References
- 1Grant AD, Wilsterman K, Smarr BL, Kriegsfeld LJ. Evidence for a Coupled Oscillator Model of Endocrine Ultradian Rhythms. J Biol Rhythms. 2018; 33: 475–96. DOI: 10.1177/0748730418791423
- 2Coyne MD, Kesick CM, Doherty TJ, Kolka MA, Stephenson LA. Circadian rhythm changes in core temperature over the menstrual cycle: method for noninvasive monitoring. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology. 2000; 279: R1316–20. DOI: 10.1152/ajpregu.2000.279.4.R1316
- 3Cagnacci A, Arangino S, Tuveri F, Paoletti AM, Volpe A. Regulation of the 24h body temperature rhythm of women in luteal phase: role of gonadal steroids and prostaglandins. Chronobiol Int. 2002; 19: 721–30. DOI: 10.1081/CBI-120005394
- 4Aronson BD, Bell-Pedersen D, Block GD, Bos NP, Dunlap JC, Eskin A, et al. Circadian rhythms. Brain Res Brain Res Rev. 1993; 18: 315–33. DOI: 10.1016/0165-0173(93)90015-R
- 5Beale AD, Whitmore D, Moran D. Life in a dark biosphere: a review of circadian physiology in “arrhythmic” environments. J Comp Physiol B, Biochem Syst Environ Physiol. 2016; 186: 947–68. DOI: 10.1007/s00360-016-1000-6
- 6Loudon ASI. Circadian biology: a 2.5 billion year old clock. Curr Biol. 2012; 22: R570–571. DOI: 10.1016/j.cub.2012.06.023
- 7Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci. 2012; 35: 445–62. DOI: 10.1146/annurev-neuro-060909-153128
- 8Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 2017; 18: 164–79. DOI: 10.1038/nrg.2016.150
- 9Bedont JL, LeGates TA, Buhr E, Bathini A, Ling JP, Bell B, et al. An LHX1-Regulated Transcriptional Network Controls Sleep/Wake Coupling and Thermal Resistance of the Central Circadian Clockworks. Curr Biol. 2017; 27: 128–36. DOI: 10.1016/j.cub.2016.11.008
- 10Golombek DA, Rosenstein RE. Physiology of circadian entrainment. Physiol Rev. 2010; 90: 1063–102. DOI: 10.1152/physrev.00009.2009
- 11Welsh DK, Takahashi JS, Kay SA. Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol. 2010; 72: 551–77. DOI: 10.1146/annurev-physiol-021909-135919
- 12Hastings MH, Maywood ES, Brancaccio M. Generation of circadian rhythms in the suprachiasmatic nucleus. Nat Rev Neurosci. 2018; 19: 453–69. DOI: 10.1038/s41583-018-0026-z
- 13Evans MC, Anderson GM. Integration of Circadian and Metabolic Control of Reproductive Function. Endocrinology. 2018; 159: 3661–73. DOI: 10.1210/en.2018-00691
- 14Refinetti R. Comparison of light, food, and temperature as environmental synchronizers of the circadian rhythm of activity in mice. J Physiol Sci. 2015; 65: 359–66. DOI: 10.1007/s12576-015-0374-7
- 15Buhr ED, Yoo S-H, Takahashi JS. Temperature as a universal resetting cue for mammalian circadian oscillators. Science. 2010; 330: 379–85. DOI: 10.1126/science.1195262
- 16Ruby NF, Burns DE, Heller HC. Circadian Rhythms in the Suprachiasmatic Nucleus are Temperature-Compensated and Phase-Shifted by Heat Pulses In Vitro. J Neurosci. 1999; 19: 8630–6. DOI: 10.1523/JNEUROSCI.19-19-08630.1999
- 17Brown SA, Zumbrunn G, Fleury-Olela F, Preitner N, Schibler U. Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr Biol. 2002; 12: 1574–83. DOI: 10.1016/S0960-9822(02)01145-4
- 18Guo H, Brewer JM, Champhekar A, Harris RBS, Bittman EL. Differential control of peripheral circadian rhythms by suprachiasmatic-dependent neural signals. Proc Natl Acad Sci USA. 2005; 102: 3111–6. DOI: 10.1073/pnas.0409734102
- 19Silver R, LeSauter J, Tresco PA, Lehman MN. A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature. 1996; 382: 810–3. DOI: 10.1038/382810a0
- 20Thomas JM, Kern PA, Bush HM, McQuerry KJ, Black WS, Clasey JL, et al. Circadian rhythm phase shifts caused by timed exercise vary with chronotype. JCI Insight. 2020; 5. DOI: 10.1172/jci.insight.134270
- 21Cermakian N, Westfall S, Kiessling S. Circadian Clocks and Inflammation: Reciprocal Regulation and Shared Mediators. Arch Immunol Ther Exp. 2014; 62: 303–18. DOI: 10.1007/s00005-014-0286-x
- 22Ono D, Honma K, Honma S. Circadian and ultradian rhythms of clock gene expression in the suprachiasmatic nucleus of freely moving mice. Scientific Reports. 2015; 5: 12310. DOI: 10.1038/srep12310
- 23Bailey M, Silver R. Sex differences in circadian timing systems: implications for disease. Front Neuroendocrinol. 2014; 35: 111–39. DOI: 10.1016/j.yfrne.2013.11.003
- 24Fatehi M, Fatehi-Hassanabad Z. Effects of 17beta-estradiol on neuronal cell excitability and neurotransmission in the suprachiasmatic nucleus of rat. Neuropsychopharmacology. 2008; 33: 1354–64. DOI: 10.1038/sj.npp.1301523
- 25Yan L, Silver R. Neuroendocrine underpinnings of sex differences in circadian timing systems. J Steroid Biochem Mol Biol. 2015. DOI: 10.1016/j.jsbmb.2015.10.007
- 26Karatsoreos IN, Silver R. Minireview: The Neuroendocrinology of the Suprachiasmatic Nucleus as a Conductor of Body Time in Mammals. Endocrinology. 2007; 148: 5640–7. DOI: 10.1210/en.2007-1083
- 27Kräuchi K. How is the circadian rhythm of core body temperature regulated? Clin Auton Res. 2002; 12: 147–9. DOI: 10.1007/s10286-002-0043-9
- 28Tansey EA, Johnson CD. Recent advances in thermoregulation. Adv Physiol Educ. 2015; 39: 139–48. DOI: 10.1152/advan.00126.2014
- 29Saini C, Morf J, Stratmann M, Gos P, Schibler U. Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators. Genes Dev. 2012; 26: 567–80. DOI: 10.1101/gad.183251.111
- 30Husse J, Eichele G, Oster H. Synchronization of the mammalian circadian timing system: Light can control peripheral clocks independently of the SCN clock: alternate routes of entrainment optimize the alignment of the body’s circadian clock network with external time. Bioessays. 2015; 37: 1119–28. DOI: 10.1002/bies.201500026
- 31Brown EN, Choe Y, Luithardt H, Czeisler CA. A statistical model of the human core-temperature circadian rhythm. Am J Physiol Endocrinol Metab. 2000; 279: E669–683. DOI: 10.1152/ajpendo.2000.279.3.E669
- 32Khalsa SBS null, Jewett ME, Duffy JF, Czeisler CA. The timing of the human circadian clock is accurately represented by the core body temperature rhythm following phase shifts to a three-cycle light stimulus near the critical zone. J Biol Rhythms. 2000; 15: 524–30. DOI: 10.1177/074873040001500609
- 33Czeisler CA, Gooley JJ. Sleep and circadian rhythms in humans. Cold Spring Harb Symp Quant Biol. 2007; 72: 579–97. DOI: 10.1101/sqb.2007.72.064
- 34Roenneberg T, Kuehnle T, Juda M, Kantermann T, Allebrandt K, Gordijn M, et al. Epidemiology of the human circadian clock. Sleep Med Rev. 2007; 11: 429–38. DOI: 10.1016/j.smrv.2007.07.005
- 35Kalmbach DA, Schneider LD, Cheung J, Bertrand SJ, Kariharan T, Pack AI, et al. Genetic Basis of Chronotype in Humans: Insights From Three Landmark GWAS. Sleep. 2017; 40. DOI: 10.1093/sleep/zsw048
- 36Jones SE, Lane JM, Wood AR, van Hees VT, Tyrrell J, Beaumont RN, et al. Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms. Nat Commun. 2019; 10: 343. DOI: 10.1038/s41467-018-08259-7
- 37Khan S, Nabi G, Yao L, Siddique R, Sajjad W, Kumar S, et al. Health risks associated with genetic alterations in internal clock system by external factors. Int J Biol Sci. 2018; 14: 791–8. DOI: 10.7150/ijbs.23744
- 38Molzof HE, Prapanjaroensin A, Patel VH, Mokashi MV, Gamble KL, Patrician PA. Misaligned core body temperature rhythms impact cognitive performance of hospital shift work nurses. Neurobiol Learn Mem. 2019; 160: 151–9. DOI: 10.1016/j.nlm.2019.01.002
- 39Christian CA, Moenter SM. The neurobiology of preovulatory and estradiol-induced gonadotropin-releasing hormone surges. Endocr Rev. 2010; 31: 544–77. DOI: 10.1210/er.2009-0023
- 40Miller BH, Takahashi JS. Central Circadian Control of Female Reproductive Function. Front Endocrinol (Lausanne). 2014; 4. DOI: 10.3389/fendo.2013.00195
- 41Olcese J. Circadian aspects of mammalian parturition: a review. Mol Cell Endocrinol. 2011; 349: 62–7. DOI: 10.1016/j.mce.2011.06.041
- 42Cahill DJ, Wardle PG, Harlow CR, Hull MG. Onset of the preovulatory luteinizing hormone surge: diurnal timing and critical follicular prerequisites. Fertil Steril. 1998; 70: 56–9. DOI: 10.1016/S0015-0282(98)00113-7
- 43Mahoney MM. Shift Work, Jet Lag, and Female Reproduction. International Journal of Endocrinology. 2010; 2010:
e813764 . DOI: 10.1155/2010/813764 - 44Park SJ, Goldsmith LT, Skurnick JH, Wojtczuk A, Weiss G. Characteristics of the urinary luteinizing hormone surge in young ovulatory women. Fertil Steril. 2007; 88: 684–90. DOI: 10.1016/j.fertnstert.2007.01.045
- 45Infertility Workup for the Women’s Health Specialist. n.d.
https://www.acog.org/en/Clinical/Clinical Guidance/Committee Opinion/Articles/2019/06/Infertility Workup for the Womens Health Specialist (accessed August 4, 2020). - 46American Academy of Pediatrics Committee on Adolescence, American College of Obstetricians and Gynecologists Committee on Adolescent Health Care, Diaz A, Laufer MR, Breech LL. Menstruation in girls and adolescents: using the menstrual cycle as a vital sign. Pediatrics. 2006; 118: 2245–50. DOI: 10.1542/peds.2006-2481
- 47Carp HJA.
Recurrent Pregnancy Loss: Causes, Controversies, and Treatment , Second Edition n.d.: 444. - 48Harris HR, Titus LJ, Cramer DW, Terry KL. Long and irregular menstrual cycles, polycystic ovary syndrome, and ovarian cancer risk in a population-based case-control study. Int J Cancer. 2017; 140: 285–91. DOI: 10.1002/ijc.30441
- 49Nurminen T. Shift work and reproductive health. Scand J Work Environ Health. 1998; 24 Suppl 3:28–34.
- 50Baker FC, Driver HS. Circadian rhythms, sleep, and the menstrual cycle. Sleep Medicine. 2007; 8: 613–22. DOI: 10.1016/j.sleep.2006.09.011
- 51Lawson CC, Whelan EA, Lividoti Hibert EN, Spiegelman D, Schernhammer ES, Rich-Edwards JW. Rotating shift work and menstrual cycle characteristics. Epidemiology. 2011; 22: 305–12. DOI: 10.1097/EDE.0b013e3182130016
- 52Kovanen L, Saarikoski ST, Aromaa A, Lönnqvist J, Partonen T. ARNTL (BMAL1) and NPAS2 Gene Variants Contribute to Fertility and Seasonality. PLoS One. 2010; 5. DOI: 10.1371/journal.pone.0010007
- 53Cagnacci A, Soldani R, Laughlin GA, Yen SS. Modification of circadian body temperature rhythm during the luteal menstrual phase: role of melatonin. J Appl Physiol. 1996; 80: 25–9. DOI: 10.1152/jappl.1996.80.1.25
- 54Williams WP, Kriegsfeld LJ. Circadian control of neuroendocrine circuits regulating female reproductive function. Front Endocrinol (Lausanne). 2012; 3: 60. DOI: 10.3389/fendo.2012.00060
- 55Webster W, Godfrey EM, Costantini L, Katilius J. Passive fertility prediction using a novel vaginal ring and smartphone application. Fertility and Sterility. 2015; 104:
e98 . DOI: 10.1016/j.fertnstert.2015.07.303 - 56Smarr BL, Gile JJ, de la Iglesia HO. Oestrogen-independent circadian clock gene expression in the anteroventral periventricular nucleus in female rats: possible role as an integrator for circadian and ovarian signals timing the luteinising hormone surge. J Neuroendocrinol. 2013; 25: 1273–9. DOI: 10.1111/jne.12104
- 57Costa JBG, Ahola JK, Weller ZD, Peel RK, Whittier JC, Barcellos JOJ. Reticulo-rumen temperature as a predictor of calving time in primiparous and parous Holstein females. Journal of Dairy Science. 2016; 99: 4839–50. DOI: 10.3168/jds.2014-9289
- 58Buxton CL, Atkinson WB. Hormonal factors involved in the regulation of basal body temperature during the menstrual cycle and pregnancy. J Clin Endocrinol Metab. 1948; 8: 544–9. DOI: 10.1210/jcem-8-7-544
- 59Smarr BL, Zucker I, Kriegsfeld LJ. Detection of Successful and Unsuccessful Pregnancies in Mice within Hours of Pairing through Frequency Analysis of High Temporal Resolution Core Body Temperature Data. PLOS ONE. 2016; 11:
e0160127 . DOI: 10.1371/journal.pone.0160127 - 60Stephenson LA, Kolka MA. Esophageal temperature threshold for sweating decreases before ovulation in premenopausal women. J Appl Physiol. 1999; 86: 22–8. DOI: 10.1152/jappl.1999.86.1.22
- 61Silva NL, Boulant JA. Effects of testosterone, estradiol, and temperature on neurons in preoptic tissue slices. Am J Physiol. 1986; 250: R625–632. DOI: 10.1152/ajpregu.1986.250.4.R625
- 62Nakayama T, Suzuki M, Ishizuka N. Action of progesterone on preoptic thermosensitive neurones. Nature. 1975; 258: 80. DOI: 10.1038/258080a0
- 63Pinkerton JV. Hormone Therapy for Postmenopausal Women. N Engl J Med. 2020; 382: 446–55. DOI: 10.1056/NEJMcp1714787
- 64Charkoudian N, Stachenfeld N. Sex hormone effects on autonomic mechanisms of thermoregulation in humans. Auton Neurosci. 2016; 196: 75–80. DOI: 10.1016/j.autneu.2015.11.004
- 65Stachenfeld NS, Silva C, Keefe DL. Estrogen modifies the temperature effects of progesterone. J Appl Physiol. 2000; 88: 1643–9. DOI: 10.1152/jappl.2000.88.5.1643
- 66Bedford JL, Prior JC, Hitchcock CL, Barr SI. Detecting evidence of luteal activity by least-squares quantitative basal temperature analysis against urinary progesterone metabolites and the effect of wake-time variability. European Journal of Obstetrics and Gynecology and Reproductive Biology. 2009; 146: 76–80. DOI: 10.1016/j.ejogrb.2009.05.001
- 67Prior JC, Naess M, Langhammer A, Forsmo S. Ovulation Prevalence in Women with Spontaneous Normal-Length Menstrual Cycles – A Population-Based Cohort from HUNT3, Norway. PLOS ONE. 2015; 10:
e0134473 . DOI: 10.1371/journal.pone.0134473 - 68Prior JC, Vigna YM, Schechter MT, Burgess AE. Spinal bone loss and ovulatory disturbances. N Engl J Med. 1990; 323: 1221–7. DOI: 10.1056/NEJM199011013231801
- 69Prior JC. Progesterone Within Ovulatory Menstrual Cycles Needed for Cardiovascular Protection: An Evidence-Based Hypothesis. 1 2014; 3: 85–103. DOI: 10.14200/jrm.2014.3.0106
- 70Grattarola R. The premenstrual endometrial pattern of women with breast cancer. A study of progestational activity. Cancer. 1964; 17: 1119–22. DOI: 10.1002/1097-0142(196409)17:9<;1119::AID-CNCR2820170904>3.0.CO;2-1
- 71Xu W-H, Xiang Y-B, Ruan Z-X, Zheng W, Cheng J-R, Dai Q, et al. Menstrual and reproductive factors and endometrial cancer risk: Results from a population-based case-control study in urban Shanghai. Int J Cancer. 2004; 108: 613–9. DOI: 10.1002/ijc.11598
- 72Su H, Yi Y, Wei T, Chang T, Cheng C. Detection of ovulation, a review of currently available methods. Bioeng Transl Med. 2017; 2: 238–46. DOI: 10.1002/btm2.10058
- 73Regidor P-A, Kaczmarczyk M, Schiweck E, Goeckenjan-Festag M, Alexander H. Identification and prediction of the fertile window with a new web-based medical device using a vaginal biosensor for measuring the circadian and circamensual core body temperature. Gynecol Endocrinol. 2018; 34: 256–60. DOI: 10.1080/09513590.2017.1390737
- 74Aptekar D, Costantini L, Katilius J, Webster W. Continuous, Passive Personal Wearable Sensor to Predict Ovulation [21G]. Obstetrics & Gynecology. 2016; 127: 64S. DOI: 10.1097/01.AOG.0000483905.29999.b1
- 75Owen M. Physiological Signs of Ovulation and Fertility Readily Observable by Women. Linacre Q. 2013; 80: 17–23. DOI: 10.1179/0024363912Z.0000000005
- 76Shilaih M, Goodale BM, Falco L, Kübler F, De Clerck V, Leeners B. Modern fertility awareness methods: wrist wearables capture the changes in temperature associated with the menstrual cycle. Biosci Rep. 2018; 38. DOI: 10.1042/BSR20171279
- 77Barron ML, Fehring RJ. Basal body temperature assessment: is it useful to couples seeking pregnancy? MCN Am J Matern Child Nurs. 2005; 30: 290–6; quiz 297–8. DOI: 10.1097/00005721-200509000-00004
- 78Shechter A, Varin F, Boivin DB. Circadian Variation of Sleep During the Follicular and Luteal Phases of the Menstrual Cycle. Sleep. 2010; 33: 647–56. DOI: 10.1093/sleep/33.5.647
