References
- 1Abari, K. 2012. Reproducible research in speech sciences. International Journal of Computer Science Issues, 9(6): 43–52.
http://www.ijcsi.org/papers/IJCSI-9-6-2-43-52.pdf . - 2Akerlof, GA and Michaillat, P. 2018. Persistence of false paradigms in low-power sciences. Proceedings of the National Academy of Sciences, 115(52): 13228–13233. DOI: 10.1073/pnas.1816454115
- 3Andersen, H. 2013. The second essential tension: On tradition and innovation in interdisciplinary research. Topoi, 32(1): 3–8. DOI: 10.1007/s11245-012-9133-z
- 4Bailey, DH, Borwein, JM and Stodden, V. 2016.
Facilitating reproducibility in scientific computing: Principles and practice . In: Atmanspacher, H and Maasen, S (eds.), Reproducibility: Principles, Problems, Practices, 205–231. Hoboken, NJ: Wiley Online Library. DOI: 10.1002/9781118865064.ch9 - 5Baker, M. 2017. Scientific computing: Code alert. Nature, 541(7638): 563–565. DOI: 10.1038/nj7638-563a
- 6Barnes, N. 2010. Publish your computer code: It is good enough. Nature News, 467(7317): 753–753. DOI: 10.1038/467753a
- 7Baumer, B, Cetinkaya-Rundel, M, Bray, A, Loi, L and Horton, NJ. 2014. R markdown: Integrating a reproducible analysis tool into introductory statistics. Technology Innovations in Statistics Education, 8(1): 1–22.
https://escholarship.org/uc/item/90b2f5xh . - 8Bayliss, A. 2009. Rolling out revolution: Using radiocarbon dating in archaeology. Radiocarbon, 51(1): 123–147. DOI: 10.1017/S0033822200033750
- 9Boyd, R and Richerson, PJ. 1988. Culture and the evolutionary process. Chicago, IL: University of Chicago Press.
- 10Bray, A, Çetinkaya-Rundel, M and Stangl, D. 2014. Taking a chance in the classroom: Five concrete reasons your students should be learning to analyze data in the reproducible paradigm. Chance, 27(3): 53–56. DOI: 10.1080/09332480.2014.965635
- 11Brinckman, A, Chard, K, Gaffney, N, Hategan, M, Jones, MB, Kowalik, K, Kulasekaran, S, Ludäscher, B, Mecum, BD, Nabrzyski, J, Stodden, V, Taylor, IJ, Turk, MJ and Turner, K. 2019. Computing environments for reproducibility: Capturing the “Whole Tale”. Future Generation Computer Systems, 94: 854–867. DOI: 10.1016/j.future.2017.12.029
- 12Burnham, KP and Anderson, DR. 2003. Model selection and multimodel inference: A practical information-theoretic approach. New York: Springer Science & Business Media.
- 13Casadevall, A and Fang, FC. 2016. Revolutionary science. mBio, 7(2). DOI: 10.1128/mBio.00158-16
- 14Cassirer, E. 2004.
Form und technik . In: Recki, B (ed.), Gesammelte werke. Hamburger ausgabe, band 17: Aufsätze und kleine schriften (1927–1931), 139–183. Hamburg: Felix Meiner Verlag. - 15Chase, AF, Chase, DZ, Fisher, CT, Leisz, SJ and Weishampel, JF. 2012. Geospatial revolution and remote sensing LiDAR in Mesoamerican archaeology. Proceedings of the National Academy of Sciences, 109(32): 12916–12921. DOI: 10.1073/pnas.1205198109
- 16Chrysanthi, A, Murietta-Flores, P and Papadopoulos, C. 2012.
Archaeological computing: Towards prosthesis or amputation? In: Chrysanthi, A, Murietta-Flores, P and Papadopoulos, C (eds.), Thinking beyond the tool. Archaeological computing and the interpretive process, 7–12. BAR Internat. Ser., Oxford: Archeopress. - 17Clark, GA. 1993. Paradigms in science and archaeology. Journal of Archaeological Research, 1(3): 203–234. DOI: 10.1007/BF01326535
- 18Clarke, D. 1973. Archaeology: The loss of innocence. Antiquity, 47(185): 6–18. DOI: 10.1017/S0003598X0003461X
- 19Dafoe, A. 2014. Science deserves better: The imperative to share complete replication files. PS: Political Science & Politics, 47(1): 60–66. DOI: 10.1017/S104909651300173X
- 20Dyson, F. 2000. The sun, the genome, and the internet. New York, NY: Oxford University Press.
- 21Dyson, FJ. 2012. Is science mostly driven by ideas or by tools? Science, 338(6113): 1426–1427. DOI: 10.1126/science.1232773
- 22Editors. 2017. Extending transparency to code. Nature Neuroscience, 20(6): 761. DOI: 10.1038/nn.4579
- 23Editors. n.d. Author guidelines Journal of Computer Applications in Archaeology. Available at
https://journal.caa-international.org/about/submissions/ [Last accessed 6 Dec 2019]. - 24Eglen, SJ. 2009. A quick guide to teaching R programming to computational biology students. PLoS Comput Biol, 5(8):
e1000482 . DOI: 10.1371/journal.pcbi.1000482 [Last accessed 18 May 2015]. - 25Fiore-Gartland, B. 2017. Hacked Ethnographic Fieldnotes. AstroHackWeek Blog. 1 October 2014. Available at
http://astrohackweek.github.io/blog/ethnographic-notes.html [Last accessed 6 Dec 2019]. - 26Fuller, DQ. 2010. An emerging paradigm shift in the origins of agriculture. General Anthropology, 17(2): 1–12. DOI: 10.1111/j.1939-3466.2010.00010.x
- 27Galison, P. 1997. Image and logic: A material culture of microphysics. Chicago, IL: University of Chicago Press. DOI: 10.1063/1.882027
- 28Gieryn, TF. 1999. Cultural boundaries of science: Credibility on the line. Chicago, IL: University of Chicago Press.
- 29Härke, H. 2002. Interdisciplinarity and the archaeological study of death. Mortality, 7(3): 340–341. DOI: 10.1080/1357627021000025487
- 30Harris, TM. 2012. Interfacing archaeology and the world of citizen sensors: Exploring the impact of neogeography and volunteered geographic information on an authenticated archaeology. World Archaeology, 44(4): 580–591. DOI: 10.1080/00438243.2012.736273
- 31Henrich, J and McElreath, R. 2007.
Dual-inheritance theory: The evolution of human cultural capacities and cultural evolution . In: Barrett, L and Dunbar, R (eds.), Oxford handbook of evolutionary psychology, 555–570. Oxford: Oxford University Press. DOI: 10.1093/oxfordhb/9780198568308.013.0038 - 32Hoel, AS and van der Tuin, I. 2013. The ontological force of technicity: Reading Cassirer and Simondon diffractively. Philos. Technol., 26(2): 187–202. DOI: 10.1007/s13347-012-0092-5 [Last accessed November 19, 2018].
- 33Howey, MC, Sullivan, FB, Tallant, J, Kopple, RV and Palace, MW. 2016. Detecting precontact anthropogenic microtopographic features in a forested landscape with lidar: A case study from the upper great lakes region, ad 1000–1600. PloS One, 11(9):
e0162062 . DOI: 10.1371/journal.pone.0162062 - 34Huggett, J. 2015.
Digital haystacks: Open data and the transformation of archaeological knowledge . In: Wilson, AT and Edwards, B (eds.), Open source archaeology: Ethics and practice, 6–29. Warsaw, Poland: De Gruyter Open. DOI: 10.1515/9783110440171 - 35Huvila, I and Huggett, J. 2018. Archaeological practices, knowledge work and digitalisation. Journal of Computer Applications in Archaeology, 1(1): 88–100. DOI: 10.5334/jcaa.6
- 36Ince, DC, Hatton, L and Graham-Cumming, J. 2012. The case for open computer programs. Nature, 482(7386): 485–488. DOI: 10.1038/nature10836
- 37Ioannidis, JPA, Stanley, TD and Doucouliagos, H. 2017. The power of bias in economics research. The Economic Journal, 127(605): F236–F265. DOI: 10.1111/ecoj.12461
- 38Jones, ZM. 2013. Git/github, transparency, and legitimacy in quantitative research. The Political Methodologist, 21(1): 6–7.
https://thepoliticalmethodologist.com/2013/11/18/gitgithub-transparency-and-legitimacy-in-quantitative-research/ . - 39Keron, JR. 2015.
The use of point pattern analysis in archaeology: Some methods and applications . PhD thesis. University of Western Ontario. - 40Kidwell, MC, Lazarević, LB, Baranski, E, Hardwicke, TE, Piechowski, S, Falkenberg, LS and Nosek, BA. 2016. Badges to acknowledge open practices: A simple, low-cost, effective method for increasing transparency. PLOS Biology, 14(5):
e1002456 . DOI: 10.1371/journal.pbio.1002456 - 41King, G. 1995. Replication, replication. PS: Political Science & Politics, 28(03): 444–452. DOI: 10.2307/420301
- 42Koerner, S. 2018.
Scientific revolutions . In: López Varela, SL (ed.), The encyclopedia of archaeological sciences, 1–5. New York: Wiley Online Library. DOI: 10.1002/9781119188230.saseas0525 - 43Kuhn, T. 1962. The structure of scientific revolutions. Chicago, IL: University of Chicago Press.
- 44Kurtz, MJ, Eichhorn, G, Accomazzi, A, Grant, C, Demleitner, M, Henneken, E and Murray, SS. 2005. The effect of use and access on citations. Information Processing & Management, 41(6): 1395–1402. DOI: 10.1016/j.ipm.2005.03.010
- 45LeVeque, RJ, Mitchell, IM and Stodden, V. 2012. Reproducible research for scientific computing: Tools and strategies for changing the culture. Computing in Science & Engineering, 14(4): 13–17. DOI: 10.1109/MCSE.2012.38
- 46Lodwick, L. 2019. Sowing the seeds of future research: Data sharing, citation and reuse in archaeobotany. Open Quaternary, 5(1): 7. DOI: 10.5334/oq.62
- 47Markowetz, F. 2015. Five selfish reasons to work reproducibly. Genome Biology, 16. DOI: 10.1186/s13059-015-0850-7
- 48Marwick, B. 2017. Computational reproducibility in archaeological research: Basic principles and a case study of their implementation. Journal of Archaeological Method and Theory, 24(2): 424–450. DOI: 10.1007/s10816-015-9272-9
- 49Marwick, B. 2019. Galisonian logic devices and data availability: Revitalising upper palaeolithic cultural taxonomies. Antiquity, 93(371): 1365–1367. DOI: 10.15184/aqy.2019.131
- 50Marwick, B and Birch, SEP. 2018. A Standard for the Scholarly Citation of Archaeological Data as an Incentive to Data Sharing. Advances in Archaeological Practice, 6(2): 125–143. DOI: 10.1017/aap.2018.3
- 51Marwick, B, Boettiger, C and Mullen, L. 2018. Packaging data analytical work reproducibly using R (and friends). The American Statistician, 72(1): 80–88. DOI: 10.1080/00031305.2017.1375986
- 52Masterman, M. 1970. The nature of a paradigm. In: Musgrave, A and Lakatos, I (eds.), Criticism and the growth of knowledge: Volume 4: Proceedings of the international colloquium in the philosophy of science, London,
1965 , 59–89. Cambridge:Cambridge University Press . - 53McAnany, PA and Rowe, SM. 2015. Re-visiting the field: Collaborative archaeology as paradigm shift. Journal of Field Archaeology, 40(5): 499–507. DOI: 10.1179/2042458215Y.0000000007
- 54Meltzer, DJ. 1979. Paradigms and the nature of change in American archaeology. American Antiquity, 44(4): 644–657. DOI: 10.2307/279104
- 55Miguel, E, Camerer, C, Casey, K, Cohen, J, Esterling, KM, Gerber, A, Glennerster, R, Green, DP, Humphreys, M, Imbens, G, Laitin, D, Madon, T, Nelson, L, Nosek, BA, Petersen, M, Sedlmayr, R, Simmons, JP, Simonsohn, U and Van der Laan, M. 2014. Promoting Transparency in Social Science Research. Science, 343(6166): 30–31. DOI: 10.1126/science.1245317
- 56Mitchell, IM, LeVeque, RJ and Stodden, V. 2012. Reproducible research for scientific computing: Tools and strategies for changing the culture. Computing in Science and Engineering, 14(4): 13–17. DOI: 10.1109/MCSE.2012.38
- 57Molyneaux, BL. 2013. The cultural life of images: Visual representation in archaeology. New York: Routledge. DOI: 10.4324/9781315888460
- 58Montelius, O. 1899. Typologien eller utvecklingsläran tillämpad på det menskliga arbetet. Svenska Fornminnesföreningens Tidskrift, 10: 237–268.
- 59Noble, WS. 2009. A quick guide to organizing computational biology projects. PLoS Computational Biology, 5(7):
e1000424 . DOI: 10.1371/journal.pcbi.1000424 - 60Nosek, BA, Alter, G, Banks, GC, Borsboom, D, Bowman, SD, Breckler, S, Buck, S, Chambers, CD, Chin, G, Christensen, G, Contestabile, M, Dafoe, A, Eich, E, Freese, J, Glennerster, R, Goroff, D, Green, DP, Hesse, B, Humphreys, M, Ishiyama, J, Karlan, D, Kraut, A, Lupia, A, Mabry, P, Madon, T, Malhotra, N, Mayo-Wilson, E, McNutt, M, Miguel, E, Levy Paluck, E, Simonsohn, U, Soderberg, C, Spellman, BA, Turitto, J, VandenBos, G, Vazire, S, Wagenmakers, EJ, Wilson, R and Yarkoni, T. 2015. Promoting an open research culture. Science, 348(6242): 1422–1425. DOI: 10.1126/science.aab2374
- 61Pearson, MP. 1998. The beginning of wisdom. Antiquity, 72(277): 680–686. DOI: 10.1017/S0003598X0008710X
- 62Peng, RD. 2009. Reproducible research and biostatistics. Biostatistics, 10(3): 405–408. DOI: 10.1093/biostatistics/kxp014
- 63Peng, RD. 2011. Reproducible research in compu-tational science. Science, 334(6060): 1226. DOI: 10.1126/science.1213847
- 64Popper, K. 1970. Normal science and its dangers. In: Musgrave, A and Lakatos, I (eds.), Criticism and the growth of knowledge: Volume 4: Proceedings of the international colloquium in the philosophy of science, London,
1965 , 51–58. Cambridge:Cambridge University Press . DOI: 10.1017/CBO9781139171434.007 - 65Ram, K. 2013. Git can facilitate greater reproducibility and increased transparency in science. Source Code for Biology and Medicine, 8(1): 7. DOI: 10.1186/1751-0473-8-7
- 66Rendell, L, Fogarty, L, Hoppitt, WJE, Morgan, TJH, Webster, MM and Laland, KN. 2011. Cognitive culture: Theoretical and empirical insights into social learning strategies. Trends in Cognitive Sciences, 15(2): 68–76. DOI: 10.1016/j.tics.2010.12.002
- 67Sandve, GK, Nekrutenko, A, Taylor, J and Hovig, E. 2013. Ten simple rules for reproducible computational research. PLoS Comput Biol, 9(10):
e1003285 . DOI: 10.1371/journal.pcbi.1003285 - 68Schiffer, MB. 2013. The archaeology of science: Studying the creation of useful knowledge. New York: Springer International Publishing.
- 69Simondon, G. 2011. On the mode of existence of technical objects (trans: Mellamphy, N.). Deleuze Studies, 5(3): 407–424. DOI: 10.3366/dls.2011.0029
- 70Slater, LJ, Thirel, G, Harrigan, S, Delaigue, O, Hurley, A, Khouakhi, A and Smith, K. 2019. Using R in hydrology: A review of recent developments and future directions. Hydrology and Earth System Sciences, 23(7): 2939–2963. DOI: 10.5194/hess-23-2939-2019
- 71Snodgrass, A. 2002. A paradigm shift in classical archaeology? Cambridge Archaeological Journal, 12(2): 179–194. DOI: 10.1017/S0959774302000094
- 72Stark, PB. 2018. Before reproducibility must come preproducibility. Nature, 557: 613. DOI: 10.1038/d41586-018-05256-0
- 73Stodden, V, Guo, P and Ma, Z. 2013. Toward reproducible computational research: An empirical analysis of data and code policy adoption by journals. Plos One, 8(6):
e67111 . DOI: 10.1371/journal.pone.0067111 - 74Strupler, N and Wilkinson, TC. 2017. Reproducibility in the field: Transparency, version control and collaboration on the project panormos survey. Open Archaeology, 3(1): 279–304. DOI: 10.1515/opar-2017-0019
- 75Thieme, N. 2018. R generation. Significance, 15(4): 14–19. DOI: 10.1111/j.1740-9713.2018.01169.x
- 76Tippmann, S. 2015. Programming tools: Adventures with R. Nature News, 517(7532): 109. DOI: 10.1038/517109a
- 77Touchon, JC and McCoy, MW. 2016. The mismatch between current statistical practice and doctoral training in ecology. Ecosphere, 7(8):
e01394 . DOI: 10.1002/ecs2.1394 - 78Toulmin, S. 1970. Does the distinction between normal and revolutionary science hold water. In: Musgrave, A and Lakatos, I (eds.), Criticism and the growth of knowledge: Volume 4: Proceedings of the international colloquium in the philosophy of science, London,
1965 , 39–48.Cambridge University Press . DOI: 10.1017/CBO9781139171434.005 - 79Trigger, BG. 2006. A history of archaeological thought, 2nd ed. Cambridge: Cambridge University Press. DOI: 10.1017/CBO9780511813016
- 80Vaisey, S and Lizardo, O. 2016. Cultural fragmentation or acquired dispositions? A new approach to accounting for patterns of cultural change. Socius, 2. DOI: 10.1177/2378023116669726
- 81Vandewalle, P. 2012. Code sharing is associated with research impact in image processing. Computing in Science and Engineering, 14(4): 42–47. DOI: 10.1109/MCSE.2012.63
- 82Watkins, JWN. 1970. Against ‘normal science’. In: Musgrave, A and Lakatos, I (eds.), Criticism and the growth of knowledge: Proceedings of the international colloquium in the philosophy of science, London,
1965 , 25–38. Cambridge:Cambridge University Press . DOI: 10.1017/CBO9781139171434.004 - 83Wickham, H. 2015. R packages: Organize, test, document, and share your code. New York: O’Reilly Media, Inc.
- 84Wilkins, AS. 1996. Are there ‘Kuhnian’ revolutions in biology? BioEssays, 18(9): 695–696. DOI: 10.1002/bies.950180902
- 85Wilson, G, Bryan, J, Cranston, K, Kitzes, J, Nederbragt, L and Teal, TK. 2017. Good enough practices in scientific computing. PLOS Computational Biology, 13(6):
e1005510 . DOI: 10.1371/journal.pcbi.1005510 - 86Xie, Y, Allaire, J and Grolemund, G. 2018. R markdown: The definitive guide. New York: CRC Press. DOI: 10.1201/9781138359444
