Have a personal or library account? Click to login
How can Big Data Analytics Support People-Centred and Integrated Health Services: A Scoping Review Cover

How can Big Data Analytics Support People-Centred and Integrated Health Services: A Scoping Review

Open Access
|Jun 2022

References

  1. 1The Commonwealth Fund. Commonwealth Fund international health policy survey; 2013. https://www.commonwealthfund.org/publications/surveys/2013/nov/2013-commonwealth-fund-international-health-policy-survey. Accessed: May 2019.
  2. 2Stein V, Barbazza ES, Tello J, Kluge H. Towards people-centred health services delivery: a framework for action for the World Health Organization (WHO) European region. Int J Integr Care; 2013. DOI: 10.5334/ijic.1514
  3. 3Porter ME. What Is Value in Health Care? New England Journal of Medicine. 2010; 363(26): 24772481. DOI: 10.1056/NEJMp1011024
  4. 4Porter ME, Teisberg E. Redefining health care – Creating value-based competition on results. Boston: Harvard Business School Press; 2006.
  5. 5Leijten FRM, Struckmann V, van Ginneken E, et al. The SELFIE framework for integrated care for multi-morbidity: Development and description. Health Policy. 2018; 122(1): 1222. DOI: 10.1016/j.healthpol.2017.06.002
  6. 6World Health Organization. Framework on integrated, people-centred health services; 2016. http://apps.who.int/gb/ebwha/pdf_files/WHA69/A69_39-en.pdf. Accessed: May 2019.
  7. 7Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Annals of Surgery. 2018; 1. DOI: 10.1097/SLA.0000000000002693
  8. 8Ahmad T, Lund L, Rao P, et al. Machine learning methods improve prognostication, identify clinically distinct phenotypes, and detect heterogeneity in response to therapy in a large cohort of heart failure patients. J Am Heart Assoc; 2018. DOI: 10.1161/JAHA.117.008081
  9. 9Berger ML, Doban V. Big data, advanced analytics and the future of comparative effectiveness research. Journal of Comparative Effectiveness Research. 2014; 3(2): 167176. DOI: 10.2217/cer.14.2
  10. 10Martin-Sanchez FJ, Aguiar-Pulido V, Lopez-Campos GH, et al. Secondary use and analysis of big data collected for patient care: contribution from the IMIA working group on data mining and big data analytics. Yearbook of Medical Informatics. 2017; 26(01): 2837. DOI: 10.15265/IY-2017-008
  11. 11Murdoch TB, Detsky AS. The inevitable application of big data to health care. JAMA. 2013; 309(13): 1351. DOI: 10.1001/jama.2013.393
  12. 12Berwick DM, Nolan TW, Whittington J. The triple aim: care, health, and cost. Health Affairs. 2008; 27(3): 759769. DOI: 10.1377/hlthaff.27.3.759
  13. 13Bodenheimer T, Sinsky C. From triple to quadruple aim: care of the patient requires care of the provider. The Annals of Family Medicine. 2014; 12(6): 573576. DOI: 10.1370/afm.1713
  14. 14Raghupathi W, Raghupathi V. Big data analytics in healthcare: promise and potential. Health Information Science and Systems. 2014; 2(1): 3. DOI: 10.1186/2047-2501-2-3
  15. 15Roski J, Bo-Linn GW, Andrews TA. Creating value in health care through big data: opportunities and policy implications. Health Affairs. 2014; 33(7): 11151122. DOI: 10.1377/hlthaff.2014.0147
  16. 16Groves P, Kayyali B, Knott D, et al. The “Big Data” revolution in healthcare. Accelerating value and innovation; 2013. https://www.mckinsey.com/~/media/mckinsey/industries/healthcaresystemsandservices/ourinsights/thebigdatarevolutioninushealthcare/the_big_data_revolution_in_healthcare.ashx. Accessed: May 2019.
  17. 17Dahlgren G, Whitehead M. Policies and strategies to promote social equity in health: background document to WHO-strategy paper for Europe. Institute for Futures Studies; 1991.
  18. 18World Health Organization. WHO global strategy on people-centred and integrated health services; 2015. http://www.who.int/servicedeliverysafety/areas/people-centred-care/global-strategy/en/. Accessed: May 2019.
  19. 19Goodwin N. Towards People-Centred Integrated Care: From Passive Recognition to Active Co-production? Int J Integr Care; 2016. DOI: 10.5334/ijic.2492
  20. 20Valentijn PP, Schepman S, Opheij W, Bruijnzeels MA. Understanding integrated care: a comprehensive conceptual framework based on the integrative functions of primary care. International Journal of Integrated Care. 13: 2013; e010. DOI: 10.5334/ijic.886
  21. 21Ham C, Walsh N. Making integrated care happen at scale and pace. Lessons from experience; 2013.
  22. 22Schatz BR. National surveys of population health: big data analytics for mobile health monitors. Big Data. 2015; 3(4): 219229. DOI: 10.1089/big.2015.0021
  23. 23Lawrence DM. How to forge a high-tech marriage between primary care and population health. Health Affairs. 2010; 29(5): 10041009. DOI: 10.1377/hlthaff.2010.0167
  24. 24Bhardwaj N, Wodajo B, Spano A, et al. The impact of big data on chronic disease management. The Health Care Manager. 2017; 1. DOI: 10.1097/HCM.0000000000000194
  25. 25Cottle M, Hoover W, Kanwal S, et al. Transforming health care through big data; 2013. http://c4fd63cb482ce6861463-bc6183f1c18e748a49b87a25911a0555.r93.cf2.rackcdn.com/iHT2_BigData_2013.pdf. Accessed: January 2019.
  26. 26Bradley PS. Implications of big data analytics on population health management. Big Data. 2013; 1(3): 152159. DOI: 10.1089/big.2013.0019
  27. 27Mehta N, Pandit A. Concurrence of big data analytics and healthcare: a systematic review. International Journal of Medical Informatics. 2018; 114: 5765. DOI: 10.1016/j.ijmedinf.2018.03.013
  28. 28Dawson NV, Davis DA. Bringing big data to personalized healthcare: A patient-centered framework. Journal of General Internal Medicine. 2013; 28(S3): 660665. DOI: 10.1007/s11606-013-2455-8
  29. 29Jain S, Wilk A, Thorpe K, Hammond S. A Model for Delivering Population Health Across the Care Continuum. Am. J. Accountable Care. 2018; 6.
  30. 30World Health Organization SD and SD. The WHO Framework on integrated people-centred health services; 2016.
  31. 31World Health Organization. People-centred and integrated health services: an overview of the evidence – Interim Report; 2015.
  32. 32World Health Organization. WHO global strategy on people-centred and integrated health services – Interim Report; 2015.
  33. 33Ward JS, Barker A, University of St Andrews, School of Computer Science. Undefined by data: a survey of big data definitions; 2013. https://arxiv.org/pdf/1309.5821v1.pdf. Accessed: May 2019.
  34. 34Gartner Research. Big data; 2019. https://www.gartner.com/it-glossary/big-data. Accessed: May 2019.
  35. 35Bates DW, Saria S, Ohno-Machado L, et al. Big data in health care: using analytics to identify and manage high-risk and high-cost patients. Health Affairs. 2014; 33(7): 11231131. DOI: 10.1377/hlthaff.2014.0041
  36. 36Dinov ID. Volume and value of big healthcare data. Journal of Medical Statistics and Informatics. 2016; 4(1): 3. DOI: 10.7243/2053-7662-4-3
  37. 37Kruse CS, Goswamy R, Raval Y, Marawi S. Challenges and opportunities of big data in health care: a systematic review. JMIR Medical Informatics. 2016; 4(4): e38. DOI: 10.2196/medinform.5359
  38. 38Sakr S, Elgammal A. Towards a comprehensive data analytics framework for smart healthcare services. Big Data Research. 2016; 4: 4458. DOI: 10.1016/j.bdr.2016.05.002
  39. 39Sukumar SR, Natarajan R, Ferrell RK. Quality of big data in health care. International Journal of Health Care Quality Assurance. 2015; 28(6): 621634. DOI: 10.1108/IJHCQA-07-2014-0080
  40. 40Wang Y, Hajli N. Exploring the path to big data analytics success in healthcare. Journal of Business Research. 2017; 70: 287299. DOI: 10.1016/j.jbusres.2016.08.002
  41. 41Amarasingham R, Audet AMJ, Bates DW, et al. Consensus statement on electronic health predictive analytics: a guiding framework to address challenges. eGEMs (Generating Evidence & Methods to improve patient outcomes). 2016; 4(1): 3. DOI: 10.13063/2327-9214.1163
  42. 42Thompson S, Varvel S, Sasinowski M, Burke JP. From value assessment to value cocreation: informing clinical decision-making with medical claims data. Big Data. 2016; 4(3): 141147. DOI: 10.1089/big.2015.0030
  43. 43Alonso SG, de la Torre Díez I, Rodrigues JJ, et al. A systematic review of techniques and sources of big data in the healthcare sector. J Med Syst.; 2017. DOI: 10.1007/s10916-017-0832-2
  44. 44Szlezák N, Evers M, Wang J, Pérez L. The role of big data and advanced analytics in drug discovery, development, and commercialization. Clinical Pharmacology & Therapeutics. 2014; 95(5): 492495. DOI: 10.1038/clpt.2014.29
  45. 45Vayena E, Dzenowagis J, Brownstein JS, Sheikh A. Policy implications of big data in the health sector. Bulletin of the World Health Organization. 2018; 96(1): 6668. DOI: 10.2471/BLT.17.197426
  46. 46Van Poucke S, Thomeer M, Heath J, Vukicevic M. Are randomized controlled trials the (g)old standard? From clinical intelligence to prescriptive analytics. Journal of Medical Internet Research. 2016; 18(7): e185. DOI: 10.2196/jmir.5549
  47. 47Mohamed K. Health analytics types, functions and levels: a review of literature. Studies in Health Technology and Informatics. 2018; 137140. DOI: 10.3233/978-1-61499-880-8-137
  48. 48Alanazi HO, Abdullah AH, Qureshi KN. A critical review for developing accurate and dynamic predictive models using machine learning methods in medicine and health care. J Med Syst.; 2017. DOI: 10.1007/s10916-017-0715-6
  49. 49Bayrak T. A review of business analytics: a business enabler or another passing fad. Procedia – Social and Behavioral Sciences. 2015; 195: 230239. DOI: 10.1016/j.sbspro.2015.06.354
  50. 50Callaghan CW. Developing the transdisciplinary aging research agenda: new developments in big data. Current Aging Science. 2018; 11(1): 3344. DOI: 10.2174/1874609810666170719100122
  51. 51Krumholz HM. Big data and new knowledge in medicine: the thinking, training, and tools needed for a learning health system. Health Affairs. 2014; 33(7): 11631170. DOI: 10.1377/hlthaff.2014.0053
  52. 52Holzinger A. Machine learning for health informatics. In: Holzinger A (ed.), Mach. Learn. Health Inform. Cham: Springer International Publishing. 2016; 124. DOI: 10.1007/978-3-319-50478-0_1
  53. 53Elliott JH, Grimshaw J, Altman R, et al. Informatics: make sense of health data. Nature. 2015; 527(7576): 3132. DOI: 10.1038/527031a
  54. 54Hoffman S, Podgurski A. The use and misuse of biomedical data: is bigger really better? American Journal of Law & Medicine. 2013; 39: 497538. DOI: 10.1177/009885881303900401
  55. 55Kitchin R. Big data, new epistemologies and paradigm shifts. Big Data & Society. 2014; 1(1). DOI: 10.1177/2053951714528481
  56. 56Hohmann E, Arevalo MJ, D’Agostino RB. Research pearls: the significance of statistics and perils of pooling. Predictive modeling. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2017; 33(7): 14231432. DOI: 10.1016/j.arthro.2017.01.054
  57. 57Kotsiantis SB, Zaharakis ID, Pintelas PE. Machine learning: a review of classification and combining techniques. Artificial Intelligence Review. 2006; 26(3): 159190. DOI: 10.1007/s10462-007-9052-3
  58. 58Cichosz SL, Johansen MD, Hejlesen O. Toward big data analytics: review of predictive models in management of diabetes and its complications. Journal of Diabetes Science and Technology. 2015; 10(1): 2734. DOI: 10.1177/1932296815611680
  59. 59Hernandez I, Zhang Y. Using predictive analytics and big data to optimize pharmaceutical outcomes. American Journal of Health-System Pharmacy. 2017; 74(18): 14941500. DOI: 10.2146/ajhp161011
  60. 60Sanchez-Morillo D, Fernandez-Granero MA, Leon-Jimenez A. Use of predictive algorithms in home monitoring of chronic obstructive pulmonary disease and asthma: a systematic review. Chronic Respiratory Disease. 2016; 13(3): 264283. DOI: 10.1177/1479972316642365
  61. 61Ozminkowski RJ, Wells TS, Hawkins K, et al. Big data, little data, and care coordination for Medicare beneficiaries with Medigap coverage. Big Data. 2015; 3(2): 114125. DOI: 10.1089/big.2014.0034
  62. 62Gotz D, Wang F, Perer A. A methodology for interactive mining and visual analysis of clinical event patterns using electronic health record data. Journal of Biomedical Informatics. 2014; 48: 148159. DOI: 10.1016/j.jbi.2014.01.007
  63. 63Bettencourt-Silva JH, Mannu GS, de la Iglesia B. Visualisation of integrated patient-centric data as pathways: enhancing electronic medical records in clinical practice. Holzinger A (ed.), Mach. Learn. Health Inform. Cham: Springer International Publishing. 2016; 99124. DOI: 10.1007/978-3-319-50478-0_5
  64. 64Tricco AC, Lillie E, Zarin W, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Annals of Internal Medicine. 2018; 169(7): 467. DOI: 10.7326/M18-0850
  65. 65Ananiadou S, Rea B, Okazaki N, et al. Supporting systematic reviews using text mining. Social Science Computer Review. 2009; 27(4): 509523. DOI: 10.1177/0894439309332293
  66. 66Osinski S, Stefanowski J, Weiss D. Lingo: search results clustering algorithm based on singular value decomposition. Intelligent Information Processing and Web Mining Advances in Soft Computing. 2004; 25: 359368. DOI: 10.1007/978-3-540-39985-8_37
  67. 67Osinski S, Weiss D. Carrot2: Design of a flexible and efficient web information retrieval framework. Advances in Web Intelligence AWIC 2005 Lecture Notes in Computer Science. 2005; 3528: 439444. DOI: 10.1007/11495772_68
  68. 68Gottesman O, Kuivaniemi H, Tromp G, et al. The electronic medical records and genomics (eMERGE) network: past, present, and future. Genetics in Medicine. 2013; 15(10): 761771. DOI: 10.1038/gim.2013.72
  69. 69Kho AN, Pacheco JH, Peissig PL, et al. Electronic medical records for genetic research: results of the eMERGE consortium. Science Translational Medicine. 2011; 3(79): 79re179re1. DOI: 10.1126/scitranslmed.3001807
  70. 70Jormanainen V. Large-scale implementation and adoption of the Finnish national Kanta services in 2010–2017: a prospective, longitudinal, indicator-based study. Finn J EHealth EWelfare; 2018. DOI: 10.23996/fjhw.74511
  71. 71Nøhr C, Parv L, Kink P, et al. Nationwide citizen access to their health data: analysing and comparing experiences in Denmark, Estonia and Australia. BMC Health Serv Res. 2017. DOI: 10.1186/s12913-017-2482-y
  72. 72Fihn SD, Francis J, Clancy C, et al. Insights from advanced analytics at the Veterans Health Administration. Health Affairs. 2014; 33(7): 12031211. DOI: 10.1377/hlthaff.2014.0054
  73. 73Stephens ZD, Lee SY, Faghri F, et al. Big data: astronomical or genomical? PLOS Biology. 2015; 13(7): e1002195. DOI: 10.1371/journal.pbio.1002195
  74. 74Huang T, Lan L, Fang X, et al. Promises and challenges of big data computing in health sciences. Big Data Research. 2015; 2(1): 211. DOI: 10.1016/j.bdr.2015.02.002
  75. 75Marx V. The big challenges of big data. Nature. 2013; 498(7453): 255260. DOI: 10.1038/498255a
  76. 76Peters SG, Buntrock JD. Big data and the electronic health record. Journal of Ambulatory Care Management. 2014; 37(3): 206210. DOI: 10.1097/JAC.0000000000000037
  77. 77Cyganek B, Graña M, Krawczyk B, et al. A survey of big data issues in electronic health record analysis. Applied Artificial Intelligence. 2016; 30(6): 497520. DOI: 10.1080/08839514.2016.1193714
  78. 78Allen C, Tsou MH, Aslam A, et al. Applying GIS and machine learning methods to Twitter data for multiscale surveillance of influenza. PLOS ONE. 2016; 11(7): e0157734. DOI: 10.1371/journal.pone.0157734
  79. 79Srinivasan U, Arunasalam B. Leveraging big data analytics to reduce healthcare costs. IT Professional. 2013; 15(6): 2128. DOI: 10.1109/MITP.2013.55
  80. 80Handmaker K, Hart J. 9 steps to effective population health management. Healthcare Financial Management. 2015; 69 (4): 7076.
  81. 81Kreis K, Neubauer S, Klora M, et al. Status and perspectives of claims data analyses in Germany—A systematic review. Health Policy. 2016; 120(2): 213226. DOI: 10.1016/j.healthpol.2016.01.007
  82. 82Douglas HE, Georgiou A, Tariq A, et al. Implementing Information and Technology to Support Community Aged Care Service Integration: Lessons from an Australian Aged Care Provider. Int J Integr Care. 2017; DOI: 10.5334/ijic.2437
  83. 83Grayson S, Doerr M, Yu J-H. Developing pathways for community-led research with big data: a content analysis of stakeholder interviews. Health Res Policy Syst; 2020. DOI: 10.1186/s12961-020-00589-7
  84. 84Johnson M. Data, Analytics and Community-Based Organizations: Transforming Data to Decisions for Community Development. I/S: A Journal of Law and Policy for the Information Society. 2015; 11(1): 4996.
  85. 85Alharthi H. Healthcare predictive analytics: an overview with a focus on Saudi Arabia. J Infect Public Health; 2018. DOI: 10.1016/j.jiph.2018.02.005
  86. 86Institute of Medicine. Best care at lower cost: the path to continuously learning health care in America; 2013. DOI: 10.17226/13444
  87. 87Binder H, Blettner M. Big data in medical science – a biostatistical view. Dtsch Aerzteblatt Online; 2015.DOI: 10.3238/arztebl.2015.0137
  88. 88Liyanage H, de Lusignan S, Liaw S-T, et al. Big data usage patterns in the health care domain: a use case driven approach applied to the assessment of vaccination benefits and risks. IMIA Yearbook. 2014; 9(1): 2735. DOI: 10.15265/IY-2014-0016
  89. 89Swan M. The quantified self: fundamental disruption in big data science and biological discovery. Big Data. 2013; 1(2): 8599. DOI: 10.1089/big.2012.0002
  90. 90Choudhry SA, Li J, Davis D, et al. A public-private partnership develops and externally validates a 30-day hospital readmission risk prediction model. Online J Public Health Inform; 2013. DOI: 10.5210/ojphi.v5i2.4726
  91. 91Flahault A, Bar-Hen A, Paragios N. Public health and epidemiology informatics. IMIA Yearbook. 2016; 1: 240246. DOI: 10.15265/IY-2016-021
  92. 92Chen M, Hao Y, Hwang K, et al. Disease prediction by machine learning over big data from healthcare communities. IEEE Access. 2017; 5: 88698879. DOI: 10.1109/ACCESS.2017.2694446
  93. 93Rumsfeld JS, Joynt KE, Maddox TM. Big data analytics to improve cardiovascular care: promise and challenges. Nature Reviews Cardiology. 2016; 13(6): 350359. DOI: 10.1038/nrcardio.2016.42
  94. 94Sharafoddini A, Dubin JA, Lee J. Patient similarity in prediction models based on health data: a scoping review. JMIR Medical Informatics. 2017; 5(1): e7. DOI: 10.2196/medinform.6730
  95. 95Lee J. Patient-specific predictive modeling using random forests: an observational study for the critically ill. JMIR Medical Informatics. 2017; 5(1): e3. DOI: 10.2196/medinform.6690
  96. 96Ross EG, Shah N, Dalman RL, et al. Use of predictive analytics for the identification of latent vascular disease and future adverse cardiac events. Journal of Vascular Surgery. 2016; 63(6): 28S-29S. DOI: 10.1016/j.jvs.2016.03.209
  97. 97Jvion. Jvion predictive analytics in healthcare survey; 2015. https://chimecentral.org/jvion-releases-findings-latest-predictive-analytics-healthcare-survey/. Accessed: May 2019.
  98. 98Sheets L, Petroski G, Zhuang Y, et al. Combining contrast mining with logistic regression to predict healthcare utilization in a managed care population. Applied Clinical Informatics. 2017; 8(02): 430446. DOI: 10.4338/ACI-2016-05-RA-0078
  99. 99White RW, Tatonetti NP, Shah NH, et al. Web-scale pharmacovigilance: listening to signals from the crowd. Journal of the American Medical Informatics Association. 2013; 20(3): 404408. DOI: 10.1136/amiajnl-2012-001482
  100. 100Batarseh FA, Latif EA. Assessing the quality of service using big data analytics. Big Data Research. 2016; 4: 1324. DOI: 10.1016/j.bdr.2015.10.001
  101. 101Kose I, Gokturk M, Kilic K. An Interactive machine-learning-based electronic fraud and abuse detection system in healthcare insurance. Applied Soft Computing. 2015; 36: 283299. DOI: 10.1016/j.asoc.2015.07.018
  102. 102Gottlieb L, Tobey R, Cantor J, et al. Integrating social and medical data to improve population health: opportunities and barriers. Health Affairs. 2016; 35(11): 21162123. DOI: 10.1377/hlthaff.2016.0723
  103. 103Stadler JG, Donlon K, Siewert JD. et al. Improving the efficiency and ease of healthcare analysis through use of data visualization dashboards. Big Data. 2016; 4(2): 129135. DOI: 10.1089/big.2015.0059
  104. 104Huang BE, Mulyasasmita W, Rajagopal G. The path from big data to precision medicine. Expert Review of Precision Medicine and Drug Development. 2016; 1(2): 129143. DOI: 10.1080/23808993.2016.1157686
  105. 105Amarasingham R, Patzer RE, Huesch M, et al. Implementing electronic health care predictive analytics: considerations and challenges. Health Affairs. 2014; 33(7): 11481154. DOI: 10.1377/hlthaff.2014.0352
  106. 106Buchanan V, Lu Y, McNeese N, et al. The role of teamwork in the analysis of big data: a study of visual analytics and box office prediction. Big Data. 2017; 5(1): 5366. DOI: 10.1089/big.2016.0044
  107. 107Davis K, Patterson D. Ethics of big data. Sebastopol, CA: O’Reilly. 2012.
  108. 108Kuo M, Sahama T, Kushniruk A, et al. Health big data analytics: current perspectives, challenges and potential solutions. International Journal of Big Data Intelligence. 2014; 1(1/2): 114. DOI: 10.1504/IJBDI.2014.063835
  109. 109Zhang H, Chen G, Ooi BC, et al. In-memory big data management and processing: a survey. IEEE Transactions on Knowledge and Data Engineering. 2015; 27(7): 19201948. DOI: 10.1109/TKDE.2015.2427795
  110. 110Press G. Top 10 hot data security and privacy technologies; 2017. https://www.forbes.com/sites/gilpress/2017/10/17/top-10-hot-data-security-and-privacy-technologies/. Accessed.
  111. 111Zhang X, Dou W, Pei J, et al. Proximity-aware local-recoding anonymization with MapReduce for scalable big data privacy preservation in cloud. IEEE Transactions on Computers. 2015; 64(8): 22932307. DOI: 10.1109/TC.2014.2360516
  112. 112Xu L, Jiang C, Wang J, et al. Information security in big data: privacy and data mining. IEEE Access. 2014; 2: 11491176. DOI: 10.1109/ACCESS.2014.2362522
  113. 113Ng K, Ghoting A, Steinhubl SR, et al. PARAMO: A PARAllel predictive MOdeling platform for healthcare analytic research using electronic health records. Journal of Biomedical Informatics. 2014; 48: 160170. DOI: 10.1016/j.jbi.2013.12.012
  114. 114Walsh C, Hripcsak G. The effects of data sources, cohort selection, and outcome definition on a predictive model of risk of thirty-day hospital readmissions. Journal of Biomedical Informatics. 2014; 52: 418426. DOI: 10.1016/j.jbi.2014.08.006
  115. 115Walsh CG, Sharman K, Hripcsak G. Beyond discrimination: a comparison of calibration methods and clinical usefulness of predictive models of readmission risk. Journal of Biomedical Informatics. 2017; 76: 918. DOI: 10.1016/j.jbi.2017.10.008
  116. 116Zhang R, Simon G, Yu F. Advancing Alzheimer’s research: a review of big data promises. International Journal of Medical Informatics. 2017; 106: 4856. DOI: 10.1016/j.ijmedinf.2017.07.002
  117. 117Gigerenzer G, Gaissmaier W, Kurz-Milcke E, et al. Helping doctors and patients make sense of health statistics. Psychological Science in the Public Interest. 2007; 8(2): 5396. DOI: 10.1111/j.1539-6053.2008.00033.x
  118. 118Kohane I. Secondary use of health information: are we asking the right question? JAMA Internal Medicine. 2013; 173(19): 1806. DOI: 10.1001/jamainternmed.2013.8276
  119. 119Grande D, Mitra N, Shah A, et al. Public preferences about secondary uses of electronic health information. JAMA Internal Medicine. 2013; 173(19): 1798. DOI: 10.1001/jamainternmed.2013.9166
  120. 120Weitzman ER, Kaci L, Mandl KD. Sharing medical data for health research: The early personal health record experience. Journal of Medical Internet Research. 2010; 12(2): e14. DOI: 10.2196/jmir.1356
  121. 121Vodafone Institute for Society and Communications. Big data: a European survey on the opportunities and risks of data analytics; 2016. https://www.vodafone-institut.de/wp-content/uploads/2016/01/VodafoneInstitute-Survey-BigData-en.pdf. Accessed: May 2019.
  122. 122Skovgaard LL, Wadmann S, Hoeyer K. A review of attitudes towards the reuse of health data among people in the European Union: The primacy of purpose and the common good. Health Policy. 2019; 123(6): 564571. DOI: 10.1016/j.healthpol.2019.03.012
  123. 123Mehta N, Pandit A. Concurrence of big data analytics and healthcare: a systematic review. International Journal of Medical Informatics. 2018; 114: 5765. DOI: 10.1016/j.ijmedinf.2018.03.013
DOI: https://doi.org/10.5334/ijic.5543 | Journal eISSN: 1568-4156
Language: English
Submitted on: May 19, 2020
Accepted on: Jun 8, 2022
Published on: Jun 16, 2022
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Timo Schulte, Sabine Bohnet-Joschko, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.