
  34. 34Johnson MA, Tsutsui K, Fraley GS. Rat RFamide-related peptide-3 stimulates GH secretion, inhibits LH secretion, and has variable effects on sex behavior in the adult male rat. Hormones and Behavior. janv. 2007; 51(1): 171180. DOI: 10.1016/j.yhbeh.2006.09.009
  35. 35Pineda R, et al. Characterization of the inhibitory roles of RFRP3, the mammalian ortholog of GnIH, in the control of gonadotropin secretion in the rat: in vivo and in vitro studies. Am. J. Physiol. Endocrinol. Metab. juill. 2010; 299(1): E3946. DOI: 10.1152/ajpendo.00108.2010
  36. 36Ancel C, Inglis MA, Anderson GM. Central RFRP-3 Stimulates LH Secretion in Male Mice and Has Cycle Stage-Dependent Inhibitory Effects in Females. Endocrinology. 01 2017; 158(9): 28732883. DOI: 10.1210/en.2016-1902
  37. 37Gibson EM. Alterations in RFamide-related peptide expression are coordinated with the preovulatory luteinizing hormone surge. Endocrinology. oct. 2008; 149(10): 49584969. DOI: 10.1210/en.2008-0316
  38. 38Vida B, et al. Evidence for suprachiasmatic vasopressin neurones innervating kisspeptin neurones in the rostral periventricular area of the mouse brain: regulation by oestrogen. J. Neuroendocrinol. sept. 2010; 22(9): 10321039. DOI: 10.1111/j.1365-2826.2010.02045.x
  39. 39Williams WP, Jarjisian SG, Mikkelsen JD, Kriegsfeld LJ. Circadian control of kisspeptin and a gated GnRH response mediate the preovulatory luteinizing hormone surge. Endocrinology. févr. 2011; 152(2): 595606. DOI: 10.1210/en.2010-0943
  40. 40Piet R, Fraissenon A, Boehm U, Herbison AE. Estrogen permits vasopressin signaling in preoptic kisspeptin neurons in the female mouse. J. Neurosci. avr. 2015; 35(17): 68816892. DOI: 10.1523/JNEUROSCI.4587-14.2015
  41. 41Russo KA, et al. Circadian Control of the Female Reproductive Axis Through Gated Responsiveness of the RFRP-3 System to VIP Signaling. Endocrinology. juill. 2015; 156(7): 26082618. DOI: 10.1210/en.2014-1762
  42. 42Mamgain A, et al. RFamide-related peptide neurons modulate reproductive function and stress responses. J Neurosci. nov. 2020. DOI: 10.1523/JNEUROSCI.1062-20.2020
  43. 43Bahougne T, Angelopoulou E, Jeandidier N, Simonneaux V. Individual evaluation of luteinizing hormone in aged C57BL/6 J female mice. Geroscience. 2020; 42(1): 323331. DOI: 10.1007/s11357-019-00104-z
  44. 44Klosen P, Maessen X, van den Bosch de Aguilar P. PEG embedding for immunocytochemistry: application to the analysis of immunoreactivity loss during histological processing. J. Histochem. Cytochem. mars 1993; 41(3): 455463. DOI: 10.1177/41.3.8429209
  45. 45de Croft S, Piet R, Mayer C, Mai O, Boehm U, Herbison AE. Spontaneous kisspeptin neuron firing in the adult mouse reveals marked sex and brain region differences but no support for a direct role in negative feedback. Endocrinology. nov. 2012; 153(11): 53845393. DOI: 10.1210/en.2012-1616
  46. 46Ducret E, Gaidamaka G, Herbison AE. Electrical and morphological characteristics of anteroventral periventricular nucleus kisspeptin and other neurons in the female mouse. Endocrinology. mai 2010; 151(5): 22232232. DOI: 10.1210/en.2009-1480
  47. 47Herbison AE. A simple model of estrous cycle negative and positive feedback regulation of GnRH secretion. Front Neuroendocrinol. 2020; (57): 100837. DOI: 10.1016/j.yfrne.2020.100837
  48. 48Pinilla L, Aguilar E, Dieguez C, Millar RP, Tena-Sempere M. Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol Rev. juill. 2012; 92(3): 12351316. DOI: 10.1152/physrev.00037.2010
  49. 49Simonneaux V, Bahougne T, Angelopoulou E. Daily rhythms count for female fertility. Best Pract. Res. Clin. Endocrinol. Metab. 2017; 31(5): 505519. DOI: 10.1016/j.beem.2017.10.012
  50. 50Simonneaux V. A Kiss to drive rhythms in reproduction. European Journal of Neuroscience. 2020; 51(1): 509530. DOI: 10.1111/ejn.14287
  51. 51Dardente H, Menet JS, Challet E, Tournier BB, Pévet P, Masson-Pévet M. Daily and circadian expression of neuropeptides in the suprachiasmatic nuclei of nocturnal and diurnal rodents. Molecular Brain Research. mai 2004; 124(2): 143151. DOI: 10.1016/j.molbrainres.2004.01.010
  52. 52Kriegsfeld LJ, et al. Identification and characterization of a gonadotropin-inhibitory system in the brains of mammals. Proc. Natl. Acad. Sci. U.S.A. févr. 2006; 103(7): 24102415. DOI: 10.1073/pnas.0511003103
  53. 53Molnár CS, Kalló I, Liposits Z, Hrabovszky E. Estradiol down-regulates RF-amide-related peptide (RFRP) expression in the mouse hypothalamus. Endocrinology. avr. 2011; 152(4): 16841690. DOI: 10.1210/en.2010-1418
  54. 54Cullinan WE, Herman JP, Battaglia DF, Akil H, Watson SJ. Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience. janv. 1995; 64(2): 477505. DOI: 10.1016/0306-4522(94)00355-9
  55. 55Kaczmarek L, Chaudhuri A. Sensory regulation of immediate-early gene expression in mammalian visual cortex: implications for functional mapping and neural plasticity. Brain Research Reviews. avr. 1997; 23(3): 237256. DOI: 10.1016/S0165-0173(97)00005-2
  56. 56Luckman SM, Dyball RE, Leng G. Induction of c-fos expression in hypothalamic magnocellular neurons requires synaptic activation and not simply increased spike activity. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. août 1994; 14(8): 48254830. DOI: 10.1523/JNEUROSCI.14-08-04825.1994
  57. 57Guo YP, Sun X, Li C, Wang NQ, Chan YS, He J. Corticothalamic synchronization leads to c-fos expression in the auditory thalamus. Proc Natl Acad Sci U S A. juill. 2007; 104(28): 1180211807 DOI: 10.1073/pnas.0701302104
  58. 58Wiegand SJ, Terasawa E, Bridson WE, Goy RW. Effects of Discrete Lesions of Preoptic and Suprachiasmatic Structures in the Female Rat. NEN. 1980; 31(2): 147157. DOI: 10.1159/000123066
  59. 59Wiegand SJ, Terasawa E. Discrete Lesions Reveal Functional Heterogeneity of Suprachiasmatic Structures in Regulation of Gonadotropin Secretion in the Female Rat. NEN. 1982; 34(6): 395404. DOI: 10.1159/000123335
  60. 60Funabashi T, Aiba S, Sano A, Shinohara K, Kimura F. Intracerebroventricular injection of arginine-vasopressin V1 receptor antagonist attenuates the surge of luteinizing hormone and prolactin secretion in proestrous rats. Neuroscience Letters. janv. 1999; 260(1): 3740. DOI: 10.1016/S0304-3940(98)00940-9
  61. 61Miller BH, Olson SL, Levine JE, Turek FW, Horton TH, Takahashi JS. Vasopressin regulation of the proestrous luteinizing hormone surge in wild-type and Clock mutant mice. Biology of Reproduction. nov. 2006; 75(5): 778784. DOI: 10.1095/biolreprod.106.052845
  62. 62Palm IF, Van Der Beek EM, Wiegant VM, Buijs RM, Kalsbeek A. Vasopressin induces a luteinizing hormone surge in ovariectomized, estradiol-treated rats with lesions of the suprachiasmatic nucleus. Neuroscience. 1999; 93(2): 659666. DOI: 10.1016/S0306-4522(99)00106-2
  63. 63Mahoney MM, Ramanathan C, Hagenauer MH, Thompson RC, Smale L, Lee T. Daily rhythms and sex differences in vasoactive intestinal polypeptide, VIPR2 receptor and arginine vasopressin mRNA in the suprachiasmatic nucleus of a diurnal rodent, Arvicanthis niloticus. Eur J Neurosci. oct. 2009; 30(8): 15371543. DOI: 10.1111/j.1460-9568.2009.06936.x
  64. 64Cázarez-Márquez F, Laran-Chich MP, Klosen P, Kalsbeek A, Simonneaux V. RFRP3 increases food intake in a sex-dependent manner in the seasonal hamster Phodopus sungorus. J Neuroendocrinol. mai 2020; 32(5): e12845. DOI: 10.1111/jne.12845
DOI: https://doi.org/10.5334/jcr.212 | Journal eISSN: 1740-3391
Language: English
Submitted on: Feb 15, 2021
Accepted on: Mar 29, 2021
Published on: Apr 15, 2021
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Eleni Angelopoulou, Perrine Inquimbert, Paul Klosen, Greg Anderson, Andries Kalsbeek, Valérie Simonneaux, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.