References
- 1Abellán, N, Baquedano, E and Domínguez-Rodrigo, M. 2022. ‘High-accuracy in the classification of butchery cut marks and crocodile tooth marks using machine learning methods and computer vision algorithms’. Geobios, 72–73: 12–21. DOI: 10.1016/j.geobios.2022.07.001
- 2Abitbol, R, Shimshoni, I and Ben-Dov, J. 2021. ‘Machine Learning Based Assembly of Fragments of Ancient Papyrus’. ACM Journal on Computing and Cultural Heritage, 14(3):
33 . DOI: 10.1145/3460961 - 3Adams, EW and Adams, WY. (eds.) 1991.
‘The Typological Debate’ . In: Archaeological Typology and Practical Reality: A Dialectical Approach to Artifact Classification and Sorting. Cambridge: Cambridge University Press. pp. 265–277. DOI: 10.1017/CBO9780511558207.029 - 4Agapiou, A and Lysandrou, V. 2015. ‘Remote sensing archaeology: Tracking and mapping evolution in European scientific literature from 1999 to 2015’. Journal of Archaeological Science: Reports, 4: 192–200. DOI: 10.1016/j.jasrep.2015.09.010
- 5Agapiou, A and Lysandrou, V. 2023. ‘Interacting with the Artificial Intelligence (AI) Language Model ChatGPT: A Synopsis of Earth Observation and Remote Sensing in Archaeology’. Heritage, 6(5): 4072–4085. DOI: 10.3390/heritage6050214
- 6Agapiou, A, Vionis, A and Papantoniou, G. 2021. ‘Detection of Archaeological Surface Ceramics Using Deep Learning Image-Based Methods and Very High-Resolution UAV Imageries’. Land, 10(12). DOI: 10.3390/land10121365
- 7Albertini, N, Brogni, A, Olivito, R, Taccola, E, Caramiaux, B and Gillies, M. 2017. ‘Designing natural gesture interaction for archaeological data in immersive environments’. Virtual Archaeology Review, 8(16): 12–21. DOI: 10.4995/var.2016.5872
- 8Aldenderfer, M. 1998. ‘Quantitative Methods in Archaeology: A Review of Recent Trends and Developments’. Journal of Archaeological Research, 6(2): 91–120. DOI: 10.1023/A:1022893621306
- 9Allik, J, Lauk, K and Realo, A. 2020. ‘Factors Predicting the Scientific Wealth of Nations’. Cross-Cultural Research, 54(4): 364–397. DOI: 10.1177/1069397120910982
- 10Alpaydin, E. 2014. Introduction to machine learning. Adaptive computation and machine learning. Third edition. Cambridge, Massachusetts: The MIT Press.
- 11Altaweel, M, Khelifi, A, Li, Z, Squitieri, A, Basmaji, T and Ghazal, M. 2022. ‘Automated Archaeological Feature Detection Using Deep Learning on Optical UAV Imagery: Preliminary Results’. Remote Sensing, 14(3). DOI: 10.3390/rs14030553
- 12Altaweel, M and Squitieri, A. 2019. ‘Finding a Relatively Flat Archaeological Site with Minimal Ceramics: A Case Study from Iraqi Kurdistan’. Journal of Field Archaeology, 44(8): 523–537. DOI: 10.1080/00934690.2019.1662269
- 13Andersen, JP, Degn, L, Fishberg, R, Graversen, EK, Horbach, SPJM, Schmidt, EK, Schneider, JW and Sørensen, MP. 2025. ‘Generative Artificial Intelligence (GenAI) in the research process – A survey of researchers’ practices and perceptions’. Technology in Society, 81:
102813 . DOI: 10.1016/j.techsoc.2025.102813 - 14Anglisano, A, Casas, L, Queralt, I and Di Febo, R. 2022. ‘Supervised Machine Learning Algorithms to Predict Provenance of Archaeological Pottery Fragments’. Sustainability, 14(18):
11214 . DOI: 10.3390/su141811214 - 15Anichini, F, Dershowitz, N, Dubbini, N, Gattiglia, G, Itkin, B and Wolf, L. 2021. ‘The automatic recognition of ceramics from only one photo: The ArchAIDE app’. Journal of Archaeological Science-Reports, 36. DOI: 10.1016/j.jasrep.2020.102788
- 16Anichini, F and Gattiglia, G. 2022. ‘Reflecting on artificial intelligence and archaeology: the ArchAIDE perspective’. Post – Classical Archaeologies, 12: 69–86.
- 17Aramendi, J, Arriaza, M, Yravedra, J, Mate-Gonzalez, M, Ortega, M, Courtenay, L, Gonzalez-Aguilera, D, Gidna, A, Mabulla, A, Baquedano, E and Dominguez-Rodrigo, M. 2019. ‘Who ate OH80 (Olduvai Gorge, Tanzania)? A geometric-morphometric analysis of surface bone modifications of a Paranthropus boisei skeleton’. Quaternary International, 517: 118–130. DOI: 10.1016/j.quaint.2019.05.029
- 18Argyrou, A and Agapiou, A. 2022. ‘A Review of Artificial Intelligence and Remote Sensing for Archaeological Research’. Remote Sensing, 14(23). DOI: 10.3390/rs14236000
- 19Arponen, VPJ, Dörfler, W, Feeser, I, Grimm, S, Groß, D, Hinz, M, Knitter, D, Müller-Scheeßel, N, Ott, K and Ribeiro, A. 2019. ‘Environmental determinism and archaeology’. Understanding and evaluating determinism in research design. Archaeological Dialogues, 26(01): 1–9. DOI: 10.1017/S1380203819000059
- 20Bachute, MR and Subhedar, JM. 2021. ‘Autonomous Driving Architectures: Insights of Machine Learning and Deep Learning Algorithms’. Machine Learning with Applications, 6:
100164 . DOI: 10.1016/j.mlwa.2021.100164 - 21Badawy, WM, Dmitriev, AYu, Koval, VYu, Smirnova, VS, Chepurchenko, OE, Lobachev, VV, Belova, MO and Galushko, AM. 2022. ‘Formation of reference groups for archaeological pottery using neutron activation and multivariate statistical analyses’. Archaeometry, 64(6): 1377–1393. DOI: 10.1111/arcm.12793
- 22Banasiak, P, Berezowski, P, Zaplata, R, Mielcarek, M, Duraj, K and Sterenczak, K. 2022. ‘Semantic Segmentation (U-Net) of Archaeological Features in Airborne Laser Scanning-Example of the Bialowieza Forest’. Remote Sensing, 14(4). DOI: 10.3390/rs14040995
- 23Barberena, R, Cardillo, M, Lucero, G, le Roux, PJ, Tessone, A, Llano, C, Gasco, A, Marsh, EJ, Nuevo-Delaunay, A, Novellino, P, Frigolé, C, Winocur, D, Benítez, A, Cornejo, L, Falabella, F, Sanhueza, L, Santana Sagredo, F, Troncoso, A, Cortegoso, V, Durán, VA and Méndez, C. 2021. ‘Bioavailable Strontium, Human Paleogeography, and Migrations in the Southern Andes: A Machine Learning and GIS Approach’. Frontiers in Ecology and Evolution, 9:
584325 . DOI: 10.3389/fevo.2021.584325 - 24Barragán-Montero, A, Javaid, U, Valdés, G, Nguyen, D, Desbordes, P, Macq, B, Willems, S, Vandewinckele, L, Holmström, M, Löfman, F, Michiels, S, Souris, K, Sterpin, E and Lee, JA. 2021. ‘Artificial intelligence and machine learning for medical imaging: A technology review’. Physica Medica, 83: 242–256. DOI: 10.1016/j.ejmp.2021.04.016
- 25Barredo Arrieta, A, Díaz-Rodríguez, N, Del Ser, J, Bennetot, A, Tabik, S, Barbado, A, Garcia, S, Gil-Lopez, S, Molina, D, Benjamins, R, Chatila, R and Herrera, F. 2020. ‘Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI’. Information Fusion, 58: 82–115. DOI: 10.1016/j.inffus.2019.12.012
- 26Bataille, CP, Crowley, BE, Wooller, MJ and Bowen, GJ. 2020 Advances in global bioavailable strontium isoscapes. Palaeogeography, Palaeoclimatology, Palaeoecology, 555:
109849 . DOI: 10.1016/j.palaeo.2020.109849 - 27Bataille, CP, Jaouen, K, Milano, S, Trost, M, Steinbrenner, S, Crubezy, E and Colleter, R. 2021. ‘Triple sulfur-oxygen-strontium isotopes probabilistic geographic assignment of archaeological remains using a novel sulfur isoscape of western Europe’. PLOS One, 16(5):
e0250383 . DOI: 10.1371/journal.pone.0250383 - 28Bataille, CP, von Holstein, ICC, Laffoon, JE, Willmes, M, Liu, X-M and Davies, GR. 2018. ‘A bioavailable strontium isoscape for Western Europe: A machine learning approach’. PLOS One, 13(5):
e0197386 . DOI: 10.1371/journal.pone.0197386 - 29Batist, Z and Roe, J. 2024. ‘Open Archaeology, Open Source? Collaborative practices in an emerging community of archaeological software engineers’. Internet Archaeology, (67). DOI: 10.11141/ia.67.13
- 30Bellat, M and Scholten, T. 2024. Automated features detection in archaeology: Standardisation in the area of big data.
- 31Bellat, M, Tagizadeh-Mehrjardi, R and Scholten, T. 2024. Fail and try again: Return on topic modelling apply to archaeological scientific literature.
- 32Benner, J, Knudby, A, Nielsen, J, Krawchuk, M and Lertzman, K. 2019. ‘Combining data from field surveys and archaeological records to predict the distribution of culturally important trees’. Diversity and Distributions, 25(9): 1375–1387. DOI: 10.1111/ddi.12947
- 33Berganzo-Besga, I, Orengo, HA, Lumbreras, F, Carrero-Pazos, M, Fonte, J and Vilas-Estevez, B. 2021. ‘Hybrid MSRM-Based Deep Learning and Multitemporal Sentinel 2-Based Machine Learning Algorithm Detects Near 10k Archaeological Tumuli in North-Western Iberia’. Remote Sensing, 13(20):
4181 . DOI: 10.3390/rs13204181 - 34Berganzo-Besga, I, Orengo, H, Lumbreras, F, Aliende, P and Ramsey, M. 2022. ‘Automated detection and classification of multi-cell Phytoliths using Deep Learning-Based Algorithms’. Journal of Archaeological Science, 148. DOI: 10.1016/j.jas.2022.105654
- 35Bevan, A. 2015. ‘The data deluge’. Antiquity, 89(348): 1473–1484. DOI: 10.15184/aqy.2015.102
- 36Bickler, SH. 2018. ‘Machine Learning Identification and Classification of Historic Ceramics’. Archaeology in New Zealand, 13.
- 37Bickler, SH. 2021. ‘Machine Learning Arrives in Archaeology’. Advances in Archaeological Practice, 9(2): 186–191. DOI: 10.1017/aap.2021.6
- 38Binford, LR and Binford, SR. 1966. ‘A Preliminary Analysis of Functional Variability in the Mousterian of Levallois Facies’. American Anthropologist, 68(2): 238–295.
- 39Bonhage, A, Eltaher, M, Raab, T, Breuss, M, Raab, A and Schneider, A. 2021. ‘A modified Mask region-based convolutional neural network approach for the automated detection of archaeological sites on high-resolution light detection and ranging-derived digital elevation models in the North German Lowland’. Archaeological prospection, 28(2): 177–186. DOI: 10.1002/arp.1806
- 40Boon, P, van Der Maaten, L, Paijmans, H, Postma, E and Lange, G. 2009. ‘Digital Support for Archaeology’. Interdisciplinary Science Reviews, 34(2–3): 189–205. DOI: 10.1179/174327909X441108
- 41Bordon, P, Martinelli, P, Medina, P, Bonomo, N and Ratto, N. 2021. ‘Automatic detection of mud-wall signatures in ground-penetrating radar data’. Archaeological prospection, 28(1): 89–106. DOI: 10.1002/arp.1799
- 42Boston, T, Van Dijk, A, Larraondo, P and Thackway, R. 2022. ‘Comparing CNNs and Random Forests for Landsat Image Segmentation Trained on a Large Proxy Land Cover Dataset’. Remote Sensing, 14(14):
3396 . DOI: 10.3390/rs14143396 - 43Bouzid, S and Barge, O. 2022. ‘Towards a typology of desert kites combining quantitative and spatial approaches’. Archaeological and anthropological sciences, 14(5). DOI: 10.1007/s12520-022-01551-0
- 44Brandsen, A. 2023.
‘Information Extraction and Machine Learning for Archaeological Texts’ . In: Gonzalez-Perez, C, Martin-Rodilla, P and Pereira-Fariña, M (eds.) Discourse and Argumentation in Archaeology: Conceptual and Computational Approaches. Quantitative Archaeology and Archaeological Modelling. Cham: Springer International Publishing. pp. 229–261. DOI: 10.1007/978-3-031-37156-1_11 - 45Brandsen, A and Koole, M. 2022. ‘Labelling the past: data set creation and multi-label classification of Dutch archaeological excavation reports’. Language Resources and Evaluation, 56(2): 543–572. DOI: 10.1007/s10579-021-09552-6
- 46Brandsen, A and Lippok, F. 2021. ‘A burning question-Using an intelligent grey literature search engine to change our views on early medieval burial practices in the Netherlands’. Journal of Archaeological Science, 133. DOI: 10.1016/j.jas.2021.105456
- 47Brandt, R, Groenewoudt, BJ and Kvamme, KL. 1992. ‘An Experiment in Archaeological Site Location: Modeling in the Netherlands using GIS Techniques’. World Archaeology, 24(2): 268–282. DOI: 10.1080/00438243.1992.9980207
- 48Breiman, L. 1996. ‘Bagging predictors’. Machine Learning, 24(2): 123–140. DOI: 10.1007/BF00058655
- 49Brown, TB, Mann, B, Ryder, N, Subbiah, M, Kaplan, J, Dhariwal, P, Neelakantan, A, Shyam, P, Sastry, G, Askell, A, Agarwal, S, Herbert-Voss, A, Krueger, G, Henighan, T, Child, R, Ramesh, A, Ziegler, DM, Wu, J, Winter, C, Hesse, C, Chen, M, Sigler, E, Litwin, M, Gray, S, Chess, B, Clark, J, Berner, C, McCandlish, S, Radford, A, Sutskever, I and Amodei, D. 2020. Language Models are Few-Shot Learners. DOI: 10.48550/arXiv.2005.14165
- 50Bundzel, M, Jascur, M, Kovac, M, Lieskovsky, T, Sincak, P and Tkacik, T. 2020. ‘Semantic Segmentation of Airborne LiDAR Data in Maya Archaeology’. Remote Sensing, 12(22):
3685 . DOI: 10.3390/rs12223685 - 51Byeon, W, Dominguez-Rodrigo, M, Arampatzis, G, Baquedano, E, Yravedra, J, Mate-Gonzalez, M and Koumoutsakos, P. 2019. ‘Automated identification and deep classification of cut marks on bones and its paleoanthropological implications’. Journal of Computational Science, 32: 36–43. DOI: 10.1016/j.jocs.2019.02.005
- 52Bzdok, D. 2017. ‘Classical Statistics and Statistical Learning in Imaging Neuroscience’. Frontiers in Neuroscience, 11:
543 . DOI: 10.3389/fnins.2017.00543 - 53Bzdok, D, Altman, N and Krzywinski, M. 2018. ‘Statistics versus machine learning’. Nature Methods, 15(4): 233–234. DOI: 10.1038/nmeth.4642
- 54Cacciari, I and Pocobelli, GF. 2021. ‘The contribution of artificial intelligence to aerial photointerpretation of archaeological sites: a comparison between traditional and machine learning methods’. Archeologia e Calcolatori, 32(1): 81–98. DOI: 10.19282/ac.32.1.2021.05
- 55Cacciari, I and Pocobelli, GF. 2022.
‘Machine Learning: A Novel Tool for Archaeology’ . In: D’Amico, S and Venuti, V (eds.) Handbook of Cultural Heritage Analysis. Cham: Springer International Publishing. pp. 961–1002. DOI: 10.1007/978-3-030-60016-7_33 - 56Calder, J, Coil, R, Melton, JA, Olver, PJ, Tostevin, G and Yezzi-Woodley, K. 2022. ‘Use and Misuse of Machine Learning in Anthropology’. IEEE BITS the Information Theory Magazine, 1–13. DOI: 10.1109/MBITS.2022.3205143
- 57Canul-Ku, M, Hasimoto-Beltran, R, Jimenez-Badillo, D, Ruiz-Correa, S and Roman-Rangel, E. 2019. ‘Classification of 3D Archaeological Objects Using Multi-View Curvature Structure Signatures’. IEEE Access, 7: 3298–3313. DOI: 10.1109/ACCESS.2018.2886791
- 58Cardarelli, L. 2024. ‘From fragments to digital wholeness: An AI generative approach to reconstructing archaeological vessels’. Journal of Cultural Heritage, 70: 250–258. DOI: 10.1016/j.culher.2024.09.012
- 59Cardarelli, L. 2025. ‘The legacy: the Data Science movement’. In: Analyse des données and archaeology fifty years later: from data analysis to data science.
- 60Carr, C. 1989. For concordance in archaeological analysis: bridging data structure, quantitative technique, and theory. Prospect Heights, IL: Waveland Press.
- 61Carroll, SR, Garba, I, Figueroa-Rodríguez, OL, Holbrook, J, Lovett, R, Materechera, S, Parsons, M, Raseroka, K, Rodriguez-Lonebear, D, Rowe, R, Sara, R, Walker, JD, Anderson, J and Hudson, M. 2020. ‘The CARE Principles for Indigenous Data Governance’. Data Science Journal, 19(1). DOI: 10.5334/dsj-2020-043
- 62Carter, B, Blackadar, J and Conner, W. 2021. ‘When Computers Dream of Charcoal Using Deep Learning, Open Tools, and Open Data to Identify Relict Charcoal Hearths in and around State Game Lands in Pennsylvania’. Advances in archaeological practice, 9(4): 257–271. DOI: 10.1017/aap.2021.17
- 63Carvalho, DV, Pereira, EM and Cardoso, JS. 2019. ‘Machine Learning Interpretability: A Survey on Methods and Metrics’. Electronics, 8(8):
832 . DOI: 10.3390/electronics8080832 - 64Casillo, M, Colace, F, Gaeta, R, Lorusso, A and Pellegrino, M. 2025. ‘Artificial Intelligence in Archaeological Site Conservation: Trends, Challenges, and Future Directions’. Journal of Computer Applications in Archaeology, 8(1). DOI: 10.5334/jcaa.207
- 65Casini, L, Marchetti, N, Montanucci, A, Orrù, V and Roccetti, M. 2023. ‘A human–AI collaboration workflow for archaeological sites detection’. Scientific Reports, 13(1):
8699 . DOI: 10.1038/s41598-023-36015-5 - 66Caspari, G and Crespo, P. 2019. ‘Convolutional neural networks for archaeological site detection – Finding “princely” tombs’. Journal of Archaeological Science, 110:
104998 . DOI: 10.1016/j.jas.2019.104998 - 67Castiello, ME. 2022. Computational and Machine Learning Tools for Archaeological Site Modeling. Springer Theses. Cham: Springer International Publishing. DOI: 10.1007/978-3-030-88567-0
- 68Castiello, ME and Tonini, M. 2021. ‘An Explorative Application of Random Forest Algorithm for Archaeological Predictive Modeling. A Swiss Case Study’. Journal of Computer Applications in Archaeology, 4(1): 110–125. DOI: 10.5334/jcaa.71
- 69Chai, J, Zeng, H, Li, A and Ngai, EWT. 2021. ‘Deep learning in computer vision: A critical review of emerging techniques and application scenarios’. Machine Learning with Applications, 6:
100134 . DOI: 10.1016/j.mlwa.2021.100134 - 70Chamberlain, S. 2022. habanero: Low Level Client for Crossref Search API.
- 71Chang, Y, Wang, X, Wang, J, Wu, Y, Yang, L, Zhu, K, Chen, H, Yi, X, Wang, C, Wang, Y, Ye, W, Zhang, Y, Chang, Y, Yu, PS, Yang, Q and Xie, X. 2024. ‘A Survey on Evaluation of Large Language Models’. ACM Transactions on Intelligent Systems and Technology. DOI: 10.1145/3641289
- 72Character, L, Ortiz
Jr , A, Beach, T and Luzzadder-Beach, S. 2021. ‘Archaeologic Machine Learning for Shipwreck Detection Using Lidar and Sonar’. Remote Sensing, 13(9):1759 . DOI: 10.3390/rs13091759 - 73Cheng, B, Girshick, R, Dollár, P, Berg, AC and Kirillov, A. 2021. Boundary IoU: Improving Object-Centric Image Segmentation Evaluation. DOI: 10.1109/CVPR46437.2021.01508
- 74Cheng, G, Han, J and Lu, X. 2017. ‘Remote Sensing Image Scene Classification: Benchmark and State of the Art’. Proceedings of the IEEE, 105(10): 1865–1883. DOI: 10.1109/JPROC.2017.2675998
- 75Cholewiak, SA, Ipeirotis, P, Silva, V and Kannawadi, A. 2022. scholarly: Simple access to Google Scholar authors and citations.
- 76Cifuentes-Alcobendas, G and Domínguez-Rodrigo, M. 2019. ‘Deep learning and taphonomy: high accuracy in the classification of cut marks made on fleshed and defleshed bones using convolutional neural networks’. Scientific Reports, 9(1):
18933 . DOI: 10.1038/s41598-019-55439-6 - 77Clusmann, J, Kolbinger, FR, Muti, HS, Carrero, ZI, Eckardt, J-N, Laleh, NG, Löffler, CML, Schwarzkopf, S-C, Unger, M, Veldhuizen, GP, Wagner, SJ and Kather, JN. 2023. ‘The future landscape of large language models in medicine’. Communications Medicine, 3(1): 1–8. DOI: 10.1038/s43856-023-00370-1
- 78Cobb, PJ. 2023. ‘Large Language Models and Generative AI, Oh My!: Archaeology in the Time of ChatGPT, Midjourney, and Beyond’. Advances in Archaeological Practice, 11(3): 363–369. DOI: 10.1017/aap.2023.20
- 79Cole, KE, Yaworsky, PM and Hart, IA. 2022. ‘Evaluating statistical models for establishing morphometric taxonomic identifications and a new approach using Random Forest’. Journal of Archaeological Science, 143:
105610 . DOI: 10.1016/j.jas.2022.105610 - 80Coombes, P and Barber, K. 2005. ‘Environmental Determinism in Holocene Research: Causality or Coincidence?’. Area, 37(3): 303–311
- 81Courtenay, L, Yravedra, J, Huguet, R, Aramendi, J, Mate-Gonzalez, M, Gonzalez-Aguilera, D and Arriaza, M. 2019. ‘Combining machine learning algorithms and geometric morphometrics: A study of carnivore tooth marks’. Palaeogeography Palaeoclimatology Palaeoecology, 522: 28–39. DOI: 10.1016/j.palaeo.2019.03.007
- 82Courtenay, LA, Vanderesse, N, Doyon, L and Souron, A. 2024. ‘Deep Learning-Based Computer Vision Is Not Yet the Answer to Taphonomic Equifinality in Bone Surface Modifications’. Journal of Computer Applications in Archaeology, 7(1). DOI: 10.5334/jcaa.145
- 83Čož, N, Kokalj, Ž and Kostovska, A. 2024. EarthObservation/adaf.
- 84Davis, D, Caspari, G, Lipo, C and Sanger, M. 2021. ‘Deep learning reveals extent of Archaic Native American shell-ring building practices’. Journal of Archaeological Science, 132. DOI: 10.1016/j.jas.2021.105433
- 85Davis, D and Douglass, K. 2020. ‘Aerial and Spaceborne Remote Sensing in African Archaeology: A Review of Current Research and Potential Future Avenues’. African Archaeological Review, 37(1): 9–24. DOI: 10.1007/s10437-020-09373-y
- 86Davis, D and Lundin, J. 2021. ‘Locating Charcoal Production Sites in Sweden Using LiDAR, Hydrological Algorithms, and Deep Learning’. Remote Sensing, 13(18). DOI: 10.3390/rs13183680
- 87Davis, DS. 2020a. ‘Defining what we study: The contribution of machine automation in archaeological research’. Digital Applications in Archaeology and Cultural Heritage, 18:
e00152 . DOI: 10.1016/j.daach.2020.e00152 - 88Davis, DS. 2020b. ‘Geographic Disparity in Machine Intelligence Approaches for Archaeological Remote Sensing Research’. Remote Sensing, 12(6):
921 . DOI: 10.3390/rs12060921 - 89Demján, P, Dreslerová, D, Kolář, J, Chuman, T, Romportl, D, Trnka, M and Lieskovský, T. 2022b. ‘Long time-series ecological niche modelling using archaeological settlement data: Tracing the origins of present-day landscape’. Applied Geography, 141:
102669 . DOI: 10.1016/j.apgeog.2022.102669 - 90Demján, P, Pavuk, P and Roosevelt, CH. 2022a. ‘Laser-Aided Profile Measurement and Cluster Analysis of Ceramic Shapes’. Journal of Field Archaeology. DOI: 10.1080/00934690.2022.2128549
- 91Dhivya, S and Devi, G. 2021. ‘TAMIZHI: Historical Tamil-Brahmi Script Recognition Using CNN and MobileNet’. ACM transactions on asian and low-resource language information processing, 20(3). DOI: 10.1145/3402891
- 92Djindjian, F. 2015.
‘A Short History of the Beginnings of Mathematics in Archaeology’ . In: Barceló, JA and Bogdanovic, I (eds.) Mathematics and Archaeology. Boco Raton, FL: CRC Press. pp. 65–85. DOI: 10.1201/b18530-4 - 93Domínguez-Rodrigo, M. 2018. ‘Successful classification of experimental bone surface modifications (BSM) through machine learning algorithms: a solution to the controversial use of BSM in paleoanthropology?’. Archaeological and anthropological sciences, 11(6): 2711–2725. DOI: 10.1007/s12520-018-0684-9
- 94Domínguez-Rodrigo, M and Baquedano, E. 2018. ‘Distinguishing butchery cut marks from crocodile bite marks through machine learning methods’. Scientific Reports, 8(1):
5786 . DOI: 10.1038/s41598-018-24071-1 - 95Doran, J. 1990.
‘Computer based simulation and formal modeling in archaeology: A review’ . In: Mathematics and information science in archaeology: A flexible framework. Bonn: Holos. pp. 93–114. - 96Dramsch, JS. 2020.
70 years of machine learning in geoscience in review . In: Advances in Geophysics. Elsevier. pp. 1–55. DOI: 10.1016/bs.agph.2020.08.002 - 97Eleftheriadou, A, McPherron, SP and Marreiros, J. 2025. ‘Machine Learning Applications in Use-Wear Analysis: A Critical Review’. Journal of Computer Applications in Archaeology, 8(1). DOI: 10.5334/jcaa.190
- 98El-Hajj, H. 2021. ‘Interferometric SAR and Machine Learning: Using Open Source Data to Detect Archaeological Looting and Destruction’. Journal of Computer Applications in Archaeology, 4(1): 47–62. DOI: 10.5334/jcaa.70
- 99Eloundou, T, Manning, S, Mishkin, P and Rock, D. 2023. GPTs are GPTs: An Early Look at the Labor Market Impact Potential of Large Language Models. DOI: 10.48550/arXiv.2303.10130
- 100Emmitt, J, Masoud-Ansari, S, Phillipps, R, Middleton, S, Graydon, J and Holdaway, S. 2022. ‘Machine learning for stone artifact identification: Distinguishing worked stone artifacts from natural clasts using deep neural networks’. PLOS One, 17(8):
e0271582 . DOI: 10.1371/journal.pone.0271582 - 101European Commission, Directorate-General for Research and Innovation and Directorate E-Prosperity. 2024. Living guidelines on the responsible use of generative AI in research. p.
14 . - 102Fayyad, U, Piatetsky-Shapiro, G and Smyth, P. 1996. ‘From Data Mining to Knowledge Discovery in Databases’. AI Magazine, 17(3): 37–37. DOI: 10.1609/aimag.v17i3.1230
- 103Febriawan, HK, Moefti, O, Haryanto, D and Wiguna, T. 2020. ‘Detection and characterization of an archaeological wreck site in Sunda Strait, Indonesia’. Forum geografic, XIX(1): 60–71. DOI: 10.5775/fg.2020.054.i
- 104Feinerer, I and Hornik, K. 2023. tm: Text Mining Package.
- 105Felicetti, A, Paolanti, M, Zingaretti, P, Pierdicca, R and Malinverni, E. 2021. ‘MO.SE.: Mosaic image segmentation based on Deep cascading Learning’. Virtual Archaeology Review, 12(24): 25–38. DOI: 10.4995/var.2021.14179
- 106Fernée, CL and Trimmis, KP. 2022. ‘The rolling stones of Bronze Age Aegean: Applying machine learning to explore the use of lithic spheres from Akrotiri, Thera’. Journal of Archaeological Science: Reports, 45:
103615 . DOI: 10.1016/j.jasrep.2022.103615 - 107Field, A, Miles, J and Field, Z. 2012. Discovering statistics using R. Los Angeles, London, New Delhi, Singapore, Washington, DC: Sage.
- 108Fiorucci, M, Khoroshiltseva, M, Pontil, M, Traviglia, A, Del Bue, A and James, S. 2020. ‘Machine Learning for Cultural Heritage: A Survey’. Pattern Recognition Letters, 133: 102–108. DOI: 10.1016/j.patrec.2020.02.017
- 109Fiorucci, M, Verschoof-van der Vaart, WB, Soleni, P, Le Saux, B and Traviglia, A. 2022. ‘Deep Learning for Archaeological Object Detection on LiDAR: New Evaluation Measures and Insights’. Remote Sensing, 14(7):
1694 . DOI: 10.3390/rs14071694 - 110Fisher, M, Fradley, M, Flohr, P, Rouhani, B and Simi, F. 2021. ‘Ethical considerations for remote sensing and open data in relation to the endangered archaeology in the Middle East and North Africa project’. Archaeological Prospection, 28(3): 279–292. DOI: 10.1002/arp.1816
- 111Fisher, MT, Jurkenas, D, Jambajantsan, A, Jamsranjav, B, Nasan-Ochir, E-O, Gelegdorj, E, Chuluunbat, M, Petraglia, M and Boivin, N. 2022. ‘Multidisciplinary digital methodologies for documentation and preservation of immovable Archaeological heritage in the Khovd River Valley, Western Mongolia’. F1000Research, 11(1250).
- 112Friggens, MM, Loehman, RA, Constan, CI and Kneifel, RR. 2021. ‘Predicting wildfire impacts on the prehistoric archaeological record of the Jemez Mountains, New Mexico, USA’. Fire Ecology, 17(1):
18 . DOI: 10.1186/s42408-021-00103-6 - 113Gallwey, J, Eyre, M, Tonkins, M and Coggan, J. 2019. ‘Bringing Lunar LiDAR Back Down to Earth: Mapping Our Industrial Heritage through Deep Transfer Learning’. Remote Sensing, 11(17). DOI: 10.3390/rs11171994
- 114Gansell, A, van de Meent, J, Zairis, S and Wiggins, C. 2014. ‘Stylistic clusters and the Syrian/South Syrian tradition of first-millennium BCE Levantine ivory carving: a machine learning approach’. Journal of Archaeological Science, 44: 194–205. DOI: 10.1016/j.jas.2013.11.005
- 115Garcia-Molsosa, A, Orengo, H, Lawrence, D, Philip, G, Hopper, K and Petrie, C. 2021. ‘Potential of deep learning segmentation for the extraction of archaeological features from historical map series’. Archaeological prospection, 28(2): 187–199. DOI: 10.1002/arp.1807
- 116Gattiglia, G. 2025. ‘Managing Artificial Intelligence in Archeology. An overview’. Journal of Cultural Heritage, 71: 225–233. DOI: 10.1016/j.culher.2024.11.020
- 117Gillings, M, Hacigüzeller, P and Lock, GR. (eds.) 2020. Archaeological spatial analysis: a methodological guide. New York: Routledge. DOI: 10.4324/9781351243858
- 118Ginau, A, Steiniger, D, Hartmann, R, Hartung, U, Schiestl, R, Altmeyer, M, Seeliger, M and Wunderlich, J. 2020. ‘What settlements leave behind – pXRF compositional data analysis of archaeological layers from Tell el-Fara’in (Buto, Egypt) using machine learning’. Palaeogeography Palaeoclimatology Palaeoecology, 546. DOI: 10.1016/j.palaeo.2020.109666
- 119González-Molina, I, Jiménez-García, B, Maíllo-Fernández, J-M, Baquedano, E and Domínguez-Rodrigo, M. 2020. ‘Distinguishing Discoid and Centripetal Levallois methods through machine learning’. PLOS One, 15(12):
e0244288 . DOI: 10.1371/journal.pone.0244288 - 120Gonzalez-Perez, C, Martin-Rodilla, P and Pereira-Fariña, M. (eds.) 2023. Discourse and Argumentation in Archaeology: Conceptual and Computational Approaches. Quantitative Archaeology and Archaeological Modelling. Cham: Springer International Publishing. DOI: 10.1007/978-3-031-37156-1
- 121Graham, S, Huffer, D and Blackadar, J. 2020. ‘Towards a Digital Sensorial Archaeology as an Experiment in Distant Viewing of the Trade in Human Remains on Instagram’. Heritage, 3(2): 208–227. DOI: 10.3390/heritage3020013
- 122Grant, MJ and Booth, A. 2009. ‘A typology of reviews: an analysis of 14 review types and associated methodologies’. Health Information and Libraries Journal, 26(2): 91–108. DOI: 10.1111/j.1471-1842.2009.00848.x
- 123Grilli, E, Dininno, D, Marsicano, L, Petrucci, G and Remondino, F. 2018. ‘Supervised segmentation of 3D cultural heritage’. In: Addison, A and Thwaites, H (eds.) 2018 3rd Digital Heritage International Congress (DigitalHERITAGE) held jointly with 2018 24th International Conference on Virtual Systems & Multimedia (VSMM 2018).
2018 . San Francisco, CA, USA. pp. 467–474. DOI: 10.1109/DigitalHeritage.2018.8810107 - 124Grilli, E and Remondino, F. 2019. ‘Classification of 3D Digital Heritage’. Remote Sensing, 11(7). DOI: 10.3390/rs11070847
- 125Gualandi, ML, Gattiglia, G and Anichini, F. 2021. ‘An Open System for Collection and Automatic Recognition of Pottery through Neural Network Algorithms’. Heritage, 4(1): 140–159. DOI: 10.3390/heritage4010008
- 126Guo, Y, Liu, Y, Oerlemans, A, Lao, S, Wu, S and Lew, MS. 2016. ‘Deep learning for visual understanding: A review’. Neurocomputing, 187: 27–48. DOI: 10.1016/j.neucom.2015.09.116
- 127Gupta, N, Martindale, A, Supernant, K and Elvidge, M. 2023. ‘The CARE Principles and the Reuse, Sharing, and Curation of Indigenous Data in Canadian Archaeology’. Advances in Archaeological Practice, 11(1): 76–89. DOI: 10.1017/aap.2022.33
- 128Guyot, A, Hubert-Moy, L and Lorho, T. 2018. ‘Detecting Neolithic Burial Mounds from LiDAR-Derived Elevation Data Using a Multi-Scale Approach and Machine Learning Techniques’. Remote Sensing, 10(2):
225 . DOI: 10.3390/rs10020225 - 129Guyot, A, Lennon, M, Lorho, T and Hubert-Moy, L. 2021. ‘Combined Detection and Segmentation of Archeological Structures from LiDAR Data Using a Deep Learning Approach’. Journal of Computer Applications in Archaeology, 4(1):
1 . DOI: 10.5334/jcaa.64 - 130Haby, MM, Chapman, E, Clark, R, Barreto, J, Reveiz, L and Lavis, JN. 2016. ‘What are the best methodologies for rapid reviews of the research evidence for evidence-informed decision making in health policy and practice: a rapid review’. Health Research Policy and Systems, 14(1):
83 . DOI: 10.1186/s12961-016-0155-7 - 131Hagendorff, T. 2024. ‘Mapping the Ethics of Generative AI: A Comprehensive Scoping Review’. Minds and Machines, 34(4):
39 . DOI: 10.1007/s11023-024-09694-w - 132Hansen, J and Nebel, M. 2020. ‘Prioritizing Archaeological Inventory and Protection with Predictive Probability Models at Glen Canyon National Recreation Area, USA’. Kiva-Journal of Southwestern Anthropology and History, 86(1): 1–23. DOI: 10.1080/00231940.2019.1684003
- 133Hastie, T, Tibshirani, R and Friedman, J. 2009. ‘The Elements of Statistical Learning’. Springer Series in Statistics. New York,, NY: Springer New York. DOI: 10.1007/978-0-387-84858-7
- 134He, K, Zhang, X, Ren, S and Sun, J. 2016. ‘Deep Residual Learning for Image Recognition’. In: 2016. IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
June 2016 . pp. 770–778. DOI: 10.1109/CVPR.2016.90 - 135Herrault, P, Poterek, Q, Keller, B, Schwartz, D and Ertlen, D. 2021. ‘Automated detection of former field systems from airborne laser scanning data: a new approach for Historical Ecology’. International Journal of Applied Earth Observation and Geoinformation, 104. DOI: 10.1016/j.jag.2021.102563
- 136Hodder, I. 1986. Reading the Past. 1st edition. Cambridge, England; New York: Cambridge University Press.
- 137Hodson, FR. 1970. ‘Cluster analysis and archaeology: Some new developments and applications’. World Archaeology, 1: 299–320.
- 138Holt, E, Evans, JA and Madgwick, R. 2021. ‘Strontium (Sr-87/Sr-86) mapping: A critical review of methods and approaches’. Earth-Science Reviews, 216:
103593 . DOI: 10.1016/j.earscirev.2021.103593 - 139Horn, C, Green, A, Skaerstroem, V, Lindhe, C, Peternell, M and Ling, J. 2022a. ‘A Boat Is a Boat Is a Boat horizontal ellipsis Unless It Is a Horse – Rethinking the Role of Typology’. Open Archaeology, 8(1): 1218–1230. DOI: 10.1515/opar-2022-0277
- 140Horn, C, Ivarsson, O, Lindhe, C, Potter, R, Green, A and Ling, J. 2022b. ‘Artificial Intelligence, 3D Documentation, and Rock Art-Approaching and Reflecting on the Automation of Identification and Classification of Rock Art Images’. Journal of Archaeological Method and Theory, 29(1): 188–213. DOI: 10.1007/s10816-021-09518-6
- 141Hörr, C. 2011. Algorithmen zur automatisierten Dokumentation und Klassifikation archäologischer Gefäße. Chemnitz: Universitätsverlag Chemnitz.
- 142Hörr, C, Lindinger, E and Brunnett, G. 2014. ‘Machine Learning Based Typology Development in Archaeology’. ACM Journal on Computing and Cultural Heritage, 7(1):
2 . DOI: 10.1145/2533988 - 143Huang, L, Perry, PO, Årup Nielsen, F, Porter, M and Boulton, R. 2021. corpus: Text Corpus Analysis.
- 144Huggett, J. 2017. ‘The Apparatus of Digital Archaeology’. Internet Archaeology, (44). DOI: 10.11141/ia.44.7
- 145Ionescu, V-S. 2015. ‘Applying Support Vector Regression Methods for Height Estimation in Archaeology’. Studia Universitatis Babeş-Bolyai Informatica, 70(2): 70–82.
- 146Jalandoni, A, Zhang, Y and Zaidi, N. 2022. ‘On the use of Machine Learning methods in rock art research with application to automatic painted rock art identification’. Journal of Archaeological Science, 144. DOI: 10.1016/j.jas.2022.105629
- 147Jamil, AH, Yakub, F, Azizan, A, Roslan, SA, Zaki, SA and Ahmad, SA. 2022. ‘A Review on Deep Learning Application for Detection of Archaeological Structures’. Journal of Advanced Research in Applied Sciences and Engineering Technology, 26(1): 7–14. DOI: 10.37934/araset.26.1.714
- 148Janzen, A, Bataille, C, Copeland, SR, Quinn, RL, Ambrose, SH, Reed, D, Hamilton, M, Grimes, V, Richards, MP, le Roux, P and Roberts, P. 2020. ‘Spatial variation in bioavailable strontium isotope ratios (87Sr/86Sr) in Kenya and northern Tanzania: Implications for ecology, paleoanthropology, and archaeology’. Palaeogeography, Palaeoclimatology, Palaeoecology, 560:
109957 . DOI: 10.1016/j.palaeo.2020.109957 - 149Jesson, JK, Matheson, L and Lacey, FM. 2012. Doing your literature review: traditional and systematic techniques. Repr. Los Angeles, Calif.: Sage.
- 150Judge, J and Sebastian, L. 1988. Quantifying the present and predicting the past : theory, method, and application of archaeological predictive modeling. Denver: U.S. Department of the Interior, Bureau of Land Management Service Center.
- 151Kawamleh, S. 2024. ‘Algorithmic evidence in U.S criminal sentencing’. AI and Ethics. DOI: 10.1007/s43681-024-00473-y.
- 152Kelly, RL and Thomas, DH. 2017. Archaeology. Seventh edition. Boston, MA: Cengage Learning.
- 153Klassen, S, Weed, J and Evans, D. 2018. ‘Semi-supervised machine learning approaches for predicting the chronology of archaeological sites: A case study of temples from medieval Angkor, Cambodia’. PLOS One, 13(11):
e0205649 . DOI: 10.1371/journal.pone.0205649 - 154Kochkov, D, Yuval, J, Langmore, I, Norgaard, P, Smith, J, Mooers, G, Klöwer, M, Lottes, J, Rasp, S, Düben, P, Hatfield, S, Battaglia, P, Sanchez-Gonzalez, A, Willson, M, Brenner, MP and Hoyer, S. 2024. ‘Neural general circulation models for weather and climate’. Nature, 632(8027): 1060–1066. DOI: 10.1038/s41586-024-07744-y
- 155Kogou, S, Shahtahmassebi, G, Lucian, A, Liang, H, Shui, B, Zhang, W, Su, B and van Schaik, S. 2020. ‘From remote sensing and machine learning to the history of the Silk Road: large scale material identification on wall paintings’. Scientific Reports, 10(1):
19312 . DOI: 10.1038/s41598-020-76457-9 - 156Kohler, TA. 1988.
‘Predictive locational modeling: History and current practice’ . In: Judge, J and Sebastian, L (eds.) Quantifying the present and predicting the past : theory, method, and application of archaeological predictive modeling. Denver: U.S. Department of the Interior, Bureau of Land Management Service Center. pp. 19–59. - 157Kowalski, BR, Schatzki, TF and Stross, FH. 1972. ‘Classification of archaeological artifacts by applying pattern recognition to trace element data’. Analytical Chemistry, 44(13): 2176–2180. DOI: 10.1021/ac60321a002
- 158Kowlessar, J, Keal, J, Wesley, D, Moffat, I, Lawrence, D, Weson, A, Nayinggul, A, and Mimal Land Management Aboriginal Corporation. 2021. ‘Reconstructing rock art chronology with transfer learning: A case study from Arnhem Land, Australia’. Australian Archaeology, 87(2): 115–126. DOI: 10.1080/03122417.2021.1895481
- 159Kristiansen, K. 2019. ‘Who is deterministic? On the nature of interdisciplinary research in archaeology’. Archaeological Dialogues, 26(01): 12–14. DOI: 10.1017/S1380203819000060
- 160Kubat, M. 2017. An Introduction to Machine Learning. Cham: Springer International Publishing. DOI: 10.1007/978-3-319-63913-0
- 161Kvamme, KL. 2006.
‘There and Back Again: Revisiting Archaeologial Locational Modeling’ . In: Mehrer, M and Wescott, K (eds.) GIS and archaeological site location modeling. Boca Raton, FL: Taylor & Francis. pp. 3–38. DOI: 10.1201/9780203563359.sec1 - 162Labba, C, Alcouffe, A, Crubézy, E and Boyer, A. 2023. ‘IArch: An AI Tool for Digging Deeper into Archaeological Data’. In: 2023. IEEE 35th International Conference on Tools with Artificial Intelligence (ICTAI).
November 2023 . pp. 22–29. DOI: 10.1109/ICTAI59109.2023.00012 - 163Landa, V, Shapira, Y, David, M, Karasik, A, Weiss, E, Reuveni, Y and Drori, E. 2021. ‘Accurate classification of fresh and charred grape seeds to the varietal level, using machine learning based classification method’. Scientific Reports, 11(1):
13577 . DOI: 10.1038/s41598-021-92559-4 - 164Lapp, E and Lapp, L. 2024. ‘Evaluating ChatGPT as a viable research tool for typological investigations of cultural heritage artefacts-Roman clay oil lamps’. Archaeometry, 66(3): 696–717. DOI: 10.1111/arcm.12937
- 165Leroi-Gourhan, A. 2022. Le geste et la parole. Espaces libres. 2nd ed. Paris: Albin Michel.
- 166Li, G, Dong, J, Che, M, Wang, X, Fan, J and Dong, G. 2024. ‘GIS and Machine Learning Models Target Dynamic Settlement Patterns and Their Driving Mechanisms from the Neolithic to Bronze Age in the Northeastern Tibetan Plateau’. Remote Sensing, 16(8). DOI: 10.3390/rs16081454
- 167Lin, T-Y, Maire, M, Belongie, S, Hays, J, Perona, P, Ramanan, D, Dollár, P and Zitnick, CL. 2014.
‘Microsoft COCO: Common Objects in Context’ . In: Fleet, D, Pajdla, T, Schiele, B and Tuytelaars, T (eds.) Computer Vision – ECCV 2014. 2014. Cham: Springer International Publishing. pp. 740–755. DOI: 10.1007/978-3-319-10602-1_48 - 168Ling, Z, Delnevo, G, Salomoni, P and Mirri, S. 2024. ‘Findings on Machine Learning for Identification of Archaeological Ceramics: A Systematic Literature Review’. IEEE Access, 12: 100167–100185. DOI: 10.1109/ACCESS.2024.3429623
- 169Liu, V, Long, T, Raw, N and Chilton, L. 2023. Generative Disco: Text-to-Video Generation for Music Visualization. DOI: 10.48550/arXiv.2304.08551
- 170Lock, G and Harris, T. 2006.
‘Enhancing Predictive Archaeological Modeling: Integrating Location, Landscape, and Culture’ . In: Mehrer, M and Wescott, K (eds.) GIS and archaeological site location modeling. Boca Raton, FL: Taylor & Francis. pp. 41–62. DOI: 10.1201/9780203563359.sec2 - 171Long, Y, Xia, G-S, Li, S, Yang, W, Yang, MY, Zhu, XX, Zhang, L and Li, D. 2021. On Creating Benchmark Dataset for Aerial Image Interpretation: Reviews, Guidances and Million-AID. DOI: 10.48550/arXiv.2006.12485
- 172Lundberg, SM and Lee, S-I. 2017. ‘A unified approach to interpreting model predictions’. In: Proceedings of the 31st International Conference on Neural Information Processing Systems.
NIPS’17. décembre 2017 . Red Hook, NY, USA:Curran Associates Inc . pp. 4768–4777. - 173Lundström, V, Simpson, D and Yaworsky, P. 2024. ‘Here by the Sea and Sand: Uninterrupted Hunter-Fisher-Gatherer Coastal Habitation Despite Considerable Population Growth’. Open Quaternary, 10(1). DOI: 10.5334/oq.129
- 174Lyons, M, Fecher, F and Reindel, M. 2022. ‘From LiDAR to deep learning: A case study of computer-assisted approaches to the archaeology of Guadalupe and northeast Honduras’. IT-Information Technology. DOI: 10.1515/itit-2022-0004
- 175MacLeod, N. 2018. ‘The quantitative assessment of archaeological artifact groups: Beyond geometric morphometrics’. Quaternary Science Reviews, 201: 319–348. DOI: 10.1016/j.quascirev.2018.08.024
- 176Ma, Y, Grimes, V, Van Biesen, G, Shi, L, Chen, K, Mannino, M and Fuller, B. 2021. ‘Aminoisoscapes and palaeodiet reconstruction: New perspectives on millet-based diets in China using amino acid delta C-13 values’. Journal of Archaeological Science, 125. DOI: 10.1016/j.jas.2020.105289
- 177MAIA. 2025. ‘Managing Artificial Intelligence in Archaeology’.
https://maiacost.eu/ . - 178Mantovan, L and Nanni, L. 2020. ‘The Computerization of Archaeology: Survey on Artificial Intelligence Techniques’. SN Computer Science, 1(5):
267 . DOI: 10.1007/s42979-020-00286-w - 179Marom, N. 2025. ‘Current methods and theory in quantitative zooarchaeology’. Journal of Archaeological Science, 176:
106165 . DOI: 10.1016/j.jas.2025.106165 - 180Martin-Perea, D, Courtenay, L, Domingo, M and Morales, J. 2020. ‘Application of artificially intelligent systems for the identification of discrete fossiliferous levels’. PEERJ, 8. DOI: 10.7717/peerj.8767
- 181Marwick, B, Barton, CM, Bates, L, Bollwerk, E, Bocinsky, K, Carter, AK, Conrad, C, Costa, S, Crema, ER, Davies, B, Drake, L, Dye, TS, Giusti, D, Graham, S, Hawks, J, Huffer, D, Madsen, ME, Neiman, FD, Opitz, R, Riel-Salvatore, J, Riris, P, Romanowska, I, Ullah, I and Wren, CD. 2017. Open Science in Archaeology. DOI: 10.31235/osf.io/72n8g
- 182Marwick, B and Birch, SEP. 2018. ‘A Standard for the Scholarly Citation of Archaeological Data as an Incentive to Data Sharing’. Advances in Archaeological Practice, 6(2): 125–143. DOI: 10.1017/aap.2018.3
- 183Massachusetts Institute of Technology. 2024. Initial guidance for use of Generative AI tools. Information Systems & Technology, 4 March 2024. Available at
https://ist.mit.edu/ai-guidance [Last accessed 16 December 2024]. - 184Matrone, F and Martini, M. 2021. ‘Transfer learning and performance enhancement techniques for deep semantic segmentation of built heritage point clouds’. Virtual Archaeology Review, 12(25): 73–84. DOI: 10.4995/var.2021.15318
- 185McPherron, SP, Archer, W, Otárola-Castillo, ER, Torquato, MG and Keevil, TL. 2022. ‘Machine learning, bootstrapping, null models, and why we are still not 100% sure which bone surface modifications were made by crocodiles’. Journal of human evolution, 164:
103071 . DOI: 10.1016/j.jhevol.2021.103071 - 186Menze, BH and Ur, JA. 2012. ‘Mapping patterns of long-term settlement in Northern Mesopotamia at a large scale’. Proceedings of the National Academy of Sciences, 109(14). DOI: 10.1073/pnas.1115472109
- 187Menze, BH, Ur, JA and Sherratt, AG. 2006. ‘Detection of Ancient Settlement Mounds’. Photogrammetric Engineering & Remote Sensing, 72(3): 321–327. DOI: 10.14358/PERS.72.3.321
- 188Mesanza-Moraza, A, Garcia-Gomez, I and Azkarate, A. 2021. ‘Machine Learning for the Built Heritage Archaeological Study’. ACM Journal on Computing and Cultural Heritage, 14(1):
10 . DOI: 10.1145/3422993 - 189Miera, JJ, Schmidt, K, von Suchodoletz, H, Ulrich, M, Werther, L, Zielhofer, C, Ettel, P and Veit, U. 2022. ‘Large-scale investigations of Neolithic settlement dynamics in Central Germany based on machine learning analysis: A case study from the Weiße Elster river catchment’. PLOS One, 17(4):
e0265835 . DOI: 10.1371/journal.pone.0265835 - 190Mircea, I-G, Czibula, G and Petrușel, M-R. 2015b. ‘Sex Identification in Archaeological Remains Using Decision Tree Learning’. Studia Universitatis Babeş-Bolyai Informatica, 60(2): 91–103.
- 191Mircea, I-G, Limboi, S-G and Petrușel, M-R. 2015a. ‘A New Unsupervised Learning Based Approach for Gender Detection of Human Archaeological Remains’. Studia Universitatis Babeş-Bolyai Informatica, 60(2): 5–20.
- 192Moclán, A and Domínguez-Rodrigo, M. 2023. ‘Are highly accurate models of agency in bone breaking the result of misuse of machine learning methods?’. Journal of Archaeological Science-Reports, 51. DOI: 10.1016/j.jasrep.2023.104150
- 193Moclán, A, Domínguez-Rodrigo, M and Yravedra, J. 2019. ‘Classifying agency in bone breakage: an experimental analysis of fracture planes to differentiate between hominin and carnivore dynamic and static loading using machine learning (ML) algorithms’. Archaeological and Anthropological Sciences, 11(9): 4663–4680. DOI: 10.1007/s12520-019-00815-6
- 194Moclán, A, Huguet, R, Marquez, B, Laplana, C, Arsuaga, J, Perez-Gonzalez, A and Baquedano, E. 2020. ‘Identifying the bone-breaker at the Navalmaillo Rock Shelter (Pinilla del Valle, Madrid) using machine learning algorithms’. Archaeological and Anthropological Sciences, 12(2). DOI: 10.1007/s12520-020-01017-1
- 195Monna, F, Magail, J, Rolland, T, Navarro, N, Wilczek, J, Gantulga, J-O, Esin, Y, Granjon, L, Allard, A-C and Chateau-Smith, C. 2020. ‘Machine learning for rapid mapping of archaeological structures made of dry stones – Example of burial monuments from the Khirgisuur culture, Mongolia -’. Journal of Cultural Heritage, 43: 118–128. DOI: 10.1016/j.culher.2020.01.002
- 196Mozilla. 2023. geckodriver: Proxy for using W3C WebDriver-compatible clients to interact with Gecko-based browsers.
- 197Muzzall, E. 2021. ‘A Novel Ensemble Machine Learning Approach for Bioarchaeological Sex Prediction’. Technologies, 9(2):
23 . DOI: 10.3390/technologies9020023 - 198Naso, M and Sciuto, C. 2025. State of the art on enhanced digitisation. p.
50 . - 199Neri, V and Dadà, S. 2025. Ethical guidelines for trustworthy AI. p.
13 . - 200Nguifo, E, Lagrange, M, Renaud, M and Sallantin, J. 1997. ‘PLATA: An application of LEGAL, a machine learning based system, to a typology of archaeological ceramics’. Computers and the humanities, 31(3): 169–187. DOI: 10.1023/A:1000904004065
- 201Nicholson, C, Kansa, S, Gupta, N and Fernandez, R. 2023. ‘Will It Ever Be FAIR?: Making Archaeological Data Findable, Accessible, Interoperable, and Reusable’. Advances in Archaeological Practice, 11(1): 63–75. DOI: 10.1017/aap.2022.40
- 202Nogales, A, Delgado-Martos, E, Melchor, A and Garcia-Tejedor, A. 2021. ‘ARQGAN: An evaluation of generative adversarial network approaches for automatic virtual inpainting restoration of Greek temples’. Expert systems with applications, 180. DOI: 10.1016/j.eswa.2021.115092
- 203Orellana Figueroa. 2020. Google Scholar Scraper.
- 204Orellana Figueroa, J, Reeves, J, McPherron, S and Tennie, C. 2021. ‘A proof of concept for machine learning-based virtual knapping using neural networks’. Scientific Reports, 11(1). DOI: 10.1038/s41598-021-98755-6
- 205Orellana Figueroa, J, Reeves, J, McPherron, S and Tennie, C. in press. Virtual Knapping (and Refitting) with Neural Networks: Proofs of Concept. In: Kyriakidis, P, Agapiou, A and Leventis, G (eds.) CAA2021. Digital Crossroads. Proceedings of the 48th Conference on Computer Applications and Quantitative Methods in Archaeology. in press. DOI: 10.1038/s41598-021-98755-6
- 206Orengo, HA, Conesa, FC, Garcia-Molsosa, A, Lobo, A, Green, AS, Madella, M and Petrie, CA. 2020. ‘Automated detection of archaeological mounds using machine-learning classification of multisensor and multitemporal satellite data’. Proceedings of the National Academy of Sciences of the United States of America, 117(31):
18240-18250 . DOI: 10.1073/pnas.2005583117 - 207Orengo, HA and Garcia-Molsosa, A. 2019. ‘A brave new world for archaeological survey: Automated machine learning-based potsherd detection using high-resolution drone imagery’. Journal of Archaeological Science, 112:
105013 . DOI: 10.1016/j.jas.2019.105013 - 208Orton, C. 1980. Mathematics in archaeology. Collins archaeology 3. London: Collins.
- 209Osco, LP, Marcato Junior, J, Marques Ramos, AP, de Castro Jorge, LA, Fatholahi, SN, de Andrade Silva, J, Matsubara, ET, Pistori, H, Gonçalves, WN and Li, J. 2021. ‘A review on deep learning in UAV remote sensing’. International Journal of Applied Earth Observation and Geoinformation, 102:
102456 . DOI: 10.1016/j.jag.2021.102456 - 210Oxford University. 2024. Guidelines on the use of generative AI. 20 February 2024. Available at
https://communications.admin.ox.ac.uk/communications-resources/ai-guidance [Last accessed 16 December 2024]. - 211Padarian, J, Minasny, B and McBratney, AB. 2020. ‘Machine learning and soil sciences: a review aided by machine learning tools’. Soil, 6(1): 35–52. DOI: 10.5194/soil-6-35-2020
- 212Page, MJ, McKenzie, JE, Bossuyt, PM, Boutron, I, Hoffmann, TC, Mulrow, CD, Shamseer, L, Tetzlaff, JM, Akl, EA, Brennan, SE, Chou, R, Glanville, J, Grimshaw, JM, Hróbjartsson, A, Lalu, MM, Li, T, Loder, EW, Mayo-Wilson, E, McDonald, S, McGuinness, LA, Stewart, LA, Thomas, J, Tricco, AC, Welch, VA, Whiting, P and Moher, D. 2021. ‘The PRISMA 2020. statement: an updated guideline for reporting systematic reviews’. BMJ,
n71 . DOI: 10.1136/bmj.n71 - 213Palacios, O. 2023. ‘Aplicación del aprendizaje automático en Arqueología: ¿Un cambio de paradigma?’. Vegueta: Anuario de la Facultad de Geografía e Historia, 147–186. DOI: 10.51349/veg.2023.1.06
- 214Pandas development team. 2022. pandas: Powerful data structures for data analysis, time series, and statistics. DOI: 10.5281/zenodo.7344967
- 215Pangti, R, Mathur, J, Chouhan, V, Kumar, S, Rajput, L, Shah, S, Gupta, A, Dixit, A, Dholakia, D, Gupta, S, Gupta, S, George, M, Sharma, VK and Gupta, S. 2021. ‘A machine learning-based, decision support, mobile phone application for diagnosis of common dermatological diseases’. Journal of the European Academy of Dermatology and Venereology, 35(2): 536–545. DOI: 10.1111/jdv.16967
- 216Pargeter, J, Khreisheh, N and Stout, D. 2019. ‘Understanding stone tool-making skill acquisition: Experimental methods and evolutionary implications’. Journal of Human Evolution, 133: 146–166. DOI: 10.1016/j.jhevol.2019.05.010
- 217Parsons, S. 2023.
‘Hard-Hearted Scrolls: A Noninvasive Method for Reading the Herculaneum Papyri’ . Theses and Dissertations—Computer Science. DOI: 10.13023/etd.2023.372 - 218Pavan Kumar, MP, Poornima, B, Nagendraswamy, HS, Manjunath, C, Rangaswamy, BE, Varsha, M and Vinutha, HP. 2022. ‘Image Abstraction Framework as a Pre-processing Technique for Accurate Classification of Archaeological Monuments Using Machine Learning Approaches’. SN Computer Science, 3(1):
87 . DOI: 10.1007/s42979-021-00935-8 - 219Pawlowicz, L and Downum, C. 2021. ‘Applications of deep learning to decorated ceramic typology and classification: A case study using Tusayan White Ware from Northeast Arizona’. Journal of Archaeological Science, 130. DOI: 10.1016/j.jas.2021.105375
- 220Pepe, M, Alfio, VS, Costantino, D and Scaringi, D. 2022. ‘Data for 3D reconstruction and point cloud classification using machine learning in cultural heritage environment’. Data in Brief, 42:
108250 . DOI: 10.1016/j.dib.2022.108250 - 221Perreault, C. 2019. The quality of the archaeological record. Chicago London: The University of Chicago Press.
- 222Peters, MDJ, Godfrey, CM, Khalil, H, McInerney, P, Parker, D and Soares, CB. 2015. ‘Guidance for conducting systematic scoping reviews’. International Journal of Evidence-Based Healthcare, 13(3): 141–146. DOI: 10.1097/XEB.0000000000000050
- 223Petticrew, M and Roberts, H. 2006. Systematic Reviews in the Social Sciences: A Practical Guide. 1st ed. Wiley. DOI: 10.1002/9780470754887
- 224Phillips, P and Willey, GR. 1953. ‘Method and Theory in American Archeology: An Operational Basis for Culture-Historical Integration’. American Anthropologist, 55(5): 615–633. DOI: 10.1525/aa.1953.55.5.02a00030
- 225Phillips, SJ, Anderson, RP and Schapire, RE. 2006. ‘Maximum entropy modeling of species geographic distributions’. Ecological Modelling, 190(3–4): 231–259. DOI: 10.1016/j.ecolmodel.2005.03.026
- 226Prasomphan, S. 2022. ‘Toward Fine-grained Image Retrieval with Adaptive Deep Learning for Cultural Heritage Image’. Computer systems science and engineering, 44(2): 1295–1307. DOI: 10.32604/csse.2023.025293
- 227Python Software Foundation. 2022. Python Language Reference.
- 228R Core Team, Venables, WN and Smith, DM. 2024. An introduction to R: a programming environment for data analysis and graphics, version 4.2.1. 4th ed.
- 229Radford, J and Joseph, K. 2020. ‘Theory In, Theory Out: The Uses of Social Theory in Machine Learning for Social Science’. Frontiers in Big Data, 3:
18 . DOI: 10.3389/fdata.2020.00018 - 230Ramazzotti, M. 2020. ‘Modeling the past. Logics, semantics and neural computing in archaeology’. Archeologia E Calcolatori, 31(2): 169–180. DOI: 10.19282/ac.31.2.2020.16
- 231Read, DW. 2018.
‘Archaeological Classification’ . In: The Encyclopedia of Archaeological Sciences. John Wiley & Sons, Ltd. pp. 1–4. DOI: 10.1002/9781119188230.saseas0025 - 232Reese, K. 2021. ‘Deep learning artificial neural networks for non-destructive archaeological site dating’. Journal of Archaeological Science, 132. DOI: 10.1016/j.jas.2021.105413
- 233Renfrew, C and Bahn, PG. 2020. Archaeology: theories, methods and practice. Eighth edition, revised & updated. London: Thames & Hudson.
- 234Ribeiro, MT, Singh, S and Guestrin, C. 2016. ‘Why Should I Trust You?’: Explaining the Predictions of Any Classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
KDD ’16. août 2016 . New York, NY, USA:Association for Computing Machinery . pp. 1135–1144. DOI: 10.1145/2939672.2939778 - 235Richards, J, Tudhope, D and Vlachidis, A. 2015.
‘Text Mining in Archaeology: Extracting Information from Archaeological Reports’ . In: Barceló, JA and Bogdanovic, I (eds.) Mathematics and Archaeology. CRC Press. pp. 240–254. DOI: 10.1201/b18530-17 - 236Rosenthal, R. 1979. ‘The file drawer problem and tolerance for null results’. Psychological Bulletin, 86(3): 638–641. DOI: 10.1037/0033-2909.86.3.638
- 237Ruschioni, G, Malchiodi, D, Zanaboni, A and Bonizzoni, L. 2023. ‘Supervised learning algorithms as a tool for archaeology: Classification of ceramic samples described by chemical element concentrations’. Journal of Archaeological Science-Reports, 49. DOI: 10.1016/j.jasrep.2023.103995
- 238Russakovsky, O, Deng, J, Su, H, Krause, J, Satheesh, S, Ma, S, Huang, Z, Karpathy, A, Khosla, A, Bernstein, M, Berg, AC and Fei-Fei, L. 2015. ‘ImageNet Large Scale Visual Recognition Challenge’. International Journal of Computer Vision, 115(3): 211–252. DOI: 10.1007/s11263-015-0816-y
- 239Sagasti, FR. 1973. ‘Underdevelopment, Science and Technology: The Point of View of the Underdeveloped Countries’. Science Studies, 3(1): 47–59. DOI: 10.1177/030631277300300104
- 240Santos, J, Nunes, DAP, Padnevych, R, Quaresma, JC, Lopes, M, Gil, J, Bernardes, JP and Casimiro, TM. 2024. ‘Automatic ceramic identification using machine learning. Lusitanian amphorae and Faience. Two Portuguese case studies’. STAR: Science & Technology of Archaeological Research, 10(1):
e2343214 . DOI: 10.1080/20548923.2024.2343214 - 241Sarker, IH. 2021. ‘Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions’. SN Computer Science, 2(6):
420 . DOI: 10.1007/s42979-021-00815-1 - 242Serna, A, Prates, L, Mange, E, Salazar-Garcia, DC and Bataille, CP. 2020. ‘Implications for paleomobility studies of the effects of quaternary volcanism on bioavailable strontium: A test case in North Patagonia (Argentina)’. Journal of Archaeological Science, 121:
105198 . DOI: 10.1016/j.jas.2020.105198 - 243Sevilla, J, Heim, L, Ho, A, Besiroglu, T, Hobbhahn, M and Villalobos, P. 2022. ‘Compute Trends Across Three Eras of Machine Learning’. In: 2022 International Joint Conference on Neural Networks (IJCNN).
July 2022 . pp. 1–8. DOI: 10.1109/IJCNN55064.2022.9891914 - 244Shehab, M, Abualigah, L, Shambour, Q, Abu-Hashem, MA, Shambour, MKY, Alsalibi, AI and Gandomi, AH. 2022. ‘Machine learning in medical applications: A review of state-of-the-art methods’. Computers in Biology and Medicine, 145:
105458 . DOI: 10.1016/j.compbiomed.2022.105458 - 245Silburt, A, Ali-Dib, M, Zhu, C, Jackson, A, Valencia, D, Kissin, Y, Tamayo, D and Menou, K. 2019. ‘Lunar crater identification via deep learning’. Icarus, 317: 27–38. DOI: 10.1016/j.icarus.2018.06.022
- 246Sillero, N, Arenas-Castro, S, Enriquez-Urzelai, U, Vale, CG, Sousa-Guedes, D, Martínez-Freiría, F, Real, R and Barbosa, AM. 2021. ‘Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling’. Ecological Modelling, 456:
109671 . DOI: 10.1016/j.ecolmodel.2021.109671 - 247Smith, ME and Peregrine, P. 2011.
‘Approaches to Comparative Analysis in Archaeology’ . In: Smith, ME (ed.). The Comparative Archaeology of Complex Societies. Cambridge: Cambridge University Press. pp. 4–20. DOI: 10.1017/CBO9781139022712.004 - 248Song, F, Hooper, L and Loke, YK. 2013. ‘Publication bias: what is it? How do we measure it? How do we avoid it?’. Open Access Journal of Clinical Trials, 5: 71–81. DOI: 10.2147/OAJCT.S34419
- 249Song, F, Parekh, S, Hooper, L, Loke, YK, Ryder, J, Sutton, AJ, Hing, C, Kwok, CS, Pang, C and Harvey, I. 2010. ‘Dissemination and publication of research findings : an updated review of related biases’. Health Technology Assessment, 14(8): 1–220. DOI: 10.3310/hta14080
- 250Sonnenwald, DH. 2007. ‘Scientific collaboration’. Annu. Rev. Inf. Sci. Technol., 41(1): 643–681. DOI: 10.1002/aris.2007.1440410121
- 251Soroush, M, Mehrtash, A, Khazraee, E and Ur, J. 2020. ‘Deep Learning in Archaeological Remote Sensing: Automated Qanat Detection in the Kurdistan Region of Iraq’. Remote Sensing, 12(3). DOI: 10.3390/rs12030500
- 252Sparks, GM. 2009. ‘Prying Open the File Drawer’. AMA Journal of Ethics, 11(4): 297–300. DOI: 10.1001/virtualmentor.2009.11.4.jdsc1-0904
- 253Stamatopoulos, MI and Anagnostopoulos, C-N. 2016. 3D digital reassembling of archaeological ceramic pottery fragments based on their thickness profile. DOI: 10.48550/arXiv.1601.05824
- 254Stott, D, Kristiansen, SM and Sindbaek, SM. 2019. ‘Searching for Viking Age Fortresses with Automatic Landscape Classification and Feature Detection’. Remote Sensing, 11(16):
1881 . DOI: 10.3390/rs11161881 - 255Strupler, N and Wilkinson, TC. 2017. ‘Reproducibility in the Field: Transparency, Version Control and Collaboration on the Project Panormos Survey’. Open Archaeology, 3(1): 279–304. DOI: 10.1515/opar-2017-0019
- 256Štular, B, Lozić, E, Belak, M, Rihter, J, Koch, I, Modrijan, Z, Magdič, A, Karl, S, Lehner, M and Gutjahr, C. 2022. ‘Migration of Alpine Slavs and machine learning: Space-time pattern mining of an archaeological data set’. PloS one, 17(9):
e0274687 . DOI: 10.1371/journal.pone.0274687 - 257Sultana, F, Sufian, A and Dutta, P. 2020. ‘Evolution of Image Segmentation using Deep Convolutional Neural Network: A Survey’. Knowledge-Based Systems, 201–202:
106062 . DOI: 10.1016/j.knosys.2020.106062 - 258Sumbul, G, Charfuelan, M, Demir, B and Markl, V. 2019.
‘Bigearthnet: A Large-Scale Benchmark Archive for Remote Sensing Image Understanding’ . In: IGARSS 2019 – 2019 IEEE International Geoscience and Remote Sensing Symposium. July 2019. Yokohama, Japan: IEEE. pp. 5901–5904. DOI: 10.1109/IGARSS.2019.8900532 - 259Tamkin, A, Brundage, M, Clark, J and Ganguli, D. 2021. Understanding the Capabilities, Limitations, and Societal Impact of Large Language Models. DOI: 10.48550/arXiv.2102.02503
- 260Tayan, O, Hassan, A, Khankan, K and Askool, S. 2024. ‘Considerations for adapting higher education technology courses for AI large language models: A critical review of the impact of ChatGPT’. Machine Learning with Applications, 15:
100513 . DOI: 10.1016/j.mlwa.2023.100513 - 261Tennie, C. 2023.
‘The Earliest Tools and Cultures of Hominins’ . In: Tehrani, JJ, Kendal, J and Kendal, R (eds.) The Oxford Handbook of Cultural Evolution. Oxford University Press. DOI: 10.1093/oxfordhb/9780198869252.013.33 - 262Tenzer, M, Pistilli, G, Bransden, A and Shenfield, A. 2024. ‘Debating AI in Archaeology: applications, implications, and ethical considerations’. Internet Archaeology, (67). DOI: 10.11141/ia.67.8
- 263Thai, H-T. 2022. ‘Machine learning for structural engineering: A state-of-the-art review’. Structures, 38: 448–491. DOI: 10.1016/j.istruc.2022.02.003
- 264Thapa, A, Horanont, T, Neupane, B and Aryal, J. 2023. ‘Deep Learning for Remote Sensing Image Scene Classification: A Review and Meta-Analysis’. Remote Sensing, 15(19):
4804 . DOI: 10.3390/rs15194804 - 265Thomas, DH. 1973. ‘An Empirical Test for Steward’s Model of Great Basin Settlement Patterns’. American Antiquity, 38(2): 155–176. DOI: 10.2307/279362
- 266Toler-Franklin, C, Brown, B, Weyrich, T, Funkhouser, T and Rusinkiewicz, S. 2010. ‘Multi-Feature Matching of Fresco Fragments’. ACM transactions on graphics, 29(6). DOI: 10.1145/1866158.1866207
- 267Trotter, EFL, Fernandes, ACM, Fibæk, CS and Keßler, C. 2022. ‘Machine learning for automatic detection of historic stone walls using LiDAR data’. International Journal of Remote Sensing, 43(6): 2185–2211. DOI: 10.1080/01431161.2022.2057206
- 268University of Tübingen. 2023. Guidelines on generative AI.
- 269Ushizima, D, Xu, K and Monteiro, P. 2020. ‘Materials Data Science for Microstructural Characterization of Archaeological Concrete’. Material Research Society Advances, 5(7): 305–318. DOI: 10.1557/adv.2020.131
- 270Valavi, R, Guillera-Arroita, G, Lahoz-Monfort, JJ and Elith, J. 2022. ‘Predictive performance of presence-only species distribution models: a benchmark study with reproducible code’. Ecological Monographs, 92(1):
e01486 . DOI: 10.1002/ecm.1486 - 271Varoquaux, G and Cheplygina, V. 2022. ‘Machine learning for medical imaging: methodological failures and recommendations for the future’. npj Digital Medicine, 5(1): 1–8. DOI: 10.1038/s41746-022-00592-y.
- 272Vaswani, A, Shazeer, N, Parmar, N, Uszkoreit, J, Jones, L, Gomez, AN, Kaiser, L and Polosukhin, I. 2017. Attention Is All You Need. arXiv:1706.03762 [cs].
- 273Verhagen, P. 2007. Case studies in archaeological predictive modelling. Archaeological studies Leiden University 14. Leiden: Leiden University Press.
- 274Vernon, KB, Yaworsky, PM, Spangler, J, Brewer, S and Codding, BF. 2022. ‘Decomposing Habitat Suitability Across the Forager to Farmer Transition’. Environmental Archaeology, 27(4): 420–433. DOI: 10.1080/14614103.2020.1746880
- 275Voorrips, A. (ed.) 1990. Mathematics and information science in archaeology: a flexible framework. Studies in modern archaeology vol. 3. Bonn: Holos.
- 276Vos, D, Stafford, R, Jenkins, EL and Garrard, A. 2021. ‘A model based on Bayesian confirmation and machine learning algorithms to aid archaeological interpretation by integrating incompatible data’. PLOS One, 16(3):
e0248261 . DOI: 10.1371/journal.pone.0248261 - 277Wang, D, Zhang, J, Du, B, Xia, G-S and Tao, D. 2023. ‘An Empirical Study of Remote Sensing Pretraining’. IEEE Transactions on Geoscience and Remote Sensing, 61: 1–20. DOI: 10.1109/TGRS.2022.3176603
- 278Wang, H, Dang, A, Wu, Z and Mac, S. 2024. ‘Generative AI in higher education: Seeing ChatGPT through universities’ policies, resources, and guidelines’. Computers and Education: Artificial Intelligence, 7:
100326 . DOI: 10.1016/j.caeai.2024.100326 - 279Wang, Z, Zhao, J, Huang, H and Wang, X. 2022. ‘A Review on the Application of Machine Learning Methods in Tropical Cyclone Forecasting’. Frontiers in Earth Science, 10:
902596 . DOI: 10.3389/feart.2022.902596 - 280Wentz, R. 2002. ‘Visibility of research: FUTON bias’. The Lancet, 360(9341):
1256 . DOI: 10.1016/S0140-6736(02)11264-5 - 281Wheatley, D. 2004. ‘Making space for an archaeology of place’. Internet Archaeology, (15). DOI: 10.11141/ia.15.10
- 282Wilkinson, MD, Dumontier, M, Aalbersberg, IjJ, Appleton, G, Axton, M, Baak, A, Blomberg, N, Boiten, J-W, da Silva Santos, LB, Bourne, PE, Bouwman, J, Brookes, AJ, Clark, T, Crosas, M, Dillo, I, Dumon, O, Edmunds, S, Evelo, CT, Finkers, R, Gonzalez-Beltran, A, Gray, AJG, Groth, P, Goble, C, Grethe, JS, Heringa, J, ’t Hoen, PAC, Hooft, R, Kuhn, T, Kok, R, Kok, J, Lusher, SJ, Martone, ME, Mons, A, Packer, AL, Persson, B, Rocca-Serra, P, Roos, M, van Schaik, R, Sansone, S-A, Schultes, E, Sengstag, T, Slater, T, Strawn, G, Swertz, MA, Thompson, M, van der Lei, J, van Mulligen, E, Velterop, J, Waagmeester, A, Wittenburg, P, Wolstencroft, K, Zhao, J and Mons, B. 2016. ‘The FAIR Guiding Principles for scientific data management and stewardship’. Scientific Data, 3(1):
160018 . DOI: 10.1038/sdata.2016.18 - 283Willey, GR. 1953. ‘Prehistoric settlement patterns in the Virú; Valley, Peru’. Bureau of American Ethnology Bulletin, 155.
- 284Wunderlich, T, Wilken, D, Majchczack, B, Segschneider, M and Rabbel, W. 2022. ‘Hyperbola Detection with RetinaNet and Comparison of Hyperbola Fitting Methods in GPR Data from an Archaeological Site’. Remote Sensing, 14(15). DOI: 10.3390/rs14153665
- 285Wurzer, G, Kowarik, K and Reschreiter, H. (eds.) 2015.
Agent-based Modeling and Simulation in Archaeology . Advances in Geographic Information Science. Cham: Springer International Publishing. DOI: 10.1007/978-3-319-00008-4 - 286Xia, G-S, Hu, J, Hu, F, Shi, B, Bai, X, Zhong, Y, Zhang, L and Lu, X. 2017. ‘AID: A Benchmark Data Set for Performance Evaluation of Aerial Scene Classification’. IEEE Transactions on Geoscience and Remote Sensing, 55(7): 3965–3981. DOI: 10.1109/TGRS.2017.2685945
- 287Yang, S, Luo, L, Li, Q, Chen, Y, Wu, L and Wang, X. 2022. ‘Auto-identification of linear archaeological traces of the Great Wall in northwest China using improved DeepLabv3+from very high-resolution aerial imagery’. International Journal of Applied Earth Observation and Geoinformation, 113. DOI: 10.1016/j.jag.2022.102995
- 288Yaworsky, PM, Hussain, ST and Riede, F. 2024a. ‘The effects of climate and population on human land use patterns in Europe from 22ka to 9ka ago’. Quaternary Science Reviews, 344:
108956 . DOI: 10.1016/j.quascirev.2024.108956 - 289Yaworsky, PM, Nielsen, ES and Nielsen, TK. 2024b. ‘The Neanderthal niche space of Western Eurasia 145 ka to 30 ka ago’. Scientific Reports, 14(1):
7788 . DOI: 10.1038/s41598-024-57490-4 - 290Yaworsky, PM, Vernon, KB, Spangler, JD, Brewer, SC and Codding, BF. 2020. ‘Advancing predictive modeling in archaeology: An evaluation of regression and machine learning methods on the Grand Staircase-Escalante National Monument’. PLOS One, 15(10):
e0239424 . DOI: 10.1371/journal.pone.0239424 - 291Yoffee, N and Fowles, S. 2010. ‘L’archéologie dans les sciences humaines’. Diogène, 229–230(1–2): 51–77. DOI: 10.3917/dio.229.0051
- 292Zhang, H, Xu, T, Li, H, Zhang, S, Wang, X, Huang, X and Metaxas, D. 2016. StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks. DOI: 10.48550/ARXIV.1612.03242
- 293Zheng, L, Lin, R, Wang, X and Chen, W. 2021. ‘The Development and Application of Machine Learning in Atmospheric Environment Studies’. Remote Sensing, 13(23):
4839 . DOI: 10.3390/rs13234839 - 294Zheng, Z, Ning, K, Wang, Y, Zhang, J, Zheng, D, Ye, M and Chen, J. 2024. A Survey of Large Language Models for Code: Evolution, Benchmarking, and Future Trends. DOI: 10.48550/arXiv.2311.10372
