Have a personal or library account? Click to login
Time of Administration of Acute or Chronic Doses of Imipramine Affects its Antidepressant Action in Rats Cover

Time of Administration of Acute or Chronic Doses of Imipramine Affects its Antidepressant Action in Rats

Open Access
|May 2018

References

  1. 1Levi, F and Schibler, U. Circadian rhythms: mechanisms and therapeutic implications. Annu Rev Pharmacol Toxicol. 2007; 47: 593628. DOI: 10.1146/annurev.pharmtox.47.120505.105208
  2. 2Ohdo, S. Chronopharmaceutics: Pharmaceutics focused on biological rhythm. Biol Pharm Bull. 2010; 33: 159167. DOI: 10.1248/bpb.33.159
  3. 3Dallmann, R, Brown, SA and Gachon, F. Chronopharmacology: new insights and therapeutic implications. Annu Rev Pharmacol Toxicol. 2014; 54: 339361. DOI: 10.1146/annurev-pharmtox-011613-135923
  4. 4Ben-Cherif, W, Dridi, I, Aouam, K, Ben-Attia, M, Alain Reinberg, A and Boughattas, NA. Chronotolerance study of the antiepileptic drug valproic acid in mice. J Circadian Rhythms. 2012; 10: Art. 3. DOI: 10.1186/1740-3391-10-3
  5. 5Miura, N, Ashimori, A, Takeuchi, A, Ohtani, K, Takada, N, Yanagiba, Y, Mita, M, Togawa, M and Hasegawa, T. Mechanisms of cadmium-induced chronotoxicity in mice. J Toxicol Sci. 2013; 38: 947957. DOI: 10.2131/jts.38.947
  6. 6Kaneita, Y, Ohida, T, Uchiyama, M, Takemura, S, Kawahara, K, Yokoyama, E, Miyake, T, Harano, S, Suzuki, K and Fujita, T. The relationship between depression and sleep disturbances: a Japanese nationwide general population survey. J Clin Psychiatry. 2006; 67: 196203. DOI: 10.4088/JCP.v67n0204
  7. 7Ford, DE and Kamerow, DB. Epidemiologic study of sleep disturbances and psychiatric disorders: An opportunity for prevention? JAMA. 1989; 262: 14791484. DOI: 10.1001/jama.1989.03430110069030
  8. 8Bechtel, W. Circadian rhythms and mood disorders: Are the phenomena and mechanisms causally related? Front Psychiatry. 2015; 6. DOI: 10.3389/fpsyt.2015.00118
  9. 9Benedetti, F. Antidepressant chronotherapeutics for bipolar depression. Dialogues Clin Neurosci. 2012; 14: 401411.
  10. 10Wehr, TA, Wirz-Justice, A, Goodwin, FK, Duncan, W and Gillin, JC. Phase advance of the circadian sleep-wake cycle as an antidepressant. Science. 1979; 206: 710713. DOI: 10.1126/science.227056
  11. 11Golden, RN, Gaynes, BN, Ekstrom, RD, Hamer, RM, Jacobsen, FM, Suppes, T, Wisner, KL and Nemeroff, CB. The efficacy of light therapy in the treatment of mood disorders: A review and meta-analysis of the evidence. Am J Psychiatry. 2005; 162: 656662. DOI: 10.1176/appi.ajp.162.4.656
  12. 12Tuunainen, A, Kripke, DF and Endo, T. Light therapy for non-seasonal depression. Cochrane Database Syst Rev. 2004; 2. DOI: 10.1002/14651858.CD004050.pub2
  13. 13Voderholzer, U, Valerius, G, Schaerer, L, Riemann, D, Giedke, H, Schwarzler, F, Berger, M and Wiegand, M. Is the antidepressive effect of sleep deprivation stabilized by a three day phase advance of the sleep period? Eur Arch Psychiat Clin Neurosci. 2003; 253: 6872.
  14. 14Schaufler, J, Ronovsky, M, Savalli, G, Cabatic, M, Sartori, SB, Singewald, N and Pollak, DD. Fluoxetine normalizes disrupted light-induced entrainment, fragmented ultradian rhythms and altered hippocampal clock gene expression in an animal model of high trait anxiety- and depression-related behavior. Ann Med. 2016; 48: 1727. DOI: 10.3109/07853890.2015.1122216
  15. 15Greco, AM, Gambardella, P, Sticchi, R, D’Aponte, D and De Franciscis, P. Tricyclic imipramine modification of the circadian rhythms of hypothalamic serotonin, its precursors and acid catabolite in individually housed rats. Chronobiol Int. 1988; 5: 217225. DOI: 10.3109/07420528809079563
  16. 16Rosenwasser, AM and Hayes, MJ. Neonatal desipramine treatment alters free-running circadian drinking rhythms in rats. Psychopharmacology. 1994; 115: 237244. DOI: 10.1007/BF02244777
  17. 17Yannielli, PC, Cutrera, RA, Cardinali, DP and Golombek, DA. Neonatal clomipramine treatment of Syrian hamsters: effect on the circadian system. Eur J Pharmacol. 1998; 349: 143150. DOI: 10.1016/S0014-2999(98)00208-8
  18. 18Sprouse, J, Braselton, J and Reynolds, L. Fluoxetine modulates the circadian biological clock via phase advances of suprachiasmatic nucleus neuronal firing. Biol Psychiatry. 2006; 60: 896899. DOI: 10.1016/j.biopsych.2006.03.003
  19. 19Yoshikawa, T and Honma, S. Lithium lengthens circadian period of cultured brain slices in area specific manner. Behav Brain Res. 2016; 314: 3037. DOI: 10.1016/j.bbr.2016.07.045
  20. 20Ushijima, K, Sakaguchi, H, Sato, Y, To, H, Koyanagi, S, Higuchi, S and Ohdo, S. Chronopharmacological study of antidepressants in forced swimming test of mice. J Pharmacol Exp Ther. 2005; 315: 764770. DOI: 10.1124/jpet.105.088849
  21. 21Kawai, H, Machida, M, Ishibashi, T, Kudo, N, Kawashima, Y and Mitsumoto, A. Chronopharmacological analysis of antidepressant activity of a dual-action serotonin noradrenaline reuptake inhibitor (SNRI), milnacipran, in rats. Biol Pharm Bull. 2018; 41: 213219. DOI: 10.1248/bpb.b17-00733
  22. 22Nagayama, H, Nagano, K, Ikezaki, A and Tashiro, T. Double-blind study of the chronopharmacotherapy of depression. Chronobiol Int. 1991; 8: 203209. DOI: 10.3109/07420529109063927
  23. 23Nakano, S and Hollister, LE. Chronopharmacology of amitriptyline. Clin Pharmacol Ther. 1983; 33: 453459. DOI: 10.1038/clpt.1983.61
  24. 24Slattery, DA and Cryan, JF. Using the rat forced swim test to assess antidepressant-like activity in rodents. Nat Protocols. 2012; 7: 10091014. DOI: 10.1038/nprot.2012.044
  25. 25Porsolt, RD, Le Pichon, M and Jalfre, M. Depression: a new animal model sensitive to antidepressant treatments. Nature. 1977; 266: 730732. DOI: 10.1038/266730a0
  26. 26Detke, MJ, Rickels, M and Lucki, I. Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology. 1995; 121: 6672. DOI: 10.1007/BF02245592
  27. 27Cryan, JF, Markou, A and Lucki, I. Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci. 2002; 23: 238245. DOI: 10.1016/S0165-6147(02)02017-5
  28. 28Cottingham, C and Wang, Q. α2 adrenergic receptor dysregulation in depressive disorders: Implications for the neurobiology of depression and antidepressant therapy. Neurosci Biobehav Rev. 2012; 36: 22142225. DOI: 10.1016/j.neubiorev.2012.07.011
  29. 29Sugrue, MF. Chronic antidepressant therapy and associated changes in central monoaminergic receptor functioning. Pharmacol Ther. 1983; 21: 133. DOI: 10.1016/0163-7258(83)90065-7
  30. 30Hertz, L, Rothman, DL, Li, B and Peng, L. Chronic SSRI stimulation of astrocytic 5-HT2B receptors change multiple gene expressions/editings and metabolism of glutamate, glucose and glycogen: a potential paradigm shift. Front Behav Neurosci. 2015; 9. DOI: 10.3389/fnbeh.2015.00025
  31. 31Usher, RW, Beasley, CM Jr. and Bosomworth, JC. Efficacy and safety of morning versus evening fluoxetine administration. J Clin Psychiatry. 1991; 52: 134136.
  32. 32Marathe, PH, Lee, JS, Greene, DS and Barbhaiya, RH. Comparison of the steady-state pharmacokinetics of nefazodone after administration of 200 mg twice daily or 400 mg once daily in the morning or evening. Br J Clin Pharmacol. 1996; 41: 2127. DOI: 10.1111/j.1365-2125.1996.tb00154.x
  33. 33Bougerolle, AM, Chabard, JL, Jbilou, M, Dordain, G, Eschalier, A, Aumaitre, O, Gaillot, J, Piron, JJ, Petet, J and Berger, JA. Chronopharmacokinetic and bioequivalence studies of two formulations of trimipramine after oral administration in man. Eur J Drug Metab Pharmacokinet. 1989; 14: 139144. DOI: 10.1007/BF03190854
  34. 34Fujimura, A, Ohashi, K, Sugimoto, K, Kumagai, Y and Ebihara, A. Chronopharmacological study of nitrendipine in healthy subjects. J Clin Pharmacol. 1989; 29: 909915. DOI: 10.1002/j.1552-4604.1989.tb03253.x
  35. 35Shiga, T, Fujimura, A, Tateishi, T, Ohashi, K and Ebihara, A. Differences of chronopharmacokinetic profiles between propranolol and atenolol in hypertensive subjects. J Clin Pharmacol. 1993; 33: 756761. DOI: 10.1002/j.1552-4604.1993.tb05620.x
  36. 36Brosen, K, Zeugin, T and Meyer, UA. Role of P450IID6, the target of the sparteine-debrisoquin oxidation polymorphism, in the metabolism of imipramine. Clin Pharmacol Ther. 1991; 49: 609617. DOI: 10.1038/clpt.1991.77
  37. 37Lemoine, A, Gautier, JC, Azoulay, D, Kiffel, L, Belloc, C, Guengerich, FP, Maurel, P, Beaune, P and Leroux, JP. Major pathway of imipramine metabolism is catalyzed by cytochromes P-450 1A2 and P-450 3A4 in human liver. Mol Pharmacol. 1993; 43: 827832.
  38. 38Gachon, F, Olela, FF, Schaad, O, Descombes, P and Schibler, U. The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab. 2006; 4: 2536. DOI: 10.1016/j.cmet.2006.04.015
  39. 39Baraldo, M. The influence of circadian rhythms on the kinetics of drugs in humans. Expert Opin Drug Metab Toxicol. 2008; 4: 175192. DOI: 10.1517/17425255.4.2.175
  40. 40Radzialowski, FM and Bousquet, WF. Daily rhythmic variation in hepatic drug metabolism in the rat and mouse. J Pharmacol Exp Ther. 1968; 163: 229238.
  41. 41Zhang, YK, Yeager, RL and Klaassen, CD. Circadian expression profiles of drug-processing genes and transcription factors in mouse liver. Drug Metab Dispos. 2009; 37: 106115. DOI: 10.1124/dmd.108.024174
  42. 42Ohno, M, Yamaguchi, I, Ito, T, Saiki, K, Yamamoto, I and Azuma, J. Circadian variation of the urinary 6beta-hydroxycortisol to cortisol ratio that would reflect hepatic CYP3A activity. Eur J Clin Pharmacol. 2000; 55: 861865. DOI: 10.1007/s002280050708
  43. 43Matsunaga, N, Inoue, M, Kusunose, N, Kakimoto, K, Hamamura, K, Hanada, Y, Toi, A, Yoshimura, Y, Sato, F, Fujimoto, K, Koyanagi, S and Ohdo, S. Time-dependent interaction between DEC2 and C/EBPα underlies the circadian expression of CYP2D6 in serum-shocked HepG2 cells. Mol Phramacol. 2012; 81: 739747. DOI: 10.1124/mol.111.076406
  44. 44Nagayama, H. Influences of biological rhythms on the effects of psychotropic drugs. Psychosom Med. 1999; 61: 618629. DOI: 10.1097/00006842-199909000-00006
  45. 45Tatsumi, M, Groshan, K, Blakely, RD and Richelson, E. Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol. 1997; 340: 249258. DOI: 10.1016/S0014-2999(97)01393-9
  46. 46De Paermentier, F, Maugera, JM, Lowthera, S, Cromptonb, MR, Katonac, CLE and Hortona, RW. Brain α-adrenoceptors in depressed suicides. Brain Res. 1997; 757: 6068. DOI: 10.1016/S0006-8993(97)00138-8
  47. 47Subhash, MN, Nagaraja, MR, Sharada, S and Vinod, KY. Cortical alpha-adrenoceptor downregulation by tricyclic antidepressants in the rat brain. Neurochem Int. 2003; 43: 603609. DOI: 10.1016/S0197-0186(03)00097-4
  48. 48Detke, MJ, Johnson, J and Lucki, I. Acute and chronic antidepressant drug treatment in the rat forced swimming test model of depression. Exp Clin Psychopharmacol. 1997; 5: 107112. DOI: 10.1037/1064-1297.5.2.107
  49. 49Kitada, Y, Miyauchi, T, Satoh, A and Satoh, S. Effects of antidepressants in the rat forced swimming test. Eur J Pharmacol. 1981; 72: 145152. DOI: 10.1016/0014-2999(81)90269-7
  50. 50Delini-Stula, A, Radeke, E and van Riezen, H. Enhanced functional responsiveness of the dopaminergic system – the mechanism of anti-immobility effects of antidepressants in the behavioural despair test in the rat. Neuropharmacol. 1988; 27: 943947. DOI: 10.1016/0028-3908(88)90122-0
  51. 51Nestler, EJ, Barrot, M, DiLeone, RJ, Eisch, AJ, Gold, SJ and Monteggia, LM. Neurobiology of depression. Neuron. 2002; 34: 1325. DOI: 10.1016/S0896-6273(02)00653-0
  52. 52Kitamura, Y, Araki, H and Gomita, Y. Influence of ACTH on the effects of imipramine, desipramine and lithium on duration of immobility of rats in the forced swim test. Pharmacol Biochem Behav. 2002; 71: 6369. DOI: 10.1016/S0091-3057(01)00625-6
  53. 53Vijaya Kumar, K, Rudra, A, Sreedhara, MV, Siva Subramani, T, Prasad, DS, Das, ML, Murugesan, S, Yadav, R, Trivedi, RK, Louis, JV, Li, Y-W, Bristow, LJ, Naidu, PS and Vikramadithyan, RK. Bacillus Calmette–Guérin vaccine induces a selective serotonin reuptake inhibitor (SSRI)-resistant depression like phenotype in mice. Brain Behav Immun. 2014; 42: 204211. DOI: 10.1016/j.bbi.2014.06.205
  54. 54Christiansen, SL, Bouzinova, EV, Fahrenkrug, J and Wiborg, O. Altered expression pattern of clock genes in a rat model of depression. Int J Neuropsychopharmacol. 2016; DOI: 10.1093/ijnp/pyw061
  55. 55Logan, RW, Edgar, N, Gillman, AG, Hoffman, D, Zhu, X and McClung, CA. Chronic stress induces brain region-specific alterations of molecular rhythms that correlate with depression-like behavior in mice. Biol Psychiat. 2015; 78: 249258. DOI: 10.1016/j.biopsych.2015.01.011
  56. 56Jiang, W-G, Li, S-X, Zhou, S-J, Sun, Y and Shi, J, Lu, L. Chronic unpredictable stress induces a reversible change of PER2 rhythm in the suprachiasmatic nucleus. Brain Res. 2011; 1399: 2532. DOI: 10.1016/j.brainres.2011.05.001
DOI: https://doi.org/10.5334/jcr.156 | Journal eISSN: 1740-3391
Language: English
Submitted on: Jan 20, 2018
Accepted on: Mar 24, 2018
Published on: May 10, 2018
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Hiroshi Kawai, Natsumi Kodaira, Chika Tanaka, Takuya Ishibashi, Naomi Kudo, Yoichi Kawashima, Atsushi Mitsumoto, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.