References
- 1Levi, F and Schibler, U. Circadian rhythms: mechanisms and therapeutic implications. Annu Rev Pharmacol Toxicol. 2007; 47: 593–628. DOI: 10.1146/annurev.pharmtox.47.120505.105208
- 2Ohdo, S. Chronopharmaceutics: Pharmaceutics focused on biological rhythm. Biol Pharm Bull. 2010; 33: 159–167. DOI: 10.1248/bpb.33.159
- 3Dallmann, R, Brown, SA and Gachon, F. Chronopharmacology: new insights and therapeutic implications. Annu Rev Pharmacol Toxicol. 2014; 54: 339–361. DOI: 10.1146/annurev-pharmtox-011613-135923
- 4Ben-Cherif, W, Dridi, I, Aouam, K, Ben-Attia, M, Alain Reinberg, A and Boughattas, NA. Chronotolerance study of the antiepileptic drug valproic acid in mice. J Circadian Rhythms. 2012; 10: Art.
3 . DOI: 10.1186/1740-3391-10-3 - 5Miura, N, Ashimori, A, Takeuchi, A, Ohtani, K, Takada, N, Yanagiba, Y, Mita, M, Togawa, M and Hasegawa, T. Mechanisms of cadmium-induced chronotoxicity in mice. J Toxicol Sci. 2013; 38: 947–957. DOI: 10.2131/jts.38.947
- 6Kaneita, Y, Ohida, T, Uchiyama, M, Takemura, S, Kawahara, K, Yokoyama, E, Miyake, T, Harano, S, Suzuki, K and Fujita, T. The relationship between depression and sleep disturbances: a Japanese nationwide general population survey. J Clin Psychiatry. 2006; 67: 196–203. DOI: 10.4088/JCP.v67n0204
- 7Ford, DE and Kamerow, DB. Epidemiologic study of sleep disturbances and psychiatric disorders: An opportunity for prevention? JAMA. 1989; 262: 1479–1484. DOI: 10.1001/jama.1989.03430110069030
- 8Bechtel, W. Circadian rhythms and mood disorders: Are the phenomena and mechanisms causally related? Front Psychiatry. 2015; 6. DOI: 10.3389/fpsyt.2015.00118
- 9Benedetti, F. Antidepressant chronotherapeutics for bipolar depression. Dialogues Clin Neurosci. 2012; 14: 401–411.
- 10Wehr, TA, Wirz-Justice, A, Goodwin, FK, Duncan, W and Gillin, JC. Phase advance of the circadian sleep-wake cycle as an antidepressant. Science. 1979; 206: 710–713. DOI: 10.1126/science.227056
- 11Golden, RN, Gaynes, BN, Ekstrom, RD, Hamer, RM, Jacobsen, FM, Suppes, T, Wisner, KL and Nemeroff, CB. The efficacy of light therapy in the treatment of mood disorders: A review and meta-analysis of the evidence. Am J Psychiatry. 2005; 162: 656–662. DOI: 10.1176/appi.ajp.162.4.656
- 12Tuunainen, A, Kripke, DF and Endo, T. Light therapy for non-seasonal depression. Cochrane Database Syst Rev. 2004; 2. DOI: 10.1002/14651858.CD004050.pub2
- 13Voderholzer, U, Valerius, G, Schaerer, L, Riemann, D, Giedke, H, Schwarzler, F, Berger, M and Wiegand, M. Is the antidepressive effect of sleep deprivation stabilized by a three day phase advance of the sleep period? Eur Arch Psychiat Clin Neurosci. 2003; 253: 68–72.
- 14Schaufler, J, Ronovsky, M, Savalli, G, Cabatic, M, Sartori, SB, Singewald, N and Pollak, DD. Fluoxetine normalizes disrupted light-induced entrainment, fragmented ultradian rhythms and altered hippocampal clock gene expression in an animal model of high trait anxiety- and depression-related behavior. Ann Med. 2016; 48: 17–27. DOI: 10.3109/07853890.2015.1122216
- 15Greco, AM, Gambardella, P, Sticchi, R, D’Aponte, D and De Franciscis, P. Tricyclic imipramine modification of the circadian rhythms of hypothalamic serotonin, its precursors and acid catabolite in individually housed rats. Chronobiol Int. 1988; 5: 217–225. DOI: 10.3109/07420528809079563
- 16Rosenwasser, AM and Hayes, MJ. Neonatal desipramine treatment alters free-running circadian drinking rhythms in rats. Psychopharmacology. 1994; 115: 237–244. DOI: 10.1007/BF02244777
- 17Yannielli, PC, Cutrera, RA, Cardinali, DP and Golombek, DA. Neonatal clomipramine treatment of Syrian hamsters: effect on the circadian system. Eur J Pharmacol. 1998; 349: 143–150. DOI: 10.1016/S0014-2999(98)00208-8
- 18Sprouse, J, Braselton, J and Reynolds, L. Fluoxetine modulates the circadian biological clock via phase advances of suprachiasmatic nucleus neuronal firing. Biol Psychiatry. 2006; 60: 896–899. DOI: 10.1016/j.biopsych.2006.03.003
- 19Yoshikawa, T and Honma, S. Lithium lengthens circadian period of cultured brain slices in area specific manner. Behav Brain Res. 2016; 314: 30–37. DOI: 10.1016/j.bbr.2016.07.045
- 20Ushijima, K, Sakaguchi, H, Sato, Y, To, H, Koyanagi, S, Higuchi, S and Ohdo, S. Chronopharmacological study of antidepressants in forced swimming test of mice. J Pharmacol Exp Ther. 2005; 315: 764–770. DOI: 10.1124/jpet.105.088849
- 21Kawai, H, Machida, M, Ishibashi, T, Kudo, N, Kawashima, Y and Mitsumoto, A. Chronopharmacological analysis of antidepressant activity of a dual-action serotonin noradrenaline reuptake inhibitor (SNRI), milnacipran, in rats. Biol Pharm Bull. 2018; 41: 213–219. DOI: 10.1248/bpb.b17-00733
- 22Nagayama, H, Nagano, K, Ikezaki, A and Tashiro, T. Double-blind study of the chronopharmacotherapy of depression. Chronobiol Int. 1991; 8: 203–209. DOI: 10.3109/07420529109063927
- 23Nakano, S and Hollister, LE. Chronopharmacology of amitriptyline. Clin Pharmacol Ther. 1983; 33: 453–459. DOI: 10.1038/clpt.1983.61
- 24Slattery, DA and Cryan, JF. Using the rat forced swim test to assess antidepressant-like activity in rodents. Nat Protocols. 2012; 7: 1009–1014. DOI: 10.1038/nprot.2012.044
- 25Porsolt, RD, Le Pichon, M and Jalfre, M. Depression: a new animal model sensitive to antidepressant treatments. Nature. 1977; 266: 730–732. DOI: 10.1038/266730a0
- 26Detke, MJ, Rickels, M and Lucki, I. Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology. 1995; 121: 66–72. DOI: 10.1007/BF02245592
- 27Cryan, JF, Markou, A and Lucki, I. Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci. 2002; 23: 238–245. DOI: 10.1016/S0165-6147(02)02017-5
- 28Cottingham, C and Wang, Q. α2 adrenergic receptor dysregulation in depressive disorders: Implications for the neurobiology of depression and antidepressant therapy. Neurosci Biobehav Rev. 2012; 36: 2214–2225. DOI: 10.1016/j.neubiorev.2012.07.011
- 29Sugrue, MF. Chronic antidepressant therapy and associated changes in central monoaminergic receptor functioning. Pharmacol Ther. 1983; 21: 1–33. DOI: 10.1016/0163-7258(83)90065-7
- 30Hertz, L, Rothman, DL, Li, B and Peng, L. Chronic SSRI stimulation of astrocytic 5-HT2B receptors change multiple gene expressions/editings and metabolism of glutamate, glucose and glycogen: a potential paradigm shift. Front Behav Neurosci. 2015; 9. DOI: 10.3389/fnbeh.2015.00025
- 31Usher, RW, Beasley, CM
Jr. and Bosomworth, JC. Efficacy and safety of morning versus evening fluoxetine administration. J Clin Psychiatry. 1991; 52: 134–136. - 32Marathe, PH, Lee, JS, Greene, DS and Barbhaiya, RH. Comparison of the steady-state pharmacokinetics of nefazodone after administration of 200 mg twice daily or 400 mg once daily in the morning or evening. Br J Clin Pharmacol. 1996; 41: 21–27. DOI: 10.1111/j.1365-2125.1996.tb00154.x
- 33Bougerolle, AM, Chabard, JL, Jbilou, M, Dordain, G, Eschalier, A, Aumaitre, O, Gaillot, J, Piron, JJ, Petet, J and Berger, JA. Chronopharmacokinetic and bioequivalence studies of two formulations of trimipramine after oral administration in man. Eur J Drug Metab Pharmacokinet. 1989; 14: 139–144. DOI: 10.1007/BF03190854
- 34Fujimura, A, Ohashi, K, Sugimoto, K, Kumagai, Y and Ebihara, A. Chronopharmacological study of nitrendipine in healthy subjects. J Clin Pharmacol. 1989; 29: 909–915. DOI: 10.1002/j.1552-4604.1989.tb03253.x
- 35Shiga, T, Fujimura, A, Tateishi, T, Ohashi, K and Ebihara, A. Differences of chronopharmacokinetic profiles between propranolol and atenolol in hypertensive subjects. J Clin Pharmacol. 1993; 33: 756–761. DOI: 10.1002/j.1552-4604.1993.tb05620.x
- 36Brosen, K, Zeugin, T and Meyer, UA. Role of P450IID6, the target of the sparteine-debrisoquin oxidation polymorphism, in the metabolism of imipramine. Clin Pharmacol Ther. 1991; 49: 609–617. DOI: 10.1038/clpt.1991.77
- 37Lemoine, A, Gautier, JC, Azoulay, D, Kiffel, L, Belloc, C, Guengerich, FP, Maurel, P, Beaune, P and Leroux, JP. Major pathway of imipramine metabolism is catalyzed by cytochromes P-450 1A2 and P-450 3A4 in human liver. Mol Pharmacol. 1993; 43: 827–832.
- 38Gachon, F, Olela, FF, Schaad, O, Descombes, P and Schibler, U. The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab. 2006; 4: 25–36. DOI: 10.1016/j.cmet.2006.04.015
- 39Baraldo, M. The influence of circadian rhythms on the kinetics of drugs in humans. Expert Opin Drug Metab Toxicol. 2008; 4: 175–192. DOI: 10.1517/17425255.4.2.175
- 40Radzialowski, FM and Bousquet, WF. Daily rhythmic variation in hepatic drug metabolism in the rat and mouse. J Pharmacol Exp Ther. 1968; 163: 229–238.
- 41Zhang, YK, Yeager, RL and Klaassen, CD. Circadian expression profiles of drug-processing genes and transcription factors in mouse liver. Drug Metab Dispos. 2009; 37: 106–115. DOI: 10.1124/dmd.108.024174
- 42Ohno, M, Yamaguchi, I, Ito, T, Saiki, K, Yamamoto, I and Azuma, J. Circadian variation of the urinary 6beta-hydroxycortisol to cortisol ratio that would reflect hepatic CYP3A activity. Eur J Clin Pharmacol. 2000; 55: 861–865. DOI: 10.1007/s002280050708
- 43Matsunaga, N, Inoue, M, Kusunose, N, Kakimoto, K, Hamamura, K, Hanada, Y, Toi, A, Yoshimura, Y, Sato, F, Fujimoto, K, Koyanagi, S and Ohdo, S. Time-dependent interaction between DEC2 and C/EBPα underlies the circadian expression of CYP2D6 in serum-shocked HepG2 cells. Mol Phramacol. 2012; 81: 739–747. DOI: 10.1124/mol.111.076406
- 44Nagayama, H. Influences of biological rhythms on the effects of psychotropic drugs. Psychosom Med. 1999; 61: 618–629. DOI: 10.1097/00006842-199909000-00006
- 45Tatsumi, M, Groshan, K, Blakely, RD and Richelson, E. Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol. 1997; 340: 249–258. DOI: 10.1016/S0014-2999(97)01393-9
- 46De Paermentier, F, Maugera, JM, Lowthera, S, Cromptonb, MR, Katonac, CLE and Hortona, RW. Brain α-adrenoceptors in depressed suicides. Brain Res. 1997; 757: 60–68. DOI: 10.1016/S0006-8993(97)00138-8
- 47Subhash, MN, Nagaraja, MR, Sharada, S and Vinod, KY. Cortical alpha-adrenoceptor downregulation by tricyclic antidepressants in the rat brain. Neurochem Int. 2003; 43: 603–609. DOI: 10.1016/S0197-0186(03)00097-4
- 48Detke, MJ, Johnson, J and Lucki, I. Acute and chronic antidepressant drug treatment in the rat forced swimming test model of depression. Exp Clin Psychopharmacol. 1997; 5: 107–112. DOI: 10.1037/1064-1297.5.2.107
- 49Kitada, Y, Miyauchi, T, Satoh, A and Satoh, S. Effects of antidepressants in the rat forced swimming test. Eur J Pharmacol. 1981; 72: 145–152. DOI: 10.1016/0014-2999(81)90269-7
- 50Delini-Stula, A, Radeke, E and van Riezen, H. Enhanced functional responsiveness of the dopaminergic system – the mechanism of anti-immobility effects of antidepressants in the behavioural despair test in the rat. Neuropharmacol. 1988; 27: 943–947. DOI: 10.1016/0028-3908(88)90122-0
- 51Nestler, EJ, Barrot, M, DiLeone, RJ, Eisch, AJ, Gold, SJ and Monteggia, LM. Neurobiology of depression. Neuron. 2002; 34: 13–25. DOI: 10.1016/S0896-6273(02)00653-0
- 52Kitamura, Y, Araki, H and Gomita, Y. Influence of ACTH on the effects of imipramine, desipramine and lithium on duration of immobility of rats in the forced swim test. Pharmacol Biochem Behav. 2002; 71: 63–69. DOI: 10.1016/S0091-3057(01)00625-6
- 53Vijaya Kumar, K, Rudra, A, Sreedhara, MV, Siva Subramani, T, Prasad, DS, Das, ML, Murugesan, S, Yadav, R, Trivedi, RK, Louis, JV, Li, Y-W, Bristow, LJ, Naidu, PS and Vikramadithyan, RK. Bacillus Calmette–Guérin vaccine induces a selective serotonin reuptake inhibitor (SSRI)-resistant depression like phenotype in mice. Brain Behav Immun. 2014; 42: 204–211. DOI: 10.1016/j.bbi.2014.06.205
- 54Christiansen, SL, Bouzinova, EV, Fahrenkrug, J and Wiborg, O. Altered expression pattern of clock genes in a rat model of depression. Int J Neuropsychopharmacol. 2016; DOI: 10.1093/ijnp/pyw061
- 55Logan, RW, Edgar, N, Gillman, AG, Hoffman, D, Zhu, X and McClung, CA. Chronic stress induces brain region-specific alterations of molecular rhythms that correlate with depression-like behavior in mice. Biol Psychiat. 2015; 78: 249–258. DOI: 10.1016/j.biopsych.2015.01.011
- 56Jiang, W-G, Li, S-X, Zhou, S-J, Sun, Y and Shi, J, Lu, L. Chronic unpredictable stress induces a reversible change of PER2 rhythm in the suprachiasmatic nucleus. Brain Res. 2011; 1399: 25–32. DOI: 10.1016/j.brainres.2011.05.001
