References
- 1Close FT, Freeman ME. Effects of ovarian steroid hormones on dopamine-controlled prolactin secretory responses in vitro. Neuroendocrinology. juin 1997; 65(6): 430–435. DOI: 10.1159/000127206
- 2Moenter SM, Brand RC, Karsch FJ. Dynamics of gonadotropin-releasing hormone (GnRH) secretion during the GnRH surge: insights into the mechanism of GnRH surge induction. Endocrinology. mai 1992; 130(5): 2978–2984. DOI: 10.1210/endo.130.5.1572305
- 3Brown-Grant K, Raisman G. Abnormalities in reproductive function associated with the destruction of the suprachiasmatic nuclei in female rats. Proc. R. Soc. Lond. B, Biol. Sci. sept. 1977; 198(1132): 279–296. DOI: 10.1098/rspb.1977.0098
- 4Miller BH, Olson SL, Turek FW, Levine JE, Horton TH, Takahashi JS. Circadian Clock Mutation Disrupts Estrous Cyclicity and Maintenance of Pregnancy. Current Biology. août 2004; 14(15): 1367–1373. DOI: 10.1016/j.cub.2004.07.055
- 5Everett JW, Sawyer CH. A 24-hour periodicity in the “LH-release apparatus” of female rats, disclosed by barbiturate sedation. Endocrinology. sept. 1950; 47(3): 198–218. DOI: 10.1210/endo-47-3-198
- 6Christian CA, Mobley JL, Moenter SM. Diurnal and estradiol-dependent changes in gonadotropin-releasing hormone neuron firing activity. Proc. Natl. Acad. Sci. U.S.A. oct. 2005; 102(43): 15682–15687. DOI: 10.1073/pnas.0504270102
- 7Christian CA, Moenter SM. The neurobiology of preovulatory and estradiol-induced gonadotropin-releasing hormone surges. Endocr. Rev. août 2010; 31(4): 544–577. DOI: 10.1210/er.2009-0023
- 8Leon S, Tena-Sempere M. Dissecting the Roles of Gonadotropin-Inhibitory Hormone in Mammals: Studies Using Pharmacological Tools and Genetically Modified Mouse Models. Front Endocrinol (Lausanne). 2015; 6(189): DOI: 10.3389/fendo.2015.00189
- 9Smith JT, Cunningham MJ, Rissman EF, Clifton DK, Steiner RA. Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology. sept. 2005; 146(9): 3686–3692. DOI: 10.1210/en.2005-0488
- 10Kriegsfeld LJ, et al. Identification and characterization of a gonadotropin-inhibitory system in the brains of mammals. Proc. Natl. Acad. Sci. U.S.A. févr. 2006; 103(7): 2410–2415. DOI: 10.1073/pnas.0511003103
- 11Poling MC, Kim J, Dhamija S, Kauffman AS. Development, Sex Steroid Regulation, and Phenotypic Characterization of RFamide-Related Peptide (Rfrp) Gene Expression and RFamide Receptors in the Mouse Hypothalamus. Endocrinology. avr. 2012; 153(4): 1827–1840. DOI: 10.1210/en.2011-2049
- 12Angelopoulou E, Quignon C, Kriegsfeld LJ, Simonneaux V. Functional Implications of RFRP-3 in the Central Control of Daily and Seasonal Rhythms in Reproduction. Front Endocrinol (Lausanne). avr. 2019; (10). DOI: 10.3389/fendo.2019.00183
- 13Clarkson J, Herbison AE. Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology. déc. 2006; 147(12): 5817–5825. DOI: 10.1210/en.2006-0787
- 14Yip SH, Boehm U, Herbison AE, Campbell RE. Conditional Viral Tract Tracing Delineates the Projections of the Distinct Kisspeptin Neuron Populations to Gonadotropin-Releasing Hormone (GnRH) Neurons in the Mouse. Endocrinology. juill. 2015; 156(7): 2582–2594. DOI: 10.1210/en.2015-1131
- 15Pielecka-Fortuna J, Chu Z, Moenter SM. Kisspeptin Acts Directly and Indirectly to Increase Gonadotropin-Releasing Hormone Neuron Activity and Its Effects Are Modulated by Estradiol. Endocrinology. avr. 2008; 149(4): 1979–1986. DOI: 10.1210/en.2007-1365
- 16Piet R, Kalil B, McLennan T, Porteous R, Czieselsky K, Herbison AE. Dominant Neuropeptide Cotransmission in Kisspeptin-GABA Regulation of GnRH Neuron Firing Driving Ovulation. J. Neurosci. 11 2018; 38(28): 6310–6322, DOI: 10.1523/JNEUROSCI.0658-18.2018
- 17Gottsch ML, et al. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology. sept. 2004; 145(9): 4073–4077. DOI: 10.1210/en.2004-0431
- 18Navarro VM, et al. Characterization of the potent luteinizing hormone-releasing activity of KiSS-1 peptide, the natural ligand of GPR54. Endocrinology. janv. 2005; 146(1): 156–163. DOI: 10.1210/en.2004-0836
- 19Smith JT, Popa SM, Clifton DK, Hoffman GE, Steiner RA. Kiss1 Neurons in the Forebrain as Central Processors for Generating the Preovulatory Luteinizing Hormone Surge. J. Neurosci. juin 2006; 26(25): 6687–6694. DOI: 10.1523/JNEUROSCI.1618-06.2006
- 20Chassard D, Bur I, Poirel VJ, Mendoza J, Simonneaux V. Evidence for a Putative Circadian Kiss-Clock in the Hypothalamic AVPV in Female Mice. Endocrinology. août 2015; 156(8): 2999–3011. DOI: 10.1210/en.2014-1769
- 21Henningsen JB, Ancel C, Mikkelsen JD, Gauer F, Simonneaux V. Roles of RFRP-3 in the Daily and Seasonal Regulation of Reproductive Activity in Female Syrian Hamsters. Endocrinology. 01 2017; 158(3): 652–663. DOI: 10.1210/en.2016-1689
- 22Poling MC, Luo EY, Kauffman AS. Sex Differences in Steroid Receptor Coexpression and Circadian-Timed Activation of Kisspeptin and RFRP-3 Neurons May Contribute to the Sexually Dimorphic Basis of the LH Surge. Endocrinology. 01 2017; 158(10): 3565–3578. DOI: 10.1210/en.2017-00405
- 23Robertson JL, Clifton DK, de la Iglesia HO, Steiner RA, Kauffman AS. Circadian regulation of Kiss1 neurons: implications for timing the preovulatory gonadotropin-releasing hormone/luteinizing hormone surge. Endocrinology. août 2009; 150(8): 3664–3671. DOI: 10.1210/en.2009-0247
- 24Tsutsui K, et al. A novel avian hypothalamic peptide inhibiting gonadotropin release. Biochem. Biophys. Res. Commun. août 2000; 275(2): 661–667. DOI: 10.1006/bbrc.2000.3350
- 25Ukena K, Iwakoshi E, Minakata H, Tsutsui K. A novel rat hypothalamic RFamide-related peptide identified by immunoaffinity chromatography and mass spectrometry. FEBS Letters. 2002; 512(1–3): 255–258. DOI: 10.1016/S0014-5793(02)02275-5
- 26Henningsen JB, Gauer F, Simonneaux V. RFRP Neurons – The Doorway to Understanding Seasonal Reproduction in Mammals. Front Endocrinol (Lausanne). mai 2016; 7. DOI: 10.3389/fendo.2016.00036
- 27Rizwan MZ, et al. RFamide-related peptide-3 receptor gene expression in GnRH and kisspeptin neurons and GnRH-dependent mechanism of action. Endocrinology. août 2012; 153(8): 3770–3779. DOI: 10.1210/en.2012-1133
- 28Smith JT, et al. Variation in Kisspeptin and RFamide-Related Peptide (RFRP) Expression and Terminal Connections to Gonadotropin-Releasing Hormone Neurons in the Brain: A Novel Medium for Seasonal Breeding in the Sheep. Endocrinology. nov. 2008; 149(11): 5770–5782. DOI: 10.1210/en.2008-0581
- 29Ubuka T, et al. Identification, expression, and physiological functions of Siberian hamster gonadotropin-inhibitory hormone. Endocrinology. janv. 2012; 153(1): 373–385. DOI: 10.1210/en.2011-1110
- 30Poling MC, Quennell JH, Anderson GM, Kauffman AS. Kisspeptin neurones do not directly signal to RFRP-3 neurones but RFRP-3 may directly modulate a subset of hypothalamic kisspeptin cells in mice. J. Neuroendocrinol. oct. 2013; 25(10): 876–886. DOI: 10.1111/jne.12084
- 31Anderson GM, Relf HL, Rizwan MZ, Evans JJ. Central and peripheral effects of RFamide-related peptide-3 on luteinizing hormone and prolactin secretion in rats. Endocrinology. avr. 2009; 150(4): 1834–1840. DOI: 10.1210/en.2008-1359
- 32Clarke IJ, et al. Potent action of RFamide-related peptide-3 on pituitary gonadotropes indicative of a hypophysiotropic role in the negative regulation of gonadotropin secretion. Endocrinology. 149(11): nov. 2008; 5811–5821. DOI: 10.1210/en.2008-0575
- 33Ducret E, Anderson GM, Herbison AE. RFamide-related peptide-3, a mammalian gonadotropin-inhibitory hormone ortholog, regulates gonadotropin-releasing hormone neuron firing in the mouse. Endocrinology. juin 2009; 150(6): 2799–2804. DOI: 10.1210/en.2008-1623
- 34Johnson MA, Tsutsui K, Fraley GS. Rat RFamide-related peptide-3 stimulates GH secretion, inhibits LH secretion, and has variable effects on sex behavior in the adult male rat. Hormones and Behavior. janv. 2007; 51(1): 171–180. DOI: 10.1016/j.yhbeh.2006.09.009
- 35Pineda R, et al. Characterization of the inhibitory roles of RFRP3, the mammalian ortholog of GnIH, in the control of gonadotropin secretion in the rat: in vivo and in vitro studies. Am. J. Physiol. Endocrinol. Metab. juill. 2010; 299(1): E39–46. DOI: 10.1152/ajpendo.00108.2010
- 36Ancel C, Inglis MA, Anderson GM. Central RFRP-3 Stimulates LH Secretion in Male Mice and Has Cycle Stage-Dependent Inhibitory Effects in Females. Endocrinology. 01 2017; 158(9): 2873–2883. DOI: 10.1210/en.2016-1902
- 37Gibson EM. Alterations in RFamide-related peptide expression are coordinated with the preovulatory luteinizing hormone surge. Endocrinology. oct. 2008; 149(10): 4958–4969. DOI: 10.1210/en.2008-0316
- 38Vida B, et al. Evidence for suprachiasmatic vasopressin neurones innervating kisspeptin neurones in the rostral periventricular area of the mouse brain: regulation by oestrogen. J. Neuroendocrinol. sept. 2010; 22(9): 1032–1039. DOI: 10.1111/j.1365-2826.2010.02045.x
- 39Williams WP, Jarjisian SG, Mikkelsen JD, Kriegsfeld LJ. Circadian control of kisspeptin and a gated GnRH response mediate the preovulatory luteinizing hormone surge. Endocrinology. févr. 2011; 152(2): 595–606. DOI: 10.1210/en.2010-0943
- 40Piet R, Fraissenon A, Boehm U, Herbison AE. Estrogen permits vasopressin signaling in preoptic kisspeptin neurons in the female mouse. J. Neurosci. avr. 2015; 35(17): 6881–6892. DOI: 10.1523/JNEUROSCI.4587-14.2015
- 41Russo KA, et al. Circadian Control of the Female Reproductive Axis Through Gated Responsiveness of the RFRP-3 System to VIP Signaling. Endocrinology. juill. 2015; 156(7): 2608–2618. DOI: 10.1210/en.2014-1762
- 42Mamgain A, et al. RFamide-related peptide neurons modulate reproductive function and stress responses. J Neurosci. nov. 2020. DOI: 10.1523/JNEUROSCI.1062-20.2020
- 43Bahougne T, Angelopoulou E, Jeandidier N, Simonneaux V. Individual evaluation of luteinizing hormone in aged C57BL/6 J female mice. Geroscience. 2020; 42(1): 323–331. DOI: 10.1007/s11357-019-00104-z
- 44Klosen P, Maessen X, van den Bosch de Aguilar P. PEG embedding for immunocytochemistry: application to the analysis of immunoreactivity loss during histological processing. J. Histochem. Cytochem. mars 1993; 41(3): 455–463. DOI: 10.1177/41.3.8429209
- 45de Croft S, Piet R, Mayer C, Mai O, Boehm U, Herbison AE. Spontaneous kisspeptin neuron firing in the adult mouse reveals marked sex and brain region differences but no support for a direct role in negative feedback. Endocrinology. nov. 2012; 153(11): 5384–5393. DOI: 10.1210/en.2012-1616
- 46Ducret E, Gaidamaka G, Herbison AE. Electrical and morphological characteristics of anteroventral periventricular nucleus kisspeptin and other neurons in the female mouse. Endocrinology. mai 2010; 151(5): 2223–2232. DOI: 10.1210/en.2009-1480
- 47Herbison AE. A simple model of estrous cycle negative and positive feedback regulation of GnRH secretion. Front Neuroendocrinol. 2020; (57):
100837 . DOI: 10.1016/j.yfrne.2020.100837 - 48Pinilla L, Aguilar E, Dieguez C, Millar RP, Tena-Sempere M. Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol Rev. juill. 2012; 92(3): 1235–1316. DOI: 10.1152/physrev.00037.2010
- 49Simonneaux V, Bahougne T, Angelopoulou E. Daily rhythms count for female fertility. Best Pract. Res. Clin. Endocrinol. Metab. 2017; 31(5): 505–519. DOI: 10.1016/j.beem.2017.10.012
- 50Simonneaux V. A Kiss to drive rhythms in reproduction. European Journal of Neuroscience. 2020; 51(1): 509–530. DOI: 10.1111/ejn.14287
- 51Dardente H, Menet JS, Challet E, Tournier BB, Pévet P, Masson-Pévet M. Daily and circadian expression of neuropeptides in the suprachiasmatic nuclei of nocturnal and diurnal rodents. Molecular Brain Research. mai 2004; 124(2): 143–151. DOI: 10.1016/j.molbrainres.2004.01.010
- 52Kriegsfeld LJ, et al. Identification and characterization of a gonadotropin-inhibitory system in the brains of mammals. Proc. Natl. Acad. Sci. U.S.A. févr. 2006; 103(7): 2410–2415. DOI: 10.1073/pnas.0511003103
- 53Molnár CS, Kalló I, Liposits Z, Hrabovszky E. Estradiol down-regulates RF-amide-related peptide (RFRP) expression in the mouse hypothalamus. Endocrinology. avr. 2011; 152(4): 1684–1690. DOI: 10.1210/en.2010-1418
- 54Cullinan WE, Herman JP, Battaglia DF, Akil H, Watson SJ. Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience. janv. 1995; 64(2): 477–505. DOI: 10.1016/0306-4522(94)00355-9
- 55Kaczmarek L, Chaudhuri A. Sensory regulation of immediate-early gene expression in mammalian visual cortex: implications for functional mapping and neural plasticity. Brain Research Reviews. avr. 1997; 23(3): 237–256. DOI: 10.1016/S0165-0173(97)00005-2
- 56Luckman SM, Dyball RE, Leng G. Induction of c-fos expression in hypothalamic magnocellular neurons requires synaptic activation and not simply increased spike activity. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. août 1994; 14(8): 4825–4830. DOI: 10.1523/JNEUROSCI.14-08-04825.1994
- 57Guo YP, Sun X, Li C, Wang NQ, Chan YS, He J. Corticothalamic synchronization leads to c-fos expression in the auditory thalamus. Proc Natl Acad Sci U S A. juill. 2007; 104(28): 11802–11807 DOI: 10.1073/pnas.0701302104
- 58Wiegand SJ, Terasawa E, Bridson WE, Goy RW. Effects of Discrete Lesions of Preoptic and Suprachiasmatic Structures in the Female Rat. NEN. 1980; 31(2): 147–157. DOI: 10.1159/000123066
- 59Wiegand SJ, Terasawa E. Discrete Lesions Reveal Functional Heterogeneity of Suprachiasmatic Structures in Regulation of Gonadotropin Secretion in the Female Rat. NEN. 1982; 34(6): 395–404. DOI: 10.1159/000123335
- 60Funabashi T, Aiba S, Sano A, Shinohara K, Kimura F. Intracerebroventricular injection of arginine-vasopressin V1 receptor antagonist attenuates the surge of luteinizing hormone and prolactin secretion in proestrous rats. Neuroscience Letters. janv. 1999; 260(1): 37–40. DOI: 10.1016/S0304-3940(98)00940-9
- 61Miller BH, Olson SL, Levine JE, Turek FW, Horton TH, Takahashi JS. Vasopressin regulation of the proestrous luteinizing hormone surge in wild-type and Clock mutant mice. Biology of Reproduction. nov. 2006; 75(5): 778–784. DOI: 10.1095/biolreprod.106.052845
- 62Palm IF, Van Der Beek EM, Wiegant VM, Buijs RM, Kalsbeek A. Vasopressin induces a luteinizing hormone surge in ovariectomized, estradiol-treated rats with lesions of the suprachiasmatic nucleus. Neuroscience. 1999; 93(2): 659–666. DOI: 10.1016/S0306-4522(99)00106-2
- 63Mahoney MM, Ramanathan C, Hagenauer MH, Thompson RC, Smale L, Lee T. Daily rhythms and sex differences in vasoactive intestinal polypeptide, VIPR2 receptor and arginine vasopressin mRNA in the suprachiasmatic nucleus of a diurnal rodent, Arvicanthis niloticus. Eur J Neurosci. oct. 2009; 30(8): 1537–1543. DOI: 10.1111/j.1460-9568.2009.06936.x
- 64Cázarez-Márquez F, Laran-Chich MP, Klosen P, Kalsbeek A, Simonneaux V. RFRP3 increases food intake in a sex-dependent manner in the seasonal hamster Phodopus sungorus. J Neuroendocrinol. mai 2020; 32(5):
e12845 . DOI: 10.1111/jne.12845
