Have a personal or library account? Click to login
Non-Image Forming Effects of Light on Brainwaves, Autonomic Nervous Activity, Fatigue, and Performance Cover

Non-Image Forming Effects of Light on Brainwaves, Autonomic Nervous Activity, Fatigue, and Performance

Open Access
|Sep 2018

References

  1. 1Küller, R. Planning for good indoor lighting. Building Issues. 2004; 14(1): 320.
  2. 2Rashid, M and Zimring, C. A review of the empirical literature on the relationships between indoor environment and stress in health care and office settings: Problems and prospects of sharing evidence. Environment and Behavior. 2008; 40: 151190. DOI: 10.1177/0013916507311550
  3. 3Veitch, JA, Charles, KE, Farley, KM and Newsham, GR. A model of satisfaction with open-plan office conditions: COPE field findings. Journal of Environmental Psychology. 2007; 27: 177189. DOI: 10.1016/j.jenvp.2007.04.002
  4. 4Provencio, I, Rodriguez, IR, Jiang, G, Hayes, WP, Moreira, EF and Rollag, MD A novel human opsin in the inner retina. Journal of Neuroscience. 2000; 20: 600605. DOI: 10.1523/JNEUROSCI.20-02-00600.2000
  5. 5Berson, DM, Dunn, FA and Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock. Science. 2002; 295: 10701073. DOI: 10.1126/science.1067262
  6. 6Holzman, DC. What’s in a color? The unique human health effects of blue light. Environmental health perspectives. 2010; 118: A22. DOI: 10.1289/ehp.118-a22
  7. 7Schmidt, C, Cajochen, C and Chellappa, SL. Circadian and Homeostatic Regulation of Sleepiness, Cognition, and Their Neuronal Underpinnings. In Sleepiness and Human Impact Assessment. Springer. 2014: 4359. DOI: 10.1007/978-88-470-5388-5_4
  8. 8Hanifin, JP and Brainard, GC. Photoreception for circadian, neuroendocrine, and neurobehavioral regulation. Journal of physiological anthropology. 2007; 26: 8794 DOI: 10.2114/jpa2.26.87.
  9. 9Hatori, M and Panda, S. The emerging roles of melanopsin in behavioral adaptation to light. Trends in molecular medicine. 2010; 16: 435446. DOI: 10.1016/j.molmed.2010.07.005
  10. 10LeGates, TA, Fernandez, DC and Hattar, S. Light as a central modulator of circadian rhythms, sleep and affect. Nature Reviews Neuroscience. 2014; 15: 443454. DOI: 10.1038/nrn3743
  11. 11Figueiro, M, Nagare, R and Price, L. Non-visual effects of light: How to use light to promote circadian entrainment and elicit alertness. Lighting Research & Technology. 2018; 50: 3862. DOI: 10.1177/1477153517721598
  12. 12Baek, H and Min, B-K. Blue light aids in coping with the post-lunch dip: an EEG study. Ergonomics. 2015; 58: 803810. DOI: 10.1080/00140139.2014.983300
  13. 13Smolders, KC, De Kort, YA and Cluitmans, P. A higher illuminance induces alertness even during office hours: Findings on subjective measures, task performance and heart rate measures. Physiology & Behavior. 2012; 107: 716. DOI: 10.1016/j.physbeh.2012.04.028
  14. 14Sahin, L and Figueiro, MG. Alerting effects of short-wavelength (blue) and long-wavelength (red) lights in the afternoon. Physiology & behavior. 2013; 116: 17. DOI: 10.1016/j.physbeh.2013.03.014
  15. 15Sahin, L, Wood, BM, Plitnick, B and Figueiro, MG. Daytime light exposure: Effects on biomarkers, measures of alertness, and performance. Behavioural brain research. 2014; 274: 176185. DOI: 10.1016/j.bbr.2014.08.017
  16. 16Figueiro, M, Kalsher, M, Steverson, B, Heerwagen, J, Kampschroer, K and Rea, M. Circadian-effective light and its impact on alertness in office workers. Lighting Research & Technology; 2018. DOI: 10.1177/1477153517750006
  17. 17Leichtfried, V, Mair-Raggautz, M, Schaeffer, V, Hammerer-Lercher, A, Mair, G, Bartenbach, C, Canazei, M and Schobersberger, W. Intense illumination in the morning hours improved mood and alertness but not mental performance. Applied ergonomics. 2015; 46: 5459. DOI: 10.1016/j.apergo.2014.07.001
  18. 18Vandewalle, G, Maquet, P and Dijk, D-J. Light as a modulator of cognitive brain function. Trends in cognitive sciences. 2009; 13: 429438. DOI: 10.1016/j.tics.2009.07.004
  19. 19Vandewalle, G, Gais, S, Schabus, M, Balteau, E, Carrier, J, Darsaud, A, Sterpenich, V, Albouy, G, Dijk, D and Maquet, P. Wavelength-dependent modulation of brain responses to a working memory task by daytime light exposure. Cerebral cortex. 2007; 17: 27882795. DOI: 10.1093/cercor/bhm007
  20. 20Huiberts, LM, Smolders, KC and de Kort, YA. Non-image forming effects of illuminance level: Exploring parallel effects on physiological arousal and task performance. Physiology & behavior. 2016; 164: 129139. DOI: 10.1016/j.physbeh.2016.05.035
  21. 21Lerman, SE, Eskin, E, Flower, DJ, George, EC, Gerson, B, Hartenbaum, N, Hursh, SR and Moore-Ede, M. Fatigue risk management in the workplace. Journal of Occupational and Environmental Medicine. 2012; 54: 231258. DOI: 10.1097/JOM.0b013e318247a3b0
  22. 22Williamson, A, Lombardi, DA, Folkard, S, Stutts, J, Courtney, TK and Connor, JL. The link between fatigue and safety. Accident Analysis & Prevention. 2011; 43: 498515. DOI: 10.1016/j.aap.2009.11.011
  23. 23Lockley, SW, Evans, EE, Scheer, FA, Brainard, GC, Czeisler, CA and Aeschbach, D. Short-wavelength sensitivity for the direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans. Sleep. 2006; 29: 161168. DOI: 10.1093/sleep/29.2.161
  24. 24Revell, VL, Arendt, J, Fogg, LF and Skene, DJ. Alerting effects of light are sensitive to very short wavelengths. Neuroscience letters. 2006; 399: 96100. DOI: 10.1016/j.neulet.2006.01.03
  25. 25Viola, AU, James, LM, Schlangen, LJ and Dijk, D-J. Blue-enriched white light in the workplace improves self-reported alertness, performance and sleep quality. Scandinavian journal of work, environment & health. 2008: 297306. DOI: 10.5271/sjweh.1268
  26. 26Mills, PR, Tomkins, SC and Schlangen, LJ. The effect of high correlated colour temperature office lighting on employee wellbeing and work performance. Journal of circadian rhythms. 2007; 5: 2. DOI: 10.1186/1740-3391-5-2
  27. 27Lehrl, S, Gerstmeyer, K, Jacob, J, Frieling, H, Henkel, A, Meyrer, R, Wiltfang, J, Kornhuber, J, Bleich, S. Blue light improves cognitive performance. Journal of neural transmission. 2007; 114: 457460. DOI: 10.1007/s00702-006-0621-4
  28. 28Figueiro, MG, Bierman, A, Plitnick, B and Rea, MS. Preliminary evidence that both blue and red light can induce alertness at night. BMC neuroscience. 2009; 10: 105. DOI: 10.1186/1471-2202-10-105
  29. 29Figueiro, MG, Sahin, L, Wood, B and Plitnick, B. Light at night and measures of alertness and performance: Implications for shift workers. Biological research for nursing. 2016; 18: 90100. DOI: 10.1177/1099800415572873
  30. 30Park, JY, Ha, R-Y, Ryu, V, Kim, E and Jung, Y-C. Effects of color temperature and brightness on electroencephalogram alpha activity in a polychromatic light-emitting diode. Clinical Psychopharmacology and Neuroscience. 2013, 11: 126. DOI: 10.9758/cpn.2013.11.3.126
  31. 31Rea, MS. The IESNA lighting handbook: Reference & application; 2000.
  32. 32EN, U. Light and lighting. Lighting of work places, Part 1: Indoor work places; 2011.
  33. 33Smolders, KC and de Kort, YA. Investigating daytime effects of correlated colour temperature on experiences, performance, and arousal. Journal of Environmental Psychology. 2017; 50: 8093. DOI: 10.1016/j.jenvp.2017.02.001
  34. 34Roenneberg, T, Wirz-Justice, A and Merrow, M. Life between clocks: Daily temporal patterns of human chronotypes. Journal of biological rhythms. 2003; 18: 8090. DOI: 10.1177/0748730402239679
  35. 35Buysse, DJ, Reynolds, CF, Monk, TH, Berman, SR and Kupfer, DJ. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry research. 1989; 28: 193213. DOI: 10.1016/0165-1781(89)90047-4
  36. 36Orekhova, EV, Stroganova, TA and Posikera, IN. Alpha activity as an index of cortical inhibition during sustained internally controlled attention in infants. Clinical Neurophysiology. 2001; 112: 740749. DOI: 10.1016/S1388-2457(01)00502-8
  37. 37Lucas, RJ, Peirson, SN, Berson, DM, Brown, TM, Cooper, HM, Czeisler, CA, Figueiro, MG, Gamlin, PD, Lockley, SW and O’Hagan, JB. Measuring and using light in the melanopsin age. Trends in neurosciences. 2014; 37: 19. DOI: 10.1016/j.tins.2013.10.004
  38. 38Cajochen, C, Zeitzer, JM, Czeisler, CA and Dijk, D-J. Dose-response relationship for light intensity and ocular and electroencephalographic correlates of human alertness. Behavioural brain research. 2000; 115: 7583. DOI: 10.1016/S0166-4328(00)00236-9
  39. 39Wood, B, Rea, MS, Plitnick, B and Figueiro, MG. Light level and duration of exposure determine the impact of self-luminous tablets on melatonin suppression. Applied ergonomics. 2013; 44: 237240. DOI: 10.1016/j.apergo.2012.07.008
  40. 40Nomenclature, SEP. American Electroence phalographic Society Guidelines for. Journal of clinical Neurophysiology. 1991; 8: 200202. DOI: 10.1097/00004691-199104000-00007
  41. 41Riccio, CA, Reynolds, CR, Lowe, P and Moore, JJ. The continuous performance test: A window on the neural substrates for attention? Archives of clinical neuropsychology. 2002; 17: 235272. DOI: 10.1093/arclin/17.3.235
  42. 42Oriyama, S, Miyakoshi, Y and Kobayashi, T. Effects of two 15-min naps on the subjective sleepiness, fatigue and heart rate variability of night shift nurses. Industrial health. 2014; 52: 2535. DOI: 10.2486/indhealth.2013-0043
  43. 43Åkerstedt, T and Gillberg, M. Subjective and objective sleepiness in the active individual. International Journal of Neuroscience. 1990; 52: 2937. DOI: 10.3109/00207459008994241
  44. 44Okamoto, Y, Rea, MS and Figueiro, MG. Temporal dynamics of EEG activity during short-and long-wavelength light exposures in the early morning. BMC research notes. 2014; 7: 113. DOI: 10.1186/1756-0500-7-113
  45. 45Min, B-K, Jung, Y-C, Kim, E and Park, JY. Bright illumination reduces parietal EEG alpha activity during a sustained attention task. Brain research. 2013; 1538: 8392. DOI: 10.1016/j.brainres.2013.09.031
  46. 46Papamichael, C, Skene, DJ and Revell, VL. Human nonvisual responses to simultaneous presentation of blue and red monochromatic light. Journal of biological rhythms. 2012; 27: 7078. DOI: 10.1177/0748730411431447
  47. 47Plitnick, B, Figueiro, M, Wood, B and Rea, M. The effects of red and blue light on alertness and mood at night. Lighting Research & Technology. 2010; 42: 449458. DOI: 10.1177/1477153509360887
  48. 48Iskra-Golec, I, Wazna, A and Smith, L. Effects of blue-enriched light on the daily course of mood, sleepiness and light perception: A field experiment. Lighting Research & Technology. 2012; 44: 506513. DOI: 10.1177/1477153512447528
  49. 49Borbély, AA. A two process model of sleep regulation. Hum neurobiol. 1982; 1: 195204.
  50. 50DIJK, DJ, Duffy, JF and Czeisler, CA. Circadian and sleep/wake dependent aspects of subjective alertness and cognitive performance. Journal of sleep research. 1992; 1: 112117. DOI: 10.1111/j.1365-2869.1992.tb00021.x
  51. 51Monk, TH. The post-lunch dip in performance. Clinics in sports medicine. 2005; 24: e15e23. DOI: 10.1016/j.csm.2004.12.002
  52. 52Cajochen, C, Blatter, K and Wallach, D. Circadian and sleep-wake dependent impact on neurobehavioral function. Psychologica Belgica. 2004; 44: 5980.
  53. 53Edgar, DM, Dement, WC and Fuller, CA. Effect of SCN lesions on sleep in squirrel monkeys: Evidence for opponent processes in sleep-wake regulation. Journal of Neuroscience. 1993; 13: 10651079. DOI: 10.1523/JNEUROSCI.13-03-01065.1993
  54. 54Dijk, D-J and Edgar, DM. Circadian and homeostatic control of wakefulness and sleep. Lung biology in health and disease. 1999; 133: 111147.
  55. 55Chellappa, SL, Gordijn, MC and Cajochen, C. Can light make us bright? Effects of light on cognition and sleep. In Progress in brain research. 2011; 190: 119133. Elsevier. DOI: 10.1016/B978-0-444-53817-8.00007-4
  56. 56Smolders, K, De Kort, Y and Cluitmans, P. Higher light intensity induces modulations in brain activity even during regular daytime working hours. Lighting Research & Technology. 2016; 48: 433448. DOI: 10.1177/1477153515576399
  57. 57Cajochen, C, Munch, M, Kobialka, S, Krauchi, K, Steiner, R, Oelhafen, P, Orgul, S and Wirz-Justice, A. High sensitivity of human melatonin, alertness, thermoregulation, and heart rate to short wavelength light. The journal of clinical endocrinology & metabolism. 2005; 90: 13111316. DOI: 10.1210/jc.2004-0957
  58. 58Motamedzadeh, M, Golmohammadi, R, Kazemi, R and Heidarimoghadam, R. The effect of blue-enriched white light on cognitive performances and sleepiness of night-shift workers: A field study. Physiology & Behavior. 2017; 177: 208214. DOI: 10.1016/j.physbeh.2017.05.008
  59. 59Okamoto, Y and Nakagawa, S. Effects of daytime light exposure on cognitive brain activity as measured by the ERP P300. Physiology & behavior. 2015; 138: 313318. DOI: 10.1016/j.physbeh.2014.10.013
  60. 60Hanford, N and Figueiro, M. Light therapy and Alzheimer’s disease and related dementia: Past, present, and future. Journal of Alzheimer’s Disease. 2013; 33: 913922. DOI: 10.3233/JAD-2012-121645
  61. 61Danilenko, KV, Cajochen, C and Wirz-Justice, A. Is sleep per se a zeitgeber in humans? Journal of biological rhythms. 2003; 18: 170178. DOI: 10.1177/0748730403251732
  62. 62Scheer, FA, van Doornen, LJ and Buijs, RM. Light and diurnal cycle affect autonomic cardiac balance in human; possible role for the biological clock. Autonomic Neuroscience: Basic and Clinical. 2004; 110: 4448. DOI: 10.1016/j.autneu.2003.03.001
  63. 63Tsunoda, M, Endo, T, Hashimoto, S, Honma, S and Honma, KI. Effects of light and sleep stages on heart rate variability in humans. Psychiatry and clinical neurosciences. 2001; 55: 285286. DOI: 10.1046/j.1440-1819.2001.00862.x
  64. 64Ruger, M, Gordijn, MC, Beersma, DG, de Vries, B, Daan, S. Time-of-day-dependent effects of bright light exposure on human psychophysiology: Comparison of daytime and nighttime exposure. American Journal of Physiology-regulatory, integrative and comparative physiology. 2006; 290: R1413R1420. DOI: 10.1152/ajpregu.00121.2005
  65. 65Scheer, FA, Kalsbeek, A and Buijs, RM. Cardiovascular control by the suprachiasmatic nucleus: Neural and neuroendocrine mechanisms in human and rat. Biological chemistry. 2003; 384: 697709. DOI: 10.1515/BC.2003.078
  66. 66Canazei, M, Pohl, W, Bliem, HR and Weiss, EM. Acute effects of different light spectra on simulated night-shift work without circadian alignment. Chronobiology international. 2017; 34: 303317. DOI: 10.1080/07420528.2016.1222414
DOI: https://doi.org/10.5334/jcr.167 | Journal eISSN: 1740-3391
Language: English
Submitted on: Jul 11, 2018
Accepted on: Sep 4, 2018
Published on: Sep 12, 2018
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Taleb Askaripoor, Majid Motamedzade, Rostam Golmohammadi, Maryam Farhadian, Mohammad Babamiri, Mehdi Samavati, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.