References
- 1The Commonwealth Fund. Commonwealth Fund international health policy survey; 2013.
https://www.commonwealthfund.org/publications/surveys/2013/nov/2013-commonwealth-fund-international-health-policy-survey . Accessed: May 2019. - 2Stein V, Barbazza ES, Tello J, Kluge H. Towards people-centred health services delivery: a framework for action for the World Health Organization (WHO) European region. Int J Integr Care; 2013. DOI: 10.5334/ijic.1514
- 3Porter ME. What Is Value in Health Care? New England Journal of Medicine. 2010; 363(26): 2477–2481. DOI: 10.1056/NEJMp1011024
- 4Porter ME, Teisberg E. Redefining health care – Creating value-based competition on results. Boston: Harvard Business School Press; 2006.
- 5Leijten FRM, Struckmann V, van Ginneken E, et al. The SELFIE framework for integrated care for multi-morbidity: Development and description. Health Policy. 2018; 122(1): 12–22. DOI: 10.1016/j.healthpol.2017.06.002
- 6World Health Organization. Framework on integrated, people-centred health services; 2016.
http://apps.who.int/gb/ebwha/pdf_files/WHA69/A69_39-en.pdf . Accessed: May 2019. - 7Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Annals of Surgery. 2018; 1. DOI: 10.1097/SLA.0000000000002693
- 8Ahmad T, Lund L, Rao P, et al. Machine learning methods improve prognostication, identify clinically distinct phenotypes, and detect heterogeneity in response to therapy in a large cohort of heart failure patients. J Am Heart Assoc; 2018. DOI: 10.1161/JAHA.117.008081
- 9Berger ML, Doban V. Big data, advanced analytics and the future of comparative effectiveness research. Journal of Comparative Effectiveness Research. 2014; 3(2): 167–176. DOI: 10.2217/cer.14.2
- 10Martin-Sanchez FJ, Aguiar-Pulido V, Lopez-Campos GH, et al. Secondary use and analysis of big data collected for patient care: contribution from the IMIA working group on data mining and big data analytics. Yearbook of Medical Informatics. 2017; 26(01): 28–37. DOI: 10.15265/IY-2017-008
- 11Murdoch TB, Detsky AS. The inevitable application of big data to health care. JAMA. 2013; 309(13): 1351. DOI: 10.1001/jama.2013.393
- 12Berwick DM, Nolan TW, Whittington J. The triple aim: care, health, and cost. Health Affairs. 2008; 27(3): 759–769. DOI: 10.1377/hlthaff.27.3.759
- 13Bodenheimer T, Sinsky C. From triple to quadruple aim: care of the patient requires care of the provider. The Annals of Family Medicine. 2014; 12(6): 573–576. DOI: 10.1370/afm.1713
- 14Raghupathi W, Raghupathi V. Big data analytics in healthcare: promise and potential. Health Information Science and Systems. 2014; 2(1): 3. DOI: 10.1186/2047-2501-2-3
- 15Roski J, Bo-Linn GW, Andrews TA. Creating value in health care through big data: opportunities and policy implications. Health Affairs. 2014; 33(7): 1115–1122. DOI: 10.1377/hlthaff.2014.0147
- 16Groves P, Kayyali B, Knott D, et al. The “Big Data” revolution in healthcare. Accelerating value and innovation; 2013.
https://www.mckinsey.com/~/media/mckinsey/industries/healthcaresystemsandservices/ourinsights/thebigdatarevolutioninushealthcare/the_big_data_revolution_in_healthcare.ashx . Accessed: May 2019. - 17Dahlgren G, Whitehead M.
Policies and strategies to promote social equity in health: background document to WHO-strategy paper for Europe . Institute for Futures Studies; 1991. - 18World Health Organization. WHO global strategy on people-centred and integrated health services; 2015.
http://www.who.int/servicedeliverysafety/areas/people-centred-care/global-strategy/en/ . Accessed: May 2019. - 19Goodwin N. Towards People-Centred Integrated Care: From Passive Recognition to Active Co-production? Int J Integr Care; 2016. DOI: 10.5334/ijic.2492
- 20Valentijn PP, Schepman S, Opheij W, Bruijnzeels MA. Understanding integrated care: a comprehensive conceptual framework based on the integrative functions of primary care. International Journal of Integrated Care. 13: 2013;
e010 . DOI: 10.5334/ijic.886 - 21Ham C, Walsh N. Making integrated care happen at scale and pace. Lessons from experience; 2013.
- 22Schatz BR. National surveys of population health: big data analytics for mobile health monitors. Big Data. 2015; 3(4): 219–229. DOI: 10.1089/big.2015.0021
- 23Lawrence DM. How to forge a high-tech marriage between primary care and population health. Health Affairs. 2010; 29(5): 1004–1009. DOI: 10.1377/hlthaff.2010.0167
- 24Bhardwaj N, Wodajo B, Spano A, et al. The impact of big data on chronic disease management. The Health Care Manager. 2017; 1. DOI: 10.1097/HCM.0000000000000194
- 25Cottle M, Hoover W, Kanwal S, et al. Transforming health care through big data; 2013.
http://c4fd63cb482ce6861463-bc6183f1c18e748a49b87a25911a0555.r93.cf2.rackcdn.com/iHT2_BigData_2013.pdf . Accessed: January 2019. - 26Bradley PS. Implications of big data analytics on population health management. Big Data. 2013; 1(3): 152–159. DOI: 10.1089/big.2013.0019
- 27Mehta N, Pandit A. Concurrence of big data analytics and healthcare: a systematic review. International Journal of Medical Informatics. 2018; 114: 57–65. DOI: 10.1016/j.ijmedinf.2018.03.013
- 28Dawson NV, Davis DA. Bringing big data to personalized healthcare: A patient-centered framework. Journal of General Internal Medicine. 2013; 28(S3): 660–665. DOI: 10.1007/s11606-013-2455-8
- 29Jain S, Wilk A, Thorpe K, Hammond S. A Model for Delivering Population Health Across the Care Continuum. Am. J. Accountable Care. 2018; 6.
- 30World Health Organization SD and SD. The WHO Framework on integrated people-centred health services; 2016.
- 31World Health Organization. People-centred and integrated health services: an overview of the evidence – Interim Report; 2015.
- 32World Health Organization. WHO global strategy on people-centred and integrated health services – Interim Report; 2015.
- 33Ward JS, Barker A, University of St Andrews, School of Computer Science. Undefined by data: a survey of big data definitions; 2013.
https://arxiv.org/pdf/1309.5821v1.pdf . Accessed: May 2019. - 34Gartner Research. Big data; 2019.
https://www.gartner.com/it-glossary/big-data . Accessed: May 2019. - 35Bates DW, Saria S, Ohno-Machado L, et al. Big data in health care: using analytics to identify and manage high-risk and high-cost patients. Health Affairs. 2014; 33(7): 1123–1131. DOI: 10.1377/hlthaff.2014.0041
- 36Dinov ID. Volume and value of big healthcare data. Journal of Medical Statistics and Informatics. 2016; 4(1): 3. DOI: 10.7243/2053-7662-4-3
- 37Kruse CS, Goswamy R, Raval Y, Marawi S. Challenges and opportunities of big data in health care: a systematic review. JMIR Medical Informatics. 2016; 4(4):
e38 . DOI: 10.2196/medinform.5359 - 38Sakr S, Elgammal A. Towards a comprehensive data analytics framework for smart healthcare services. Big Data Research. 2016; 4: 44–58. DOI: 10.1016/j.bdr.2016.05.002
- 39Sukumar SR, Natarajan R, Ferrell RK. Quality of big data in health care. International Journal of Health Care Quality Assurance. 2015; 28(6): 621–634. DOI: 10.1108/IJHCQA-07-2014-0080
- 40Wang Y, Hajli N. Exploring the path to big data analytics success in healthcare. Journal of Business Research. 2017; 70: 287–299. DOI: 10.1016/j.jbusres.2016.08.002
- 41Amarasingham R, Audet AMJ, Bates DW, et al. Consensus statement on electronic health predictive analytics: a guiding framework to address challenges. eGEMs (Generating Evidence & Methods to improve patient outcomes). 2016; 4(1): 3. DOI: 10.13063/2327-9214.1163
- 42Thompson S, Varvel S, Sasinowski M, Burke JP. From value assessment to value cocreation: informing clinical decision-making with medical claims data. Big Data. 2016; 4(3): 141–147. DOI: 10.1089/big.2015.0030
- 43Alonso SG, de la Torre Díez I, Rodrigues JJ, et al. A systematic review of techniques and sources of big data in the healthcare sector. J Med Syst.; 2017. DOI: 10.1007/s10916-017-0832-2
- 44Szlezák N, Evers M, Wang J, Pérez L. The role of big data and advanced analytics in drug discovery, development, and commercialization. Clinical Pharmacology & Therapeutics. 2014; 95(5): 492–495. DOI: 10.1038/clpt.2014.29
- 45Vayena E, Dzenowagis J, Brownstein JS, Sheikh A. Policy implications of big data in the health sector. Bulletin of the World Health Organization. 2018; 96(1): 66–68. DOI: 10.2471/BLT.17.197426
- 46Van Poucke S, Thomeer M, Heath J, Vukicevic M. Are randomized controlled trials the (g)old standard? From clinical intelligence to prescriptive analytics. Journal of Medical Internet Research. 2016; 18(7):
e185 . DOI: 10.2196/jmir.5549 - 47Mohamed K. Health analytics types, functions and levels: a review of literature. Studies in Health Technology and Informatics. 2018; 137–140. DOI: 10.3233/978-1-61499-880-8-137
- 48Alanazi HO, Abdullah AH, Qureshi KN. A critical review for developing accurate and dynamic predictive models using machine learning methods in medicine and health care. J Med Syst.; 2017. DOI: 10.1007/s10916-017-0715-6
- 49Bayrak T. A review of business analytics: a business enabler or another passing fad. Procedia – Social and Behavioral Sciences. 2015; 195: 230–239. DOI: 10.1016/j.sbspro.2015.06.354
- 50Callaghan CW. Developing the transdisciplinary aging research agenda: new developments in big data. Current Aging Science. 2018; 11(1): 33–44. DOI: 10.2174/1874609810666170719100122
- 51Krumholz HM. Big data and new knowledge in medicine: the thinking, training, and tools needed for a learning health system. Health Affairs. 2014; 33(7): 1163–1170. DOI: 10.1377/hlthaff.2014.0053
- 52Holzinger A. Machine learning for health informatics. In: Holzinger A (ed.), Mach. Learn. Health Inform. Cham: Springer International Publishing. 2016; 1–24. DOI: 10.1007/978-3-319-50478-0_1
- 53Elliott JH, Grimshaw J, Altman R, et al. Informatics: make sense of health data. Nature. 2015; 527(7576): 31–32. DOI: 10.1038/527031a
- 54Hoffman S, Podgurski A. The use and misuse of biomedical data: is bigger really better? American Journal of Law & Medicine. 2013; 39: 497–538. DOI: 10.1177/009885881303900401
- 55Kitchin R. Big data, new epistemologies and paradigm shifts. Big Data & Society. 2014; 1(1). DOI: 10.1177/2053951714528481
- 56Hohmann E, Arevalo MJ, D’Agostino RB. Research pearls: the significance of statistics and perils of pooling. Predictive modeling. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2017; 33(7): 1423–1432. DOI: 10.1016/j.arthro.2017.01.054
- 57Kotsiantis SB, Zaharakis ID, Pintelas PE. Machine learning: a review of classification and combining techniques. Artificial Intelligence Review. 2006; 26(3): 159–190. DOI: 10.1007/s10462-007-9052-3
- 58Cichosz SL, Johansen MD, Hejlesen O. Toward big data analytics: review of predictive models in management of diabetes and its complications. Journal of Diabetes Science and Technology. 2015; 10(1): 27–34. DOI: 10.1177/1932296815611680
- 59Hernandez I, Zhang Y. Using predictive analytics and big data to optimize pharmaceutical outcomes. American Journal of Health-System Pharmacy. 2017; 74(18): 1494–1500. DOI: 10.2146/ajhp161011
- 60Sanchez-Morillo D, Fernandez-Granero MA, Leon-Jimenez A. Use of predictive algorithms in home monitoring of chronic obstructive pulmonary disease and asthma: a systematic review. Chronic Respiratory Disease. 2016; 13(3): 264–283. DOI: 10.1177/1479972316642365
- 61Ozminkowski RJ, Wells TS, Hawkins K, et al. Big data, little data, and care coordination for Medicare beneficiaries with Medigap coverage. Big Data. 2015; 3(2): 114–125. DOI: 10.1089/big.2014.0034
- 62Gotz D, Wang F, Perer A. A methodology for interactive mining and visual analysis of clinical event patterns using electronic health record data. Journal of Biomedical Informatics. 2014; 48: 148–159. DOI: 10.1016/j.jbi.2014.01.007
- 63Bettencourt-Silva JH, Mannu GS, de la Iglesia B.
Visualisation of integrated patient-centric data as pathways: enhancing electronic medical records in clinical practice . Holzinger A (ed.), Mach. Learn. Health Inform. Cham: Springer International Publishing. 2016; 99–124. DOI: 10.1007/978-3-319-50478-0_5 - 64Tricco AC, Lillie E, Zarin W, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Annals of Internal Medicine. 2018; 169(7): 467. DOI: 10.7326/M18-0850
- 65Ananiadou S, Rea B, Okazaki N, et al. Supporting systematic reviews using text mining. Social Science Computer Review. 2009; 27(4): 509–523. DOI: 10.1177/0894439309332293
- 66Osinski S, Stefanowski J, Weiss D. Lingo: search results clustering algorithm based on singular value decomposition. Intelligent Information Processing and Web Mining Advances in Soft Computing. 2004; 25: 359–368. DOI: 10.1007/978-3-540-39985-8_37
- 67Osinski S, Weiss D. Carrot2: Design of a flexible and efficient web information retrieval framework. Advances in Web Intelligence AWIC 2005 Lecture Notes in Computer Science. 2005; 3528: 439–444. DOI: 10.1007/11495772_68
- 68Gottesman O, Kuivaniemi H, Tromp G, et al. The electronic medical records and genomics (eMERGE) network: past, present, and future. Genetics in Medicine. 2013; 15(10): 761–771. DOI: 10.1038/gim.2013.72
- 69Kho AN, Pacheco JH, Peissig PL, et al. Electronic medical records for genetic research: results of the eMERGE consortium. Science Translational Medicine. 2011; 3(79): 79re1–79re1. DOI: 10.1126/scitranslmed.3001807
- 70Jormanainen V. Large-scale implementation and adoption of the Finnish national Kanta services in 2010–2017: a prospective, longitudinal, indicator-based study. Finn J EHealth EWelfare; 2018. DOI: 10.23996/fjhw.74511
- 71Nøhr C, Parv L, Kink P, et al. Nationwide citizen access to their health data: analysing and comparing experiences in Denmark, Estonia and Australia. BMC Health Serv Res. 2017. DOI: 10.1186/s12913-017-2482-y
- 72Fihn SD, Francis J, Clancy C, et al. Insights from advanced analytics at the Veterans Health Administration. Health Affairs. 2014; 33(7): 1203–1211. DOI: 10.1377/hlthaff.2014.0054
- 73Stephens ZD, Lee SY, Faghri F, et al. Big data: astronomical or genomical? PLOS Biology. 2015; 13(7):
e1002195 . DOI: 10.1371/journal.pbio.1002195 - 74Huang T, Lan L, Fang X, et al. Promises and challenges of big data computing in health sciences. Big Data Research. 2015; 2(1): 2–11. DOI: 10.1016/j.bdr.2015.02.002
- 75Marx V. The big challenges of big data. Nature. 2013; 498(7453): 255–260. DOI: 10.1038/498255a
- 76Peters SG, Buntrock JD. Big data and the electronic health record. Journal of Ambulatory Care Management. 2014; 37(3): 206–210. DOI: 10.1097/JAC.0000000000000037
- 77Cyganek B, Graña M, Krawczyk B, et al. A survey of big data issues in electronic health record analysis. Applied Artificial Intelligence. 2016; 30(6): 497–520. DOI: 10.1080/08839514.2016.1193714
- 78Allen C, Tsou MH, Aslam A, et al. Applying GIS and machine learning methods to Twitter data for multiscale surveillance of influenza. PLOS ONE. 2016; 11(7):
e0157734 . DOI: 10.1371/journal.pone.0157734 - 79Srinivasan U, Arunasalam B. Leveraging big data analytics to reduce healthcare costs. IT Professional. 2013; 15(6): 21–28. DOI: 10.1109/MITP.2013.55
- 80Handmaker K, Hart J. 9 steps to effective population health management. Healthcare Financial Management. 2015; 69 (4): 70–76.
- 81Kreis K, Neubauer S, Klora M, et al. Status and perspectives of claims data analyses in Germany—A systematic review. Health Policy. 2016; 120(2): 213–226. DOI: 10.1016/j.healthpol.2016.01.007
- 82Douglas HE, Georgiou A, Tariq A, et al. Implementing Information and Technology to Support Community Aged Care Service Integration: Lessons from an Australian Aged Care Provider. Int J Integr Care. 2017; DOI: 10.5334/ijic.2437
- 83Grayson S, Doerr M, Yu J-H. Developing pathways for community-led research with big data: a content analysis of stakeholder interviews. Health Res Policy Syst; 2020. DOI: 10.1186/s12961-020-00589-7
- 84Johnson M. Data, Analytics and Community-Based Organizations: Transforming Data to Decisions for Community Development. I/S: A Journal of Law and Policy for the Information Society. 2015; 11(1): 49–96.
- 85Alharthi H. Healthcare predictive analytics: an overview with a focus on Saudi Arabia. J Infect Public Health; 2018. DOI: 10.1016/j.jiph.2018.02.005
- 86Institute of Medicine. Best care at lower cost: the path to continuously learning health care in America; 2013. DOI: 10.17226/13444
- 87Binder H, Blettner M. Big data in medical science – a biostatistical view. Dtsch Aerzteblatt Online; 2015.DOI: 10.3238/arztebl.2015.0137
- 88Liyanage H, de Lusignan S, Liaw S-T, et al. Big data usage patterns in the health care domain: a use case driven approach applied to the assessment of vaccination benefits and risks. IMIA Yearbook. 2014; 9(1): 27–35. DOI: 10.15265/IY-2014-0016
- 89Swan M. The quantified self: fundamental disruption in big data science and biological discovery. Big Data. 2013; 1(2): 85–99. DOI: 10.1089/big.2012.0002
- 90Choudhry SA, Li J, Davis D, et al. A public-private partnership develops and externally validates a 30-day hospital readmission risk prediction model. Online J Public Health Inform; 2013. DOI: 10.5210/ojphi.v5i2.4726
- 91Flahault A, Bar-Hen A, Paragios N. Public health and epidemiology informatics. IMIA Yearbook. 2016; 1: 240–246. DOI: 10.15265/IY-2016-021
- 92Chen M, Hao Y, Hwang K, et al. Disease prediction by machine learning over big data from healthcare communities. IEEE Access. 2017; 5: 8869–8879. DOI: 10.1109/ACCESS.2017.2694446
- 93Rumsfeld JS, Joynt KE, Maddox TM. Big data analytics to improve cardiovascular care: promise and challenges. Nature Reviews Cardiology. 2016; 13(6): 350–359. DOI: 10.1038/nrcardio.2016.42
- 94Sharafoddini A, Dubin JA, Lee J. Patient similarity in prediction models based on health data: a scoping review. JMIR Medical Informatics. 2017; 5(1):
e7 . DOI: 10.2196/medinform.6730 - 95Lee J. Patient-specific predictive modeling using random forests: an observational study for the critically ill. JMIR Medical Informatics. 2017; 5(1):
e3 . DOI: 10.2196/medinform.6690 - 96Ross EG, Shah N, Dalman RL, et al. Use of predictive analytics for the identification of latent vascular disease and future adverse cardiac events. Journal of Vascular Surgery. 2016; 63(6): 28S-29S. DOI: 10.1016/j.jvs.2016.03.209
- 97Jvion. Jvion predictive analytics in healthcare survey; 2015.
https://chimecentral.org/jvion-releases-findings-latest-predictive-analytics-healthcare-survey/ . Accessed: May 2019. - 98Sheets L, Petroski G, Zhuang Y, et al. Combining contrast mining with logistic regression to predict healthcare utilization in a managed care population. Applied Clinical Informatics. 2017; 8(02): 430–446. DOI: 10.4338/ACI-2016-05-RA-0078
- 99White RW, Tatonetti NP, Shah NH, et al. Web-scale pharmacovigilance: listening to signals from the crowd. Journal of the American Medical Informatics Association. 2013; 20(3): 404–408. DOI: 10.1136/amiajnl-2012-001482
- 100Batarseh FA, Latif EA. Assessing the quality of service using big data analytics. Big Data Research. 2016; 4: 13–24. DOI: 10.1016/j.bdr.2015.10.001
- 101Kose I, Gokturk M, Kilic K. An Interactive machine-learning-based electronic fraud and abuse detection system in healthcare insurance. Applied Soft Computing. 2015; 36: 283–299. DOI: 10.1016/j.asoc.2015.07.018
- 102Gottlieb L, Tobey R, Cantor J, et al. Integrating social and medical data to improve population health: opportunities and barriers. Health Affairs. 2016; 35(11): 2116–2123. DOI: 10.1377/hlthaff.2016.0723
- 103Stadler JG, Donlon K, Siewert JD. et al. Improving the efficiency and ease of healthcare analysis through use of data visualization dashboards. Big Data. 2016; 4(2): 129–135. DOI: 10.1089/big.2015.0059
- 104Huang BE, Mulyasasmita W, Rajagopal G. The path from big data to precision medicine. Expert Review of Precision Medicine and Drug Development. 2016; 1(2): 129–143. DOI: 10.1080/23808993.2016.1157686
- 105Amarasingham R, Patzer RE, Huesch M, et al. Implementing electronic health care predictive analytics: considerations and challenges. Health Affairs. 2014; 33(7): 1148–1154. DOI: 10.1377/hlthaff.2014.0352
- 106Buchanan V, Lu Y, McNeese N, et al. The role of teamwork in the analysis of big data: a study of visual analytics and box office prediction. Big Data. 2017; 5(1): 53–66. DOI: 10.1089/big.2016.0044
- 107Davis K, Patterson D.
Ethics of big data . Sebastopol, CA: O’Reilly. 2012. - 108Kuo M, Sahama T, Kushniruk A, et al. Health big data analytics: current perspectives, challenges and potential solutions. International Journal of Big Data Intelligence. 2014; 1(1/2): 114. DOI: 10.1504/IJBDI.2014.063835
- 109Zhang H, Chen G, Ooi BC, et al. In-memory big data management and processing: a survey. IEEE Transactions on Knowledge and Data Engineering. 2015; 27(7): 1920–1948. DOI: 10.1109/TKDE.2015.2427795
- 110Press G. Top 10 hot data security and privacy technologies; 2017.
https://www.forbes.com/sites/gilpress/2017/10/17/top-10-hot-data-security-and-privacy-technologies/ . Accessed. - 111Zhang X, Dou W, Pei J, et al. Proximity-aware local-recoding anonymization with MapReduce for scalable big data privacy preservation in cloud. IEEE Transactions on Computers. 2015; 64(8): 2293–2307. DOI: 10.1109/TC.2014.2360516
- 112Xu L, Jiang C, Wang J, et al. Information security in big data: privacy and data mining. IEEE Access. 2014; 2: 1149–1176. DOI: 10.1109/ACCESS.2014.2362522
- 113Ng K, Ghoting A, Steinhubl SR, et al. PARAMO: A PARAllel predictive MOdeling platform for healthcare analytic research using electronic health records. Journal of Biomedical Informatics. 2014; 48: 160–170. DOI: 10.1016/j.jbi.2013.12.012
- 114Walsh C, Hripcsak G. The effects of data sources, cohort selection, and outcome definition on a predictive model of risk of thirty-day hospital readmissions. Journal of Biomedical Informatics. 2014; 52: 418–426. DOI: 10.1016/j.jbi.2014.08.006
- 115Walsh CG, Sharman K, Hripcsak G. Beyond discrimination: a comparison of calibration methods and clinical usefulness of predictive models of readmission risk. Journal of Biomedical Informatics. 2017; 76: 9–18. DOI: 10.1016/j.jbi.2017.10.008
- 116Zhang R, Simon G, Yu F. Advancing Alzheimer’s research: a review of big data promises. International Journal of Medical Informatics. 2017; 106: 48–56. DOI: 10.1016/j.ijmedinf.2017.07.002
- 117Gigerenzer G, Gaissmaier W, Kurz-Milcke E, et al. Helping doctors and patients make sense of health statistics. Psychological Science in the Public Interest. 2007; 8(2): 53–96. DOI: 10.1111/j.1539-6053.2008.00033.x
- 118Kohane I. Secondary use of health information: are we asking the right question? JAMA Internal Medicine. 2013; 173(19): 1806. DOI: 10.1001/jamainternmed.2013.8276
- 119Grande D, Mitra N, Shah A, et al. Public preferences about secondary uses of electronic health information. JAMA Internal Medicine. 2013; 173(19): 1798. DOI: 10.1001/jamainternmed.2013.9166
- 120Weitzman ER, Kaci L, Mandl KD. Sharing medical data for health research: The early personal health record experience. Journal of Medical Internet Research. 2010; 12(2):
e14 . DOI: 10.2196/jmir.1356 - 121Vodafone Institute for Society and Communications. Big data: a European survey on the opportunities and risks of data analytics; 2016.
https://www.vodafone-institut.de/wp-content/uploads/2016/01/VodafoneInstitute-Survey-BigData-en.pdf . Accessed: May 2019. - 122Skovgaard LL, Wadmann S, Hoeyer K. A review of attitudes towards the reuse of health data among people in the European Union: The primacy of purpose and the common good. Health Policy. 2019; 123(6): 564–571. DOI: 10.1016/j.healthpol.2019.03.012
- 123Mehta N, Pandit A. Concurrence of big data analytics and healthcare: a systematic review. International Journal of Medical Informatics. 2018; 114: 57–65. DOI: 10.1016/j.ijmedinf.2018.03.013
