Have a personal or library account? Click to login
Archaeological Ground Point Filtering of Airborne Laser Scan Derived Point-Clouds in a Difficult Mediterranean Environment Cover

Archaeological Ground Point Filtering of Airborne Laser Scan Derived Point-Clouds in a Difficult Mediterranean Environment

Open Access
|Apr 2020

References

  1. 1Boardman, C and Bryan, P. 2018. 3D laser scanning for heritage: Advice and guidance on the use of laser scanning in archaeology and architecture. Third edition. London: Historic England.
  2. 2Brodu, N and Lague, D. 2012. 3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: Applications in geomorphology. ISPRS Journal of Photogrammetry and Remote Sensing, 68: 121134. DOI: 10.1016/j.isprsjprs.2012.01.006
  3. 3Canuto, MA, Estrada-Belli, F, Garrison, TG, Houston, SD, Acuna, MJ, Kovac, M, Marken, D, Nondedeo, P, Auld-Thomas, L, Castanet, C, Chatelain, D, Chiriboga, CR, Drapela, T, Lieskovsky, T, Tokovinine, A, Velasquez, A, Fernandez-Diaz, JC and Shrestha, R. 2018. Ancient lowland Maya complexity as revealed by airborne laser scanning of northern Guatemala. Science, 361(6409): DOI: 10.1126/science.aau0137
  4. 4Cifani, G, Opitz, RS and Stoddard, S. 2007. Mapping the Ager Faliscus road-system: The contribution of LiDAR (light detection and ranging) survey. Journal of Roman Archaeology, 20: 165176. DOI: 10.1017/S1047759400005353
  5. 5Cowley, DC, Banaszek, L, Geddes, G and Millican, KM. In Prep. Making LiGHT work of large area survey? Developing approaches to rapid archaeological mapping and the creation of systematic national-scaled heritage data. Journal of Computer Applications in Archaeology, this Special Collection.
  6. 6Crow, P, Benham, S, Devereux, BJ and Amable, GS. 2007. Woodland vegetation and its implications for archaeological survey using LiDAR. Forestry, 80: 241252. DOI: 10.1093/forestry/cpm018
  7. 7Crutchley, S. 2010. The Light Fantastic: Using airborne lidar in archaeological survey. Swindon: English Heritage Publishing.
  8. 8Doneus, M and Briese, C. 2006. Digital terrain modelling for archaeological interpretation within forested areas using full-waveform laserscanning. In The 7th International Symposium on Virtual Reality, Archaeology and Cultural Heritage VAST (2006), Ioannides, M, Arnold, D, Niccolucci, F and Mania, K (eds.), 155162.
  9. 9Doneus, M and Briese, C. 2011. Airborne Laser Scanning in Forested Areas – Potential and Limitations of an Archaeological Prospection Technique. In Remote Sensing for Archaeological Heritage Management: Proceedings of the 11th EAC Heritage Management Symposium, Reykjavik, Iceland, 25–27 March 2010, Cowley, D (ed.), 5376. Budapest: Archaeolingua; EAC.
  10. 10Doneus, M, Briese, C, Fera, M and Janner, M. 2008. Archaeological prospection of forested areas using full-waveform airborne laser scanning. Journal of Archaeological Science, 35: 882893. DOI: 10.1016/j.jas.2007.06.013
  11. 11Doneus, M, Doneus, N, Briese, C, Pregesbauer, M, Mandlburger, G and Verhoeven, G. 2013. Airborne Laser Bathymetry – detecting and recording submerged archaeological sites from the air. Journal of Archaeological Science, 40: 21362151. DOI: 10.1016/j.jas.2012.12.021
  12. 12Džin, K and Giradi Jurkić, V. (eds.) 2008. Vižula i Burle u antici: Vižula and Burle in Roman period. Pula: Arheološki Muzej Istre.
  13. 13Evans, D, Fletcher, FJ, Pottier, C, Chevance, J-B, Soutif, D, Tan, BS, Im, S, Ea, D, Tin, T, Kim, S, Cromarty, C, De Greef, S, Hanus, K, Baty, P, Kuszinger, R, Shimoda, I and Boornazian, G. 2013. Uncovering archaeological landscapes at Angkor using ladar. Proceedings of the National Academy of Sciences, 110(31): 1259512600. DOI: 10.1073/pnas.1306539110
  14. 14Fernandez-Diaz, J, Carter, W, Shrestha, R and Glennie, C. 2014. Now You See It… Now You Don’t: Understanding Airborne Mapping LiDAR Collection and Data Product Generation for Archaeological Research in Mesoamerica. Remote Sensing, 6: 995110001. DOI: 10.3390/rs6109951
  15. 15Fernandez-Diaz, JC and Cohen, AS. In Press. Whose data is it anyway? Lessons in data management and sharing from resurrecting and repurposing lidar data for archaeological research in Honduras. Journal of Computer Applications in Archaeology, this Special Collection.
  16. 16Forte, M and Campana, S. (eds.) 2017. Digital Methods and Remote Sensing in Archaeology: Archaeology in the Age of Sensing. Cham: Springer International Publishing. DOI: 10.1007/978-3-319-40658-9
  17. 17Girardi-Jurkić, V. 2013. Povijesni i gospodarski razvitak južne Istre u antici. In Monografija općine Medulin, 4477. Medulin.
  18. 18Girardi Jurkić, V, Džin, K, Paić, A and Ettinger Starčić, Z. 2012. Vižula kod Medulina. Rezidencijska maritimna vila: Istraživačka kampanja 2011. Histria antiqua, 509–523.
  19. 19Grussenmeyer, P, Landes, T, Doneus, M and Lerma, JL. 2016. Basics of Range-Based Modelling Techniques in Cultural Heritage 3D Recording. In 3D recording, documentation and management of cultural heritage, Stylianidis, E and Remondino, F (eds.), 305364. Caithness: Whittles Publishing.
  20. 20Heinzel, J and Sittler, B. 2010. LiDAR surveys of ancient landscapes in SW Germany: Assessment of archaeological features under forests and attempts for automatic pattern recognition. In Space, time, place: Third International Conference on Remote Sensing in Archaeology, 17th–21st August 2009, Tiruchirappalli, Tamil Nadu, Indien, Forte, M, Campana, S and Liuzza, C (eds.), 113121. Oxford: Archaeopress.
  21. 21Koncani Uhač, I. (ed.) 2008. Poluotok uronjen u more. Podmorska arheologija južne Istre u antici: Peninsula imersed in the sea. Underwater archaeology of southern Istria in Roman antiquity. Pula.
  22. 22Kraus, K and Pfeifer, N. 1998. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing, 53: 193203. DOI: 10.1016/S0924-2716(98)00009-4
  23. 23Lasaponara, R, Coluzzi, R and Masini, N. 2011. Flights into the past: full-waveform airborne laser scanning data for archaeological investigation. Journal of Archaeological Science, 38: 20612070. DOI: 10.1016/j.jas.2010.10.003
  24. 24Lasaponara, R and Masini, N. 2009. Full-waveform Airborne Laser Scanning for the detection of medieval archaeological microtopographic relief. Journal of Cultural Heritage, 10: e78e82. DOI: 10.1016/j.culher.2009.10.004
  25. 25Lugmayr, A. 2013. ALS filtering. http://lbi-archpro.org/als-filtering/. Accessed 8/20/2019.
  26. 26Mandlburger, G, Otepka, J, Karel, W, Wagner, W and Pfeifer, N. 2009. Orientation and Processing of Airborne Laser Scanning data (OPALS) – concept and first results of a comprehensive ALS software. In ISPRS Workshop Laserscanning ‘09: Paris, France, September 1–2, 2009, Bretar, F, Pierrot-Deseilligny, M and Vosselman, G (eds.). Société Française de Photogrammétrie et de Télédétection.
  27. 27Miholjek, I. 2012. Podmorsko istraživanje antičkih ostataka arhitekture na Vižuli – kampanja 2011. Histria antiqua, 525531.
  28. 28Opitz, RS. 2013. An overview of airborne and terrestrial laser scanning in archaeology. In Interpreting archaeological topography: Airborne laser scanning, 3D data and ground observation, Opitz, RS and Cowley, D (eds.), 1331. Oxford: Oxbow Books. DOI: 10.2307/j.ctvh1dqdz.7
  29. 29Opitz, R and Nuninger, L. 2014. Point Clouds Segmentation of Mixed Scenes with Archeological Standing Remains: A Multi-Criteria and Multi-Scale Iterative Approach. International Journal of Heritage in the Digital Era, 3: 287304. DOI: 10.1260/2047-4970.3.2.287
  30. 30Payne, A. 2009. ADS Guides to Good Practice. Laser Scanning for Archaeology: A Guide to Good Practice#. https://guides.archaeologydataservice.ac.uk/g2gp/LaserScan_Toc. Accessed 1/13/2020.
  31. 31Pfeifer, N, Mandlburger, G, Otepka, J and Karel, W. 2014. OPALS – A framework for Airborne Laser Scanning data analysis. Computers, Environment and Urban Systems, 45: 125136. DOI: 10.1016/j.compenvurbsys.2013.11.002
  32. 32Pfeifer, N, Stadler, P and Briese, C. 2001. Derivation of digital terrain models in the SCOP++ environment. In Proceedings of OEEPE Workshop on Airborne Laserscanning and Inferometric SAR for Detailed Digital Terrain Models, OEEPE (ed.). Stockholm, Sweden.
  33. 33Pfennigbauer, M and Ullrich, A. 2010. Improving quality of laser scanning data acquisition through calibrated amplitude and pulse deviation measurement. In Proc.: SPIE 7684, Laser Radar Technology and Applications XV, Turner, MD and Kamerman, GW (eds.), 76841. DOI: 10.1117/12.849641
  34. 34Pfennigbauer, M, Wolf, C, Weinkopf, J and Ullrich, A. 2014. Online waveform processing for demanding target situations. In Proc.: SPIE 9080, Laser Radar Technology and Applications XIX; and Atmospheric Propagation XI, Turner, MD, Kamerman, GW, Wasiczko, LM and Spillar, EJ (eds.), 90800J. DOI: 10.1117/12.2052994
  35. 35Polat, N and Uysal, M. 2015. Investigating performance of Airborne LiDAR data filtering algorithms for DTM generation. Measurement, 63: 6168. DOI: 10.1016/j.measurement.2014.12.017
  36. 36Ressl, C, Kager, H and Mandlburger, G. 2008. Quality checking of ALS projects using statistics of strip differences. IAPRS, XXXVII: 253260.
  37. 37Ressl, C, Pfeifer, N and Mandlburger, G. 2011. Applying 3d affine transformation and least squares matching for airborne laser scanning strips adjustment without gnss/imu trajectory data. ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-5/W12: 6772. DOI: 10.5194/isprsarchives-XXXVIII-5-W12-67-2011
  38. 38Schmohl, S and Sörgel, U. 2019. Submanifold sparse convolutional networks for semantic segmentation of large-scale als point clouds. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2/W5: 7784. DOI: 10.5194/isprs-annals-IV-2-W5-77-2019
  39. 39Shan, J and Toth, CK. 2018. Topographic laser ranging and scanning: Principles and processing. Second edition. Boca Raton: CRC Press/Taylor & Francis Group. DOI: 10.1201/9781315154381
  40. 40Sithole, G and Vosselman, G. 2003. Comparison of filtering algorithms. In Proceedings of the ISPRS working group III/3 workshop “3-D reconstruction from airborne laserscanner and InSAR data”, Maas, H-G, Vosselman, G and Streilein, A (eds.), XXXIV, 3/W13: 7178. Dresden, Germany.
  41. 41Steinbacher, F, Pfennigbauer, M, Aufleger, M and Ullrich, A. 2012. High Resolution Airborne Shallow Water Mapping. ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B1: 5560. DOI: 10.5194/isprsarchives-XXXIX-B1-55-2012
  42. 42Vacchi, M, Marriner, N, Morhange, C, Spada, G, Fontana, A and Rovere, A. 2016. Multiproxy assessment of Holocene relative sea-level changes in the western Mediterranean: Sea-level variability and improvements in the definition of the isostatic signal. Earth-Science Reviews, 155: 172197. DOI: 10.1016/j.earscirev.2016.02.002
  43. 43Winiwarter, L, Mandlburger, G, Schmohl, S and Pfeifer, N. 2019. Classification of ALS Point Clouds Using End-to-End Deep Learning. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 87: 7590. DOI: 10.1007/s41064-019-00073-0
  44. 44Zhao, R, Pang, M and Wang, J. 2018. Classifying airborne LiDAR point clouds via deep features learned by a multi-scale convolutional neural network. International Journal of Geographical Information Science, 32: 960979. DOI: 10.1080/13658816.2018.1431840
DOI: https://doi.org/10.5334/jcaa.44 | Journal eISSN: 2514-8362
Language: English
Submitted on: Oct 15, 2019
Accepted on: Mar 24, 2020
Published on: Apr 21, 2020
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Michael Doneus, Gottfried Mandlburger, Nives Doneus, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.