Have a personal or library account? Click to login
A Novel Fusion of Radiomics and Semantic Features: MRI-Based Machine Learning in Distinguishing Pituitary Cystic Adenomas from Rathke's Cleft Cysts Cover

A Novel Fusion of Radiomics and Semantic Features: MRI-Based Machine Learning in Distinguishing Pituitary Cystic Adenomas from Rathke's Cleft Cysts

Open Access
|Feb 2024

Figures & Tables

jbsr-108-1-3470-g1.jpg
Figure 1

Semantic features. (a) An intracystic nodule on T2WI, (b) intralesional fluid–fluid level on SPIR T1WI, (c) ≥2 mm thickness of contrast-enhancing wall, (d) off-midline location, (e) suprasellar extension, (f) hypointense rim on T2WI, (g) intralesional septation on T2WI.

jbsr-108-1-3470-g2.jpg
Figure 2

Segmentation and feature extraction (red rectangle, red ellipse) from the segmented volume using the Radiomics extension (arrow) of the 3D Slicer software on T2W image.

jbsr-108-1-3470-g3.jpg
Figure 3

Schematic representation of the feature extraction process and the subsequent steps taken in developing machine learning models.

Table 1

Interobserver agreement analysis for semantic features

SEMANTIC FEATURE1ST OBSERVER2ND OBSERVERKAPPA AGREEMENT
NONEPRESENT
Fluid–Fluid levelNone5270.578
Moderate agreement
Present06
SeptaNone3750.428
Moderate agreement
Present1112
Intracystic noduleNone44100.491
Moderate agreement
Present29
Hypointense rimNone3270.654
High agreement
Present422
Suprasellar placementNone1430.490
Moderate agreement
Present1236
Wall enhancement >2 mmNone4090.512
Moderate agreement
Present412
Off-midline locationNone16160.442
Moderate agreement
Present231
Table 2

Semantic features of CPA and RCCs

SEMANTIC FEATURECYSTIC PITUITARY ADENOMA
N = 37
RATHKE CLEFT CYST
N = 28
P VALUE
Fluid–Fluid level6 (16.2%)0 (0%)0.003
Septa19 (51.4%)4 (14.3%)< 0.001
Intracystic nodule1 (2.7%)18 (64.3)< 0.001
Hypointense rim20 (54.1%)6 (21.4%)0.008
Suprasellar placement24 (64.9%)24 (85.7%)0.058
Wall enhancement >2 mm16 (43.2%)0 (0%)< 0.001
Off midline location24 (64.9%)8 (28.6%)0.008
Table 3

Various metrics of different models on both the testing and training datasets, utilizing SVM, LR, and LGB algorithms

DATASETALGORITHMSEMANTIC MODELT2W MODELT1W MODELT1C MODELCOMBINED MODEL
Test accuracySVM
LR
LGB
0.846
0.892
0.877
0.923
0.938
0.908
0.892
0.877
0.892
0.892
0.892
0.892
0.892
0.923
0.892
Train accuracySVM
LR
LGB
0.923
0.942
0.954
0.954
0.977
1.000
0.931
0.946
0.996
0.931
0.942
0.977
0.935
0.950
0.992
Test AUCSVM
LR
LGB
0.956
0.956
0.951
0.960
0.980
0.945
0.956
0.970
0.980
0.980
0.981
0.954
0.990
0.985
0.961
Test precisionSVM
LR
LGB
0.905
0.898
0.975
0.925
0.928
0.933
0.902
0.880
0.921
0.888
0.909
0.913
0.884
0.927
0.928
Test recallSVM
LR
LGB
0.836
0.943
0.807
0.950
0.975
0.918
0.918
0.918
0.889
0.943
0.914
0.914
0.943
0.943
0.889
Test F1 scoreSVM
LR
LGB
0.853
0.913
0.876
0.937
0.950
0.922
0.906
0.894
0.900
0.911
0.904
0.904
0.909
0.933
0.901
Test specificitySVM
LR
LGB
0.853
0.807
0.960
0.887
0.887
0.880
0.860
0.820
0.893
0.813
0.847
0.847
0.813
0.887
0.887
DOI: https://doi.org/10.5334/jbsr.3470 | Journal eISSN: 2514-8281
Language: English
Submitted on: Dec 16, 2023
Accepted on: Jan 18, 2024
Published on: Feb 1, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Ceylan Altintas Taslicay, Elmire Dervisoglu, Okan Ince, Ismail Mese, Cengizhan Taslicay, Busra Yaprak Bayrak, Burak Cabuk, Ihsan Anik, Savas Ceylan, Yonca Anik, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.