Have a personal or library account? Click to login
Implementing State-of-the-Art Deep Learning Approaches for Archaeological Object Detection in Remotely-Sensed Data: The Results of Cross-Domain Collaboration Cover

Implementing State-of-the-Art Deep Learning Approaches for Archaeological Object Detection in Remotely-Sensed Data: The Results of Cross-Domain Collaboration

Open Access
|Dec 2021

References

  1. Arnoldussen, S. 2018. The fields that outlived the Celts: The use-histories of later prehistoric field systems (Celtic Fields or Raatakkers) in The Netherlands. Proceedings of the Prehistoric Society, 84: 303327. DOI: 10.1017/ppr.2018.5
  2. Ball, JE, Anderson, DT and Chan, CS. 2017. Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community. Journal of Applied Remote Sensing, 11(4): 042609. DOI: 10.1117/1.JRS.11.042609
  3. Bennett, R, Cowley, D and De Laet, V. 2014. The data explosion: Tackling the taboo of automatic feature recognition in airborne survey data. Antiquity, 88(341): 896905. DOI: 10.1017/S0003598X00050766
  4. Bevan, A. 2015. The data deluge. Antiquity, 89(348): 14731484. DOI: 10.15184/aqy.2015.102
  5. Bochkovskiy, A, Wang, C-Y and Liao, H-YM. 2020. YOLOv4: Optimal Speed and Accuracy of Object Detection, 28 April 2020. Available at https://arxiv.org/abs/2004.10934 [Last accessed 2 November 2021].
  6. Bonhage, A, Raab, A, Eltaher, M, Raab, T, Breuß, M and Schneider, A. 2021. A modified Mask region-based convolutional neural network approach for the automated detection of archaeological sites on high-resolution light detection and ranging-derived digital elevation models in the North German Lowland. Archaeological Prospection, 110. DOI: 10.1002/arp.1806
  7. Bourgeois, QPJ. 2013. Monuments on the Horizon. The Formation of the Barrow Landscape throughout the 3rd and 2nd Millennium BC. Leiden: Sidestone Press.
  8. Bundzel, M, Jǎšcur, M, Kováč, M, Lieskovskỳ, T, Siňćak, P and Tkáčik, T. 2020. Semantic Segmentation of Airborne LiDAR Data in Maya Archaeology. Remote Sensing, 12(22): 3685. DOI: 10.3390/rs12223685
  9. Casana, J. 2020. Global-Scale Archaeological Prospection using CORONA Satellite Imagery: Automated, Crowd-Sourced, and Expert-led Approaches. Journal of Field Archaeology, 45: 89100. DOI: 10.1080/00934690.2020.1713285
  10. Cowley, D. 2012. In with the new, out with the old? Auto-extraction for remote sensing archaeology. Proceedings of SPIE, 8532: 853206. DOI: 10.1117/12.981758
  11. Cowley, D, Verhoeven, GJ and Traviglia, A. 2021. Editorial for Special Issue: Archaeological Remote Sensing in the 21st Century: (Re)Defining Practice and Theory. Remote Sensing, 13(8): 1431. DOI: 10.3390/rs13081431
  12. Deforce, K, Groenewoudt, B and Haneca, K. 2020. 2500 years of charcoal production in the Low Countries: The chronology and typology of charcoal kilns and their relation with early iron production. Quaternary International. DOI: 10.1016/j.quaint.2020.10.020
  13. Everingham, M, Van Gool, L, Williams, CKI, Winn, J and Zisserman, A. 2010. The PASCAL Visual Object Classes (VOC) Challenge. Internattional Journal of Computer Vision, 88: 303338. DOI: 10.1007/s11263-009-0275-4
  14. Gao, L, He, Y, Sun, X, Jia, X and Zhang, B. 2019. Incorporating negative sample training for ship detection based on deep learning. Sensors, 19(3): 684. DOI: 10.3390/s19030684
  15. Gattiglia, G. 2015. Think big about data: Archaeology and the Big Data challenge. Archëaologische Informationen, 38(1): 113124. DOI: 10.11588/ai.2015.1.26155
  16. GDAL/OGR contributors. 2021. GDAL/OGR Geospatial Data Abstraction software Library. Available at https://gdal.org. [Last accessed 2 November 2021].
  17. Ghiasi, G, Lin, TY and Le, QV. 2018. Dropblock: A regularization method for convolutional networks. Advances in Neural Information Processing Systems, 12: 1072710737.
  18. Gillings, M, Hacıigüzeller, P and Lock, G. 2020. Archaeology and spatial analysis. In: Gillings, M, Hacıigüzeller, P and Lock, G (eds.), Archaeological Spatial Analysis: A Methodological Guide, 116. Oxon/New York: Routledge. DOI: 10.4324/9781351243858-1
  19. Gong, M. 2021. A Novel Performance Measure for Machine Learning Classification. International Journal of Managing Information Technology, 13(1): 119. DOI: 10.5121/ijmit.2021.13101
  20. Goodfellow, I, Bengio, Y and Courville, A. 2016. Deep Learning. Cambridge, MA: The MIT Press.
  21. Guo, Y, Liu, Y, Oerlemans, A, Lao, S, Wu, S and Lew, MS. 2016. Deep learning for visual understanding: A review. Neurocomputing, 187: 2748. DOI: 10.1016/j.neucom.2015.09.116
  22. He, K, Gkioxari, G, Dollár, P and Girshick, R. 2018. Mask R-CNN, 13 April 2017. Available at http://arxiv.org/abs/1703.06870 [Last accessed 2 November 2021].
  23. Hesse, R. 2010. LiDAR-derived Local Relief Models – a new tool for archaeological prospection. Archaeological Prospection, 17(2): 6772. DOI: 10.1002/arp.374
  24. Hirsch, F, Schneider, A, Bonhage, A, Raab, A, Drohan, PJ and Raab, T. 2020. An initiative for a morphologic-genetic catalog of relict charcoal hearths from Central Europe. Geoarchaeology, 35(6): 19741983. DOI: 10.1002/gea.21799
  25. Huggett, J. 2020. Is Big Digital Data Different? Towards a New Archaeological Paradigm. Journal of Field Archaeology, 45: S17. DOI: 10.1080/00934690.2020.1713281
  26. Ju, M, Luo, J, Zhang, P, He, M and Luo, H. 2019. A Simple and Efficient Network for Small Target Detection. IEEE Access, 7: 8577185781. DOI: 10.1109/ACCESS.2019.2924960
  27. Kazimi, B, Thiemann, F and Sester, M. 2019. Semantic Segmentation of Manmade Landscape Structures in Digital Terrain Models. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4(2): 8794. DOI: 10.5194/isprs-annals-IV-2-W7-87-2019
  28. Kokalj, Ž and Hesse, R. 2017. Airborne Laser Scanning Raster Data Visualization: A Guide to Good Practice. Ljubljana: Založba ZRC. DOI: 10.3986/9789612549848
  29. Krizhevsky, A, Sutskever, I and Hinton, GE. 2012. ImageNet classification with deep convolutional neural networks. Advances In Neural Information Processing Systems, 25: 11061114. DOI: 10.1016/j.protcy.2014.09.007
  30. Kumar, R and Manash, EB. 2019. Deep learning: A branch of machine learning. Journal of Physics: Conference Series, 1228: 12045. DOI: 10.1088/1742-6596/1228/1/012045
  31. Lambers, K, Verschoof-van der Vaart, WB and Bourgeois, QPJ. 2019. Integrating remote sensing, machine learning, and citizen science in Dutch archaeological prospection. Remote Sensing, 11(7): 794. DOI: 10.3390/rs11070794
  32. LeCun, Y, Bengio, Y and Hinton, G. 2015. Deep learning. Nature, 521: 436444. DOI: 10.1038/nature14539
  33. Liashchynskyi, P and Liashchynskyi, P. 2019. Grid Search, Random Search, Genetic Algorithm: A Big Comparison for NAS, 12 December 2019. Available at http://arxiv.org/abs/1912.06059 [Last accessed 2 November 2021].
  34. Lin, T-Y, Maire, M, Belongie, S, Hays, J, Perona, P, Ramanan, D, Dollar, P and Zitnick, C. 2014. Microsoft COCO: common objects in context. Lecture Notes in Computer Science, 8693: 740755. DOI: 10.1007/978-3-319-10602-1_48
  35. Liu, L, Pan, Z and Lei, B. 2017. Learning a Rotation Invariant Detector with Rotatable Bounding Box, 26 November 2017. Available at http://arxiv.org/abs/1711.09405 [Last accessed 2 November 2021].
  36. McCoy, MD. 2017. Geospatial Big Data and archaeology: Prospects and problems too great to ignore. Journal of Archaeological Science, 84: 7494. DOI: 10.1016/j.jas.2017.06.003
  37. Nationaal Georegister. 2021. Publieke Dienstverlening Op de Kaart (PDOK). Available at https://www.pdok.nl/ [Last accessed 2 November 2021].
  38. Opitz, R and Herrmann, J. 2018. Recent trends and long-standing problems in archaeological remote sensing. Journal of Computer Applications in Archaeology, 1(1): 1941. DOI: 10.5334/jcaa.11
  39. Perrault, R, Shoham, Y, Brynjolfsson, E, Clark, J, Etchemendy, J, Grosz, B, Lyons, T, Manyika, J, Mishra, S and Niebles, JC. 2019. The AI Index 2019 Annual Report. Standford, CA: Human-Centered AI Institute, Stanford University.
  40. QGIS Development Team. 2017. QGIS Geographic Information System. Available at http://qgis.org [Last accessed 2 November 2021].
  41. Qian, X, Lin, S, Cheng, G, Yao, X, Ren, H and Wang, W. 2020. Object Detection in Remote Sensing Images Based on Improved Bounding Box Re- gression and Multi-Level Features Fusion. Remote Sensing, 12(1): 143. DOI: 10.3390/rs12010143
  42. Raab, T, Hirsch, F, Ouimet, W, Johnson, KM, Dethier, D and Raab, A. 2017. Architecture of relict charcoal hearths in northwestern Connecticut, USA. Geoarchaeology, 32(4): 502510. DOI: 10.1002/gea.21614
  43. Razavian, AS, Azizpour, H, Sullivan, J and Carlsson, S. 2014. CNN features off-the-shelf: An astounding baseline for recognition. IEEE CVPRWorkshop, 806813. DOI: 10.1109/CVPRW.2014.131
  44. Redmon, J, Divvala, SK, Girshick, RB and Farhadi, A. 2015. You Only Look Once: Unified, Real-Time Object Detection, 9 May 2016. Available at http://arxiv.org/abs/1506.02640 [Last accessed 2 November 2021]. DOI: 10.1109/CVPR.2016.91
  45. Redmon, J and Farhadi, A. 2016. YOLO9000: Better, Faster, Stronger, 25 December 2016. Available at http://arxiv.org/abs/1612.08242 [Last accessed 2 November 2021]. DOI: 10.1109/CVPR.2017.690
  46. Redmon, J and Farad, A. 2018. YOLOv3: An Incremental Improvement, 8 April 2018. Available at http://arxiv.org/abs/1804.02767 [Last accessed 2 November 2021].
  47. Ren, S, He, K, Girshick, R and Sun, J. 2017. Faster R-CNN: Towards real- time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6): 11371149. DOI: 10.1109/TPAMI.2016.2577031
  48. Rezatofighi, SH, Tsoi, N, Gwak, J, Sadeghian, A, Reid, ID and Savarese, S. 2019. Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression, 15 April 2019. Available at http://arxiv.org/abs/1902.09630 [Last accessed 2 November 2021]. DOI: 10.1109/CVPR.2019.00075
  49. Sammut, C and Webb, GI. 2010. Encyclopaedia of Machine Learning. Boston, MA: Springer. DOI: 10.1007/978-0-387-30164-8
  50. Soroush, M, Mehrtash, A, Khazraee, E and Ur, JA. 2020. Deep Learning in Archaeological Remote Sensing: Automated Qanat Detection in the Kurdistan Region of Iraq. Remote Sensing, 12(3): 500. DOI: 10.3390/rs12030500
  51. Srivastava, N, Hinton, G, Krizhevsky, A and Salakhutdinov, R. 2014. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. JMLR, 15(1): 19291958.
  52. Sumbul, G, Charfuelan, M, Demir, B and Markl, V. 2019. Bigearthnet: A Large-Scale Benchmark Archive for Remote Sensing Image Understanding. IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, 59015904. Yokohama: IEEE. DOI: 10.1109/IGARSS.2019.8900532
  53. Trier, ØD, Cowley, D and Waldeland, AU. 2019. Using deep neural networks on airborne laser scanning data: Results from a case study of semi-automatic mapping of archaeological topography on Arran, Scotland. Archaeological Prospection, 26(2): 165175. DOI: 10.1002/arp.1731
  54. Trier, ØD, Reksten, JH and Løseth, K. 2021. Automated mapping of cultural heritage in Norway from airborne lidar data using faster R-CNN. International Journal of Applied Earth Observation and Geoinformation, 95: 102241. DOI: 10.1016/j.jag.2020.102241
  55. Trier, ØD, Salberg, A-B and Pilø, LH. 2018. Semi automatic mapping of charcoal kilns from airborne laser scanning data using deep learning. In: Matsumoto, M and Uleberg, E (eds.). CAA 2016: Oceans of Data. Proceedings of the 44th Conference on Computer Applications and Quantitative Methods in Archaeology, 219231. Oxford: Archaeopress.
  56. Van der Schriek, M and Beex, W. 2017. The application of LiDAR-based DEMs on WWII conflict sites in the Netherlands. Journal of Conflict Archaeology, 12(2): 94114. DOI: 10.1080/15740773.2017.1440960
  57. Van Etten, A. 2018. You Only Look Twice: Rapid Multi-Scale Object Detection In Satellite Imagery, 24 May 2018. Available at https://arxiv.org/pdf/1805.09512.pdf [Last accessed 2 November 2021].
  58. Van Rossum, G and Drake, F. 2009. Python 3 Reference Manual. Scotts Valley, CA: CreateSpace.
  59. Verhoeven, GJ. 2017. Are we there yet? A review and assessment of archaeological passive airborne optical imaging approaches in the light of landscape archaeology. Geosciences, 7(3): 86. DOI: 10.3390/geosciences7030086
  60. Verschoof-van der Vaart, WB. In press. Learning to Look at LiDAR. Combining CNN-based object detection and GIS for archaeological prospection in remotely-sensed data. Unpublished thesis (PhD), Leiden University.
  61. Verschoof-van der Vaart, WB and Lambers, K. 2019. Learning to look at LiDAR: The use of R-CNN in the automated detection of archaeological objects in LiDAR data from the Netherlands. Journal of Computer Applications in Archaeology, 2(1): 3140. DOI: 10.5334/jcaa.32
  62. Verschoof-van der Vaart, WB, Lambers, K, Kowalczyk, W and Bourgeois, QPJ. 2020. Combining Deep Learning and Location-Based Ranking for Large-Scale Archaeological Prospection of LiDAR Data from The Netherlands. ISPRS International Journal of Geo-Information, 9(5): 293. DOI: 10.3390/ijgi9050293
  63. Verschoof-van der Vaart, WB and Landauer, J. 2021. Using CarcassonNet to automatically detect and trace hollow roads in LiDAR data from the Netherlands. Journal of Cultural Heritage, 47: 143154. DOI: 10.1016/j.culher.2020.10.009
  64. Vletter, WF and van Lanen, RJ. 2018. Finding vanished routes: Applying a multi-modelling approach on lost route and path networks in the Veluwe Region, The Netherlands. Rural Landscapes: Society, Environment, History, 5(2): 119. DOI: 10.16993/rl.35
  65. Yun, S, Han, D, Oh, SJ, Chun, S, Choe, J and Yoo, Y. 2019. CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features, 28 May 2019. Available at http://arxiv.org/abs/1905.04899 [Last accessed 2 November 2021]. DOI: 10.1109/ICCV.2019.00612
  66. Zheng, Z, Wang, P, Liu, W, Li, J, Ye, R and Ren, D. 2019. Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression, 19 November 2019. Available at http://arxiv.org/abs/1911.08287 [Last accessed 2 November 2021].
DOI: https://doi.org/10.5334/jcaa.78 | Journal eISSN: 2514-8362
Language: English
Submitted on: Jul 5, 2021
|
Accepted on: Oct 25, 2021
|
Published on: Dec 8, 2021
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Martin Olivier, Wouter Verschoof-van der Vaart, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.