Have a personal or library account? Click to login
Tool-Driven Revolutions in Archaeological Science Cover

Tool-Driven Revolutions in Archaeological Science

Open Access
|Jan 2020

References

  1. 1Abari, K. 2012. Reproducible research in speech sciences. International Journal of Computer Science Issues, 9(6): 4352. http://www.ijcsi.org/papers/IJCSI-9-6-2-43-52.pdf.
  2. 2Akerlof, GA and Michaillat, P. 2018. Persistence of false paradigms in low-power sciences. Proceedings of the National Academy of Sciences, 115(52): 1322813233. DOI: 10.1073/pnas.1816454115
  3. 3Andersen, H. 2013. The second essential tension: On tradition and innovation in interdisciplinary research. Topoi, 32(1): 38. DOI: 10.1007/s11245-012-9133-z
  4. 4Bailey, DH, Borwein, JM and Stodden, V. 2016. Facilitating reproducibility in scientific computing: Principles and practice. In: Atmanspacher, H and Maasen, S (eds.), Reproducibility: Principles, Problems, Practices, 205231. Hoboken, NJ: Wiley Online Library. DOI: 10.1002/9781118865064.ch9
  5. 5Baker, M. 2017. Scientific computing: Code alert. Nature, 541(7638): 563565. DOI: 10.1038/nj7638-563a
  6. 6Barnes, N. 2010. Publish your computer code: It is good enough. Nature News, 467(7317): 753753. DOI: 10.1038/467753a
  7. 7Baumer, B, Cetinkaya-Rundel, M, Bray, A, Loi, L and Horton, NJ. 2014. R markdown: Integrating a reproducible analysis tool into introductory statistics. Technology Innovations in Statistics Education, 8(1): 122. https://escholarship.org/uc/item/90b2f5xh.
  8. 8Bayliss, A. 2009. Rolling out revolution: Using radiocarbon dating in archaeology. Radiocarbon, 51(1): 123147. DOI: 10.1017/S0033822200033750
  9. 9Boyd, R and Richerson, PJ. 1988. Culture and the evolutionary process. Chicago, IL: University of Chicago Press.
  10. 10Bray, A, Çetinkaya-Rundel, M and Stangl, D. 2014. Taking a chance in the classroom: Five concrete reasons your students should be learning to analyze data in the reproducible paradigm. Chance, 27(3): 5356. DOI: 10.1080/09332480.2014.965635
  11. 11Brinckman, A, Chard, K, Gaffney, N, Hategan, M, Jones, MB, Kowalik, K, Kulasekaran, S, Ludäscher, B, Mecum, BD, Nabrzyski, J, Stodden, V, Taylor, IJ, Turk, MJ and Turner, K. 2019. Computing environments for reproducibility: Capturing the “Whole Tale”. Future Generation Computer Systems, 94: 854867. DOI: 10.1016/j.future.2017.12.029
  12. 12Burnham, KP and Anderson, DR. 2003. Model selection and multimodel inference: A practical information-theoretic approach. New York: Springer Science & Business Media.
  13. 13Casadevall, A and Fang, FC. 2016. Revolutionary science. mBio, 7(2). DOI: 10.1128/mBio.00158-16
  14. 14Cassirer, E. 2004. Form und technik. In: Recki, B (ed.), Gesammelte werke. Hamburger ausgabe, band 17: Aufsätze und kleine schriften (1927–1931), 139183. Hamburg: Felix Meiner Verlag.
  15. 15Chase, AF, Chase, DZ, Fisher, CT, Leisz, SJ and Weishampel, JF. 2012. Geospatial revolution and remote sensing LiDAR in Mesoamerican archaeology. Proceedings of the National Academy of Sciences, 109(32): 1291612921. DOI: 10.1073/pnas.1205198109
  16. 16Chrysanthi, A, Murietta-Flores, P and Papadopoulos, C. 2012. Archaeological computing: Towards prosthesis or amputation? In: Chrysanthi, A, Murietta-Flores, P and Papadopoulos, C (eds.), Thinking beyond the tool. Archaeological computing and the interpretive process, 712. BAR Internat. Ser., Oxford: Archeopress.
  17. 17Clark, GA. 1993. Paradigms in science and archaeology. Journal of Archaeological Research, 1(3): 203234. DOI: 10.1007/BF01326535
  18. 18Clarke, D. 1973. Archaeology: The loss of innocence. Antiquity, 47(185): 618. DOI: 10.1017/S0003598X0003461X
  19. 19Dafoe, A. 2014. Science deserves better: The imperative to share complete replication files. PS: Political Science & Politics, 47(1): 6066. DOI: 10.1017/S104909651300173X
  20. 20Dyson, F. 2000. The sun, the genome, and the internet. New York, NY: Oxford University Press.
  21. 21Dyson, FJ. 2012. Is science mostly driven by ideas or by tools? Science, 338(6113): 14261427. DOI: 10.1126/science.1232773
  22. 22Editors. 2017. Extending transparency to code. Nature Neuroscience, 20(6): 761. DOI: 10.1038/nn.4579
  23. 23Editors. n.d. Author guidelines Journal of Computer Applications in Archaeology. Available at https://journal.caa-international.org/about/submissions/ [Last accessed 6 Dec 2019].
  24. 24Eglen, SJ. 2009. A quick guide to teaching R programming to computational biology students. PLoS Comput Biol, 5(8): e1000482. DOI: 10.1371/journal.pcbi.1000482 [Last accessed 18 May 2015].
  25. 25Fiore-Gartland, B. 2017. Hacked Ethnographic Fieldnotes. AstroHackWeek Blog. 1 October 2014. Available at http://astrohackweek.github.io/blog/ethnographic-notes.html [Last accessed 6 Dec 2019].
  26. 26Fuller, DQ. 2010. An emerging paradigm shift in the origins of agriculture. General Anthropology, 17(2): 112. DOI: 10.1111/j.1939-3466.2010.00010.x
  27. 27Galison, P. 1997. Image and logic: A material culture of microphysics. Chicago, IL: University of Chicago Press. DOI: 10.1063/1.882027
  28. 28Gieryn, TF. 1999. Cultural boundaries of science: Credibility on the line. Chicago, IL: University of Chicago Press.
  29. 29Härke, H. 2002. Interdisciplinarity and the archaeological study of death. Mortality, 7(3): 340341. DOI: 10.1080/1357627021000025487
  30. 30Harris, TM. 2012. Interfacing archaeology and the world of citizen sensors: Exploring the impact of neogeography and volunteered geographic information on an authenticated archaeology. World Archaeology, 44(4): 580591. DOI: 10.1080/00438243.2012.736273
  31. 31Henrich, J and McElreath, R. 2007. Dual-inheritance theory: The evolution of human cultural capacities and cultural evolution. In: Barrett, L and Dunbar, R (eds.), Oxford handbook of evolutionary psychology, 555570. Oxford: Oxford University Press. DOI: 10.1093/oxfordhb/9780198568308.013.0038
  32. 32Hoel, AS and van der Tuin, I. 2013. The ontological force of technicity: Reading Cassirer and Simondon diffractively. Philos. Technol., 26(2): 187202. DOI: 10.1007/s13347-012-0092-5 [Last accessed November 19, 2018].
  33. 33Howey, MC, Sullivan, FB, Tallant, J, Kopple, RV and Palace, MW. 2016. Detecting precontact anthropogenic microtopographic features in a forested landscape with lidar: A case study from the upper great lakes region, ad 1000–1600. PloS One, 11(9): e0162062. DOI: 10.1371/journal.pone.0162062
  34. 34Huggett, J. 2015. Digital haystacks: Open data and the transformation of archaeological knowledge. In: Wilson, AT and Edwards, B (eds.), Open source archaeology: Ethics and practice, 629. Warsaw, Poland: De Gruyter Open. DOI: 10.1515/9783110440171
  35. 35Huvila, I and Huggett, J. 2018. Archaeological practices, knowledge work and digitalisation. Journal of Computer Applications in Archaeology, 1(1): 88100. DOI: 10.5334/jcaa.6
  36. 36Ince, DC, Hatton, L and Graham-Cumming, J. 2012. The case for open computer programs. Nature, 482(7386): 485488. DOI: 10.1038/nature10836
  37. 37Ioannidis, JPA, Stanley, TD and Doucouliagos, H. 2017. The power of bias in economics research. The Economic Journal, 127(605): F236F265. DOI: 10.1111/ecoj.12461
  38. 38Jones, ZM. 2013. Git/github, transparency, and legitimacy in quantitative research. The Political Methodologist, 21(1): 67. https://thepoliticalmethodologist.com/2013/11/18/gitgithub-transparency-and-legitimacy-in-quantitative-research/.
  39. 39Keron, JR. 2015. The use of point pattern analysis in archaeology: Some methods and applications. PhD thesis. University of Western Ontario.
  40. 40Kidwell, MC, Lazarević, LB, Baranski, E, Hardwicke, TE, Piechowski, S, Falkenberg, LS and Nosek, BA. 2016. Badges to acknowledge open practices: A simple, low-cost, effective method for increasing transparency. PLOS Biology, 14(5): e1002456. DOI: 10.1371/journal.pbio.1002456
  41. 41King, G. 1995. Replication, replication. PS: Political Science & Politics, 28(03): 444452. DOI: 10.2307/420301
  42. 42Koerner, S. 2018. Scientific revolutions. In: López Varela, SL (ed.), The encyclopedia of archaeological sciences, 15. New York: Wiley Online Library. DOI: 10.1002/9781119188230.saseas0525
  43. 43Kuhn, T. 1962. The structure of scientific revolutions. Chicago, IL: University of Chicago Press.
  44. 44Kurtz, MJ, Eichhorn, G, Accomazzi, A, Grant, C, Demleitner, M, Henneken, E and Murray, SS. 2005. The effect of use and access on citations. Information Processing & Management, 41(6): 13951402. DOI: 10.1016/j.ipm.2005.03.010
  45. 45LeVeque, RJ, Mitchell, IM and Stodden, V. 2012. Reproducible research for scientific computing: Tools and strategies for changing the culture. Computing in Science & Engineering, 14(4): 1317. DOI: 10.1109/MCSE.2012.38
  46. 46Lodwick, L. 2019. Sowing the seeds of future research: Data sharing, citation and reuse in archaeobotany. Open Quaternary, 5(1): 7. DOI: 10.5334/oq.62
  47. 47Markowetz, F. 2015. Five selfish reasons to work reproducibly. Genome Biology, 16. DOI: 10.1186/s13059-015-0850-7
  48. 48Marwick, B. 2017. Computational reproducibility in archaeological research: Basic principles and a case study of their implementation. Journal of Archaeological Method and Theory, 24(2): 424450. DOI: 10.1007/s10816-015-9272-9
  49. 49Marwick, B. 2019. Galisonian logic devices and data availability: Revitalising upper palaeolithic cultural taxonomies. Antiquity, 93(371): 13651367. DOI: 10.15184/aqy.2019.131
  50. 50Marwick, B and Birch, SEP. 2018. A Standard for the Scholarly Citation of Archaeological Data as an Incentive to Data Sharing. Advances in Archaeological Practice, 6(2): 125143. DOI: 10.1017/aap.2018.3
  51. 51Marwick, B, Boettiger, C and Mullen, L. 2018. Packaging data analytical work reproducibly using R (and friends). The American Statistician, 72(1): 8088. DOI: 10.1080/00031305.2017.1375986
  52. 52Masterman, M. 1970. The nature of a paradigm. In: Musgrave, A and Lakatos, I (eds.), Criticism and the growth of knowledge: Volume 4: Proceedings of the international colloquium in the philosophy of science, London, 1965, 5989. Cambridge: Cambridge University Press.
  53. 53McAnany, PA and Rowe, SM. 2015. Re-visiting the field: Collaborative archaeology as paradigm shift. Journal of Field Archaeology, 40(5): 499507. DOI: 10.1179/2042458215Y.0000000007
  54. 54Meltzer, DJ. 1979. Paradigms and the nature of change in American archaeology. American Antiquity, 44(4): 644657. DOI: 10.2307/279104
  55. 55Miguel, E, Camerer, C, Casey, K, Cohen, J, Esterling, KM, Gerber, A, Glennerster, R, Green, DP, Humphreys, M, Imbens, G, Laitin, D, Madon, T, Nelson, L, Nosek, BA, Petersen, M, Sedlmayr, R, Simmons, JP, Simonsohn, U and Van der Laan, M. 2014. Promoting Transparency in Social Science Research. Science, 343(6166): 3031. DOI: 10.1126/science.1245317
  56. 56Mitchell, IM, LeVeque, RJ and Stodden, V. 2012. Reproducible research for scientific computing: Tools and strategies for changing the culture. Computing in Science and Engineering, 14(4): 1317. DOI: 10.1109/MCSE.2012.38
  57. 57Molyneaux, BL. 2013. The cultural life of images: Visual representation in archaeology. New York: Routledge. DOI: 10.4324/9781315888460
  58. 58Montelius, O. 1899. Typologien eller utvecklingsläran tillämpad på det menskliga arbetet. Svenska Fornminnesföreningens Tidskrift, 10: 237268.
  59. 59Noble, WS. 2009. A quick guide to organizing computational biology projects. PLoS Computational Biology, 5(7): e1000424. DOI: 10.1371/journal.pcbi.1000424
  60. 60Nosek, BA, Alter, G, Banks, GC, Borsboom, D, Bowman, SD, Breckler, S, Buck, S, Chambers, CD, Chin, G, Christensen, G, Contestabile, M, Dafoe, A, Eich, E, Freese, J, Glennerster, R, Goroff, D, Green, DP, Hesse, B, Humphreys, M, Ishiyama, J, Karlan, D, Kraut, A, Lupia, A, Mabry, P, Madon, T, Malhotra, N, Mayo-Wilson, E, McNutt, M, Miguel, E, Levy Paluck, E, Simonsohn, U, Soderberg, C, Spellman, BA, Turitto, J, VandenBos, G, Vazire, S, Wagenmakers, EJ, Wilson, R and Yarkoni, T. 2015. Promoting an open research culture. Science, 348(6242): 14221425. DOI: 10.1126/science.aab2374
  61. 61Pearson, MP. 1998. The beginning of wisdom. Antiquity, 72(277): 680686. DOI: 10.1017/S0003598X0008710X
  62. 62Peng, RD. 2009. Reproducible research and biostatistics. Biostatistics, 10(3): 405408. DOI: 10.1093/biostatistics/kxp014
  63. 63Peng, RD. 2011. Reproducible research in compu-tational science. Science, 334(6060): 1226. DOI: 10.1126/science.1213847
  64. 64Popper, K. 1970. Normal science and its dangers. In: Musgrave, A and Lakatos, I (eds.), Criticism and the growth of knowledge: Volume 4: Proceedings of the international colloquium in the philosophy of science, London, 1965, 5158. Cambridge: Cambridge University Press. DOI: 10.1017/CBO9781139171434.007
  65. 65Ram, K. 2013. Git can facilitate greater reproducibility and increased transparency in science. Source Code for Biology and Medicine, 8(1): 7. DOI: 10.1186/1751-0473-8-7
  66. 66Rendell, L, Fogarty, L, Hoppitt, WJE, Morgan, TJH, Webster, MM and Laland, KN. 2011. Cognitive culture: Theoretical and empirical insights into social learning strategies. Trends in Cognitive Sciences, 15(2): 6876. DOI: 10.1016/j.tics.2010.12.002
  67. 67Sandve, GK, Nekrutenko, A, Taylor, J and Hovig, E. 2013. Ten simple rules for reproducible computational research. PLoS Comput Biol, 9(10): e1003285. DOI: 10.1371/journal.pcbi.1003285
  68. 68Schiffer, MB. 2013. The archaeology of science: Studying the creation of useful knowledge. New York: Springer International Publishing.
  69. 69Simondon, G. 2011. On the mode of existence of technical objects (trans: Mellamphy, N.). Deleuze Studies, 5(3): 407424. DOI: 10.3366/dls.2011.0029
  70. 70Slater, LJ, Thirel, G, Harrigan, S, Delaigue, O, Hurley, A, Khouakhi, A and Smith, K. 2019. Using R in hydrology: A review of recent developments and future directions. Hydrology and Earth System Sciences, 23(7): 29392963. DOI: 10.5194/hess-23-2939-2019
  71. 71Snodgrass, A. 2002. A paradigm shift in classical archaeology? Cambridge Archaeological Journal, 12(2): 179194. DOI: 10.1017/S0959774302000094
  72. 72Stark, PB. 2018. Before reproducibility must come preproducibility. Nature, 557: 613. DOI: 10.1038/d41586-018-05256-0
  73. 73Stodden, V, Guo, P and Ma, Z. 2013. Toward reproducible computational research: An empirical analysis of data and code policy adoption by journals. Plos One, 8(6): e67111. DOI: 10.1371/journal.pone.0067111
  74. 74Strupler, N and Wilkinson, TC. 2017. Reproducibility in the field: Transparency, version control and collaboration on the project panormos survey. Open Archaeology, 3(1): 279304. DOI: 10.1515/opar-2017-0019
  75. 75Thieme, N. 2018. R generation. Significance, 15(4): 1419. DOI: 10.1111/j.1740-9713.2018.01169.x
  76. 76Tippmann, S. 2015. Programming tools: Adventures with R. Nature News, 517(7532): 109. DOI: 10.1038/517109a
  77. 77Touchon, JC and McCoy, MW. 2016. The mismatch between current statistical practice and doctoral training in ecology. Ecosphere, 7(8): e01394. DOI: 10.1002/ecs2.1394
  78. 78Toulmin, S. 1970. Does the distinction between normal and revolutionary science hold water. In: Musgrave, A and Lakatos, I (eds.), Criticism and the growth of knowledge: Volume 4: Proceedings of the international colloquium in the philosophy of science, London, 1965, 3948. Cambridge University Press. DOI: 10.1017/CBO9781139171434.005
  79. 79Trigger, BG. 2006. A history of archaeological thought, 2nd ed. Cambridge: Cambridge University Press. DOI: 10.1017/CBO9780511813016
  80. 80Vaisey, S and Lizardo, O. 2016. Cultural fragmentation or acquired dispositions? A new approach to accounting for patterns of cultural change. Socius, 2. DOI: 10.1177/2378023116669726
  81. 81Vandewalle, P. 2012. Code sharing is associated with research impact in image processing. Computing in Science and Engineering, 14(4): 4247. DOI: 10.1109/MCSE.2012.63
  82. 82Watkins, JWN. 1970. Against ‘normal science’. In: Musgrave, A and Lakatos, I (eds.), Criticism and the growth of knowledge: Proceedings of the international colloquium in the philosophy of science, London, 1965, 2538. Cambridge: Cambridge University Press. DOI: 10.1017/CBO9781139171434.004
  83. 83Wickham, H. 2015. R packages: Organize, test, document, and share your code. New York: O’Reilly Media, Inc.
  84. 84Wilkins, AS. 1996. Are there ‘Kuhnian’ revolutions in biology? BioEssays, 18(9): 695696. DOI: 10.1002/bies.950180902
  85. 85Wilson, G, Bryan, J, Cranston, K, Kitzes, J, Nederbragt, L and Teal, TK. 2017. Good enough practices in scientific computing. PLOS Computational Biology, 13(6): e1005510. DOI: 10.1371/journal.pcbi.1005510
  86. 86Xie, Y, Allaire, J and Grolemund, G. 2018. R markdown: The definitive guide. New York: CRC Press. DOI: 10.1201/9781138359444
DOI: https://doi.org/10.5334/jcaa.29 | Journal eISSN: 2514-8362
Language: English
Submitted on: Jan 1, 2019
Accepted on: Dec 13, 2019
Published on: Jan 28, 2020
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Sophie C. Schmidt, Ben Marwick, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.