References
- Aprile, A, Castellano, G and Eramo, G. 2014. Combining image analysis and modular neural networks for classification of mineral inclusions and pores in archaeological potsherds. Journal of Archaeological Science, 50: 262–272. DOI: 10.1016/j.jas.2014.07.017
- Baxter, MJ. 2006. A Review of Supervised and Unsupervised Pattern Recognition in Archaeometry. Archaeometry, 48(4): 671–694. DOI: 10.1111/j.1475-4754.2006.00280.x
- Baxter, MJ, Beardah, CC, Papageorgiou, I, Cau, MA, Day, PM and Kilikoglou, V. 2008. On Statistical Approaches to the Study of Ceramic Artefacts using Geochemical and Petrographic Data. Archaeometry, 50(1): 142–157. DOI: 10.1111/j.1475-4754.2007.00359.x
- Bogacz, B and Mara, H. 2020. Period Classification of 3D Cuneiform Tablets with Geometric Neural Networks. In: 17th International Conference on Frontiers in Handwriting Recognition (ICFHR), 2020.
IEEE , pp. 246–251. DOI: 10.1109/ICFHR2020.2020.00053 - Caron, M, Bojanowski, P, Joulin, A and Douze, M. 2018.
Deep Clustering for Unsupervised Learning of Visual Features . In: Ferrari, V, Hebert, M, Sminchisescu, C and Weiss, Y (eds.). Computer Vision – ECCV 2018. Cham: Springer, pp. 139–156. DOI: 10.1007/978-3-030-01264-9_9 - Caspari, G and Crespo, P. 2019. Convolutional Neural Networks for Archaeological Site Detection – Finding “Princely” Tombs. Journal of Archaeological Science, 110: 104998. DOI: 10.1016/j.jas.2019.104998
- Cau, M-A, Day, PM, Baxter, MJ, Papageorgiou, I, Iliopoulos, I and Montana, G. 2004. Exploring automatic grouping procedures in ceramic petrology. Journal of Archaeological Science, 31(9): 1325–1338. DOI: 10.1016/j.jas.2004.03.006
- Cheng, G and Guo, W. 2017. Rock images classification by using deep convolution neural network. Journal of Physics: Conference Series, 887: 012089. DOI: 10.1088/1742-6596/887/1/012089
- Chetouani, A, Debroutelle, T, Treuillet, S, Exbrayat, M and Jesset, S. 2018. Classification of Ceramic Shards Based on Convolutional Neural Network. In: 2018 25th IEEE International Conference on Image Processing (ICIP).
IEEE , pp. 1038–1042. DOI: 10.1109/ICIP.2018.8451728 - Chetouani, A, Treuillet, S, Exbrayat, M and Jesset, S. 2020. Classification of Engraved Pottery Sherds Mixing Deep-Learning Features by Compact Bilinear Pooling. Pattern Recognition Letters, 131: 1–7. DOI: 10.1016/j.patrec.2019.12.009
- Fecher, F. 2021.
Links and Nodes: Networks in Northeast Honduras during the Late Pre-Hispanic Period (AD 900-1525) . PhD dissertation. University of Zurich. DOI: 10.5167/uzh-203124 - Fecher, F, Reindel, M, Fux, P, Gubler, B, Mara, H, Bayer, P and Lyons, M. 2020. The Ceramic Finds from Guadalupe, Honduras: Optimizing Archaeological Documentation with a Combination of Digital and Analog Techniques. Journal of Global Archaeology, 2020: 1–53. DOI: 10.34780/joga.v2020i0.1009
- Geirhos, R, Rubisch, P, Michaelis, C, Bethge, M, Wichmann, FA and Brendel, W. 2018. ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. CoRR, abs/1811.12231. arXiv: 1811.12231.
- Goodfellow, I, Bengio, Y and Courville, A. 2016. Deep Learning. Cambridge, MA: MIT Press.
- Gualandi, ML, Scopigno, R, Wolf, L, Richards, J, Garrigos, JBI, Heinzelmann, M, Hervas, MA, Vila, L and Zallocco, M. 2016.
ArchAIDE – Archaeological Automatic Interpretation and Documentation of cEramics . In: Catalano, CE and Luca, LD (eds.). Eurographics Workshop on Graphics and Cultural Heritage. The Eurographics Association. DOI: 10.2312/gch.20161408 - He, K, Zhang, X, Ren, S and Sun, J. 2016. Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. DOI: 10.1109/CVPR.2016.90
- Healy, PF. 1993.
Northeastern Honduras . In: Henderson, JS and Beaudry-Corbett, M (eds.). Pottery of Prehistoric Honduras. Los Angeles, CA: Institute of Archaeology, University of California, pp. 194–213. DOI: 10.2307/j.ctvhhhg50.16 - Hein, I, Rojas-Domínguez, A, Ornelas, M, D’Ercole, G and Peloschek, L. 2018. Automated classification of archaeological ceramic materials by means of texture measures. Journal of Archaeological Science: Reports, 21: 921–928. DOI: 10.1016/j.jasrep.2017.12.032
- Hsu, C-C and Lin, C-W. 2017. Unsupervised Convolutional Neural Networks for Large-scale Image Clustering. In: 2017 IEEE International Conference on Image Processing (ICIP).
IEEE , pp. 390–394. DOI: 10.1109/ICIP.2017.8296309 - Kalkowski, S, Schulze, C, Dengel, A and Borth, D. 2015. Real-time Analysis and Visualization of the YFCC100m Dataset. In: Friedland, G, Ngo, C-W and Shamma, DA (eds.). Proceedings of the 2015 Workshop on Community-Organized Multimodal Mining: Opportunities for Novel Solutions – MMCommons’15. New York, NY:
ACM Press , pp. 25–30. DOI: 10.1145/2814815.2814820 - Karimpouli, S and Tahmasebi, P. 2019. Segmentation of digital rock images using deep convolutional autoencoder networks. Computers & Geosciences, 126: 142–150. DOI: 10.1016/j.cageo.2019.02.003
- LeCun, Y, Boser, B, Denker, JS, Henderson, D, Howard, RE, Hubbard, W and Jackel, LD. 1989. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation, 1(4): 541–551. DOI: 10.1162/neco.1989.1.4.541
- LeCun, Y, Bengio, Y and Hinton, G. 2015. Deep learning. Nature, 521(7553): 436–444. DOI: 10.1038/nature14539
- Lopez, P, Lira, J and Hein, I. 2015. Discrimination of Ceramic Types Using Digital Image Processing by Means of Morphological Filters. Archaeometry, 57(1): 146–162. DOI: 10.1111/arcm.12083
- Mara, H. 2019. HeiCuBeDa Hilprecht – Heidelberg Cuneiform Benchmark Dataset for the Hilprecht Collection. Version V2. heiDATA. DOI: 10.11588/data/IE8CCN
- Middleton, AP, Freestone, IC and Leese, MN. 1985. Textural Analysis of Ceramic Thin Sections: Evaluation of Grain Sampling Procedures. Archaeometry, 27(1): 64–74. DOI: 10.1111/j.1475-4754.1985.tb00348.x
- Middleton, AP, Leese, MN and Cowell, MR. 1991.
Computer-Assisted Approaches to the Grouping of Ceramic Fabrics . In: Middleton, A (ed.). Recent developments in ceramic petrology. London: British Museum, pp. 265–276. - NASA, METI, AIST, Spacesystems, J., U.S. and Team, J. A. S. 2019. ASTER Global Digital Elevation Model V003. NASA EOSDIS Land Processes DAAC. DOI: 10.5067/ASTER/ASTGTM.003
- Papageorgiou, I. 2020. Ceramic investigation: how to perform statistical analyses. Archaeological and Anthropological Sciences, 12(9). DOI: 10.1007/s12520-020-01142-x
- Pawlowicz, LM and Downum, CE. 2021. Applications of Deep Learning to Decorated Ceramic Typology and Classification: A Case Study using Tusayan White Ware from Northeast Arizona. Journal of Archaeological Science, 130: 105375. DOI: 10.1016/j.jas.2021.105375
- Pires de Lima, R, Bonar, A, Coronado, DD, Marfurt, K and Nicholson, C. 2019a. Deep convolutional neural networks as a geological image classification tool. The Sedimentary Record, 17(2): 4–9. DOI: 10.2110/sedred.2019.2.4
- Pires de Lima, R, Suriamin, F, Marfurt, KJ and Pranter, MJ. 2019b. Convolutional neural networks as aid in core lithofacies classification. Interpretation, 7(3): 27–40. DOI: 10.1190/INT-2018-0245.1
- Quinn, PS. 2013.
Ceramic petrography: The interpretation of archaeological pottery & related artefacts in thin section . Oxford: Archaeopress. DOI: 10.2307/j.ctv1jk0jf4 - Reedy, CL. 2006. Review of Digital Image Analysis of Petrographic Thin Sections in Conservation Research. Journal of the American Institute for Conservation, 45(2): 127–146. DOI: 10.1179/019713606806112531
- Reindel, M and Fecher, F. 2017. Archäologisches Projekt Guadalupe: Kulturelle Interaktion und vorspanische Siedlungsgeschichte im Nordosten von Honduras. Zeitschrift für Archäologie Ausereuropäischer Kulturen, 7: 349–356. DOI: 10.5167/uzh-144745
- Reindel, M, Fux, P and Fecher, F. 2018.
Archäologisches Projekt Guadalupe: Bericht über die Feldkampagne 2017 . Tech. rep. Zürich: SLSA. Schweizerisch-Liechtensteinische Stiftung für archäologische Forschungen im Ausland. DOI: 10.5167/uzh-158145 - Reindel, M, Fux, P and Fecher, F. 2019.
Archäologisches Projekt Guadalupe: Bericht über die Feldkampagne 2018 . Tech. rep. SLSA. Zürich: Schweizerisch-Liechtensteinische Stiftung für archäologische Forschungen im Ausland. DOI: 10.5167/uzh-179198 - Schmidhuber, J. 2015. Deep Learning in Neural Networks: An Overview. Neural Networks, 61: 85–117. DOI: 10.1016/j.neunet.2014.09.003
- Schubert, P. 1986. Petrographic Modal Analaysis – a Necessary Compliment to Chemical Analysis of Ceramic Coarse Ware. Archaeometry, 28(2): 163–178. DOI: 10.1111/j.1475-4754.1986.tb00384.x
- Simonyan, K and Zisserman, A. 2015. Very Deep Convolutional Networks for Large-Scale Image Recognition. In: Bengio, Y and LeCun, Y (eds.). 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7–9, 2015 , Conference Track Proceedings. - Stoltman, JB. 1989. A Quantitative Approach to the Petrographic Analysis of Ceramic Thin Sections. American Antiquity, 54(1): 147–160. DOI: 10.2307/281336
- Stroth, L, Otto, R, Daniels, JT and Braswell, GE. 2019. Statistical artifacts: Critical approaches to the analysis of obsidian artifacts by portable X-ray fluorescence. Journal of Archaeological Science: Reports, 24: 738–747. DOI: 10.1016/j.jasrep.2019.02.023
- Su, C, Xu, S-J, Zhu, K-Y and Zhang, X-C. 2020. Rock Classification in Petrographic Thin Section Images Based on Concatenated Convolutional Neural Networks. Earth Science Informatics, 13: 1477–1484. DOI: 10.1007/s12145-020-00505-1
- Tyukin, I, Sofeikov, K, Levesley, J, Gorban, AN, Allison, P and Cooper, NJ. 2018. Exploring Automated Pottery Identification [Arch-I-Scan]. Internet Archaeology, 50. DOI: 10.11141/ia.50.11
- Whitbread, I. 1989. A proposal for the systematic description of thin sections towards the study of ancient ceramic technology. In: Maniatis, Y (ed.). Archaeometry, Proceedings of the 25th International Symposium. Amsterdam:
Elsevier , pp. 127–138. - Wright, H and Gattiglia, G. 2018. ArchAIDE: Archaeological Automatic Interpretation and Documentation of cEramics. In: Workshop on Cultural Informatics co-located with the EUROMED International Conference on Digital Heritage 2018 (EUROMED 2018). Nicosia, Cyprus:
Zenodo . DOI: 10.5281/zenodo.3603090 - Yosinski, J, Clune, J, Bengio, Y and Lipson, H. 2014. How Transferable Are Features in Deep Neural Networks? In: Proceedings of the 27th International Conference on Neural Information Processing Systems – Volume 2. NIPS’14. Montreal, Canada:
MIT Press , pp. 3320–3328. - Zintgraf, LM, Cohen, TS and Welling, M. 2016. A New Method to Visualize Deep Neural Networks. CoRR, abs/1603.02518. arXiv: 1603.02518.
