References
- Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: A new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14(10):576–590. DOI: 10.1038/s41574-018-0059-4
- Sanada F, Taniyama Y, Muratsu J, et al. Source of chronic inflammation in aging. Frontiers in Cardiovascular Medicine. 2018;5. DOI: 10.3389/fcvm.2018.00012
- Mittelbrunn M, Kroemer G. Hallmarks of T cell aging. Nature Immunology. 2021;22(6):687–698. DOI: 10.1038/s41590-021-00927-z
- Shirakawa K, Sano M. T Cell immunosenescence in aging, obesity, and cardiovascular disease. Cells. 2021;10(9):
2435 . DOI: 10.3390/cells10092435 - Carrasco E, Gómez De Las Heras MM, Gabandé-Rodríguez E, Desdín-Micó G, Aranda JF, Mittelbrunn M. The role of T cells in age-related diseases. Nature Reviews Immunology. 2022;22(2):97–111. DOI: 10.1038/s41577-021-00557-4
- Gupta R, Sharma M, Goyal NK, Bansal P, Lodha S, Sharma KK. Gender differences in 7 years trends in cholesterol lipoproteins and lipids in India: Insights from a hospital database. Indian J Endocrinol Metab. 2016;20(2):211–8. DOI: 10.4103/2230-8210.176362
- Félix-Redondo FJ, Grau M, Fernández-Bergés D. Cholesterol and cardiovascular disease in the elderly. Facts and gaps. Aging Dis. 2013;4(3):154–69.
- Simony SB, Mortensen MB, Langsted A, Afzal S, Kamstrup PR, Nordestgaard BG. Sex differences of lipoprotein(a) levels and associated risk of morbidity and mortality by age: The Copenhagen General Population Study. Atherosclerosis. 2022;355:76–82. DOI: 10.1016/j.atherosclerosis.2022.06.1023
- Larbi A, Fortin C, Dupuis G, Berrougui H, Khalil A, Fulop T. Immunomodulatory role of high-density lipoproteins: impact on immunosenescence. AGE. 2014;36(5). DOI: 10.1007/s11357-014-9712-6
- King RJ, Singh PK, Mehla K. The cholesterol pathway: impact on immunity and cancer. Trends Immunol. 2022;43(1):78–92. DOI: 10.1016/j.it.2021.11.007
- Aguilar-Ballester M, Herrero-Cervera A, Vinue A, Martinez-Hervas S, Gonzalez-Navarro H. Impact of cholesterol metabolism in immune cell function and atherosclerosis. Nutrients. 2020;12(7):
2021 . DOI: 10.3390/nu12072021 - Kaji H. High-density lipoproteins and the immune system. Journal of Lipids. 2013;2013:1–8. DOI: 10.1155/2013/684903
- Samson S, Mundkur L, Kakkar VV. Immune response to lipoproteins in atherosclerosis. Cholesterol. 2012;2012:1–12. DOI: 10.1155/2012/571846
- Hu C, Wu H, Zhu Q, Cao N, Wang H. Cholesterol metabolism in T-cell aging: Accomplices or victims. FASEB J. 2023;37(9):
e23136 . DOI: 10.1096/fj.202300515R - Bietz A, Zhu H, Xue M, Xu C. Cholesterol metabolism in T Cells. Frontiers in Immunology. 2017;8. DOI: 10.3389/fimmu.2017.01664
- Lim SA, Su W, Chapman NM, Chi H. Lipid metabolism in T cell signaling and function. Nature Chemical Biology. 2022;18(5):470–481. DOI: 10.1038/s41589-022-01017-3
- Bazioti V, Halmos B, Westerterp M. T-cell Cholesterol accumulation, aging, and atherosclerosis. Curr Atheroscler Rep. 2023;25(9):527–534. DOI: 10.1007/s11883-023-01125-y
- Garcia C, Andersen CJ, Blesso CN. The role of lipids in the regulation of immune responses. Nutrients. 2023;15(18):
3899 . DOI: 10.3390/nu15183899 - Atehortua L, Davidson WS, Chougnet CA. Interactions between HDL and CD4+ T Cells: A novel understanding of HDL anti-inflammatory properties. Arterioscler Thromb Vasc Biol. 2024;44(6):1191–1201. DOI: 10.1161/ATVBAHA.124.320851
- Yuan J, Cai T, Zheng X, et al. Potentiating CD8+ T cell antitumor activity by inhibiting PCSK9 to promote LDLR-mediated TCR recycling and signaling. Protein & Cell. 2021;12(4):240–260. DOI: 10.1007/s13238-021-00821-2
- Gisterå A, Klement ML, Polyzos KA, et al. Low-Density Lipoprotein-reactive T Cells regulate plasma cholesterol levels and development of atherosclerosis in humanized hypercholesterolemic mice. Circulation. 2018;138(22):2513–2526. DOI: 10.1161/CIRCULATIONAHA.118.034076
- Pathan-Chhatbar S, Drechsler C, Richter K, et al. Direct regulation of the T Cell antigen receptor’s activity by cholesterol. Frontiers in Cell and Developmental Biology. 2021;8. DOI: 10.3389/fcell.2020.615996
- Olzmann JA, Carvalho P. Dynamics and functions of lipid droplets. Nature Reviews Molecular Cell Biology. 2019;20(3):137–155. DOI: 10.1038/s41580-018-0085-z
- Ma X, Bi E, Lu Y, et al. Cholesterol induces CD8+ T Cell exhaustion in the tumor microenvironment. Cell Metabolism. 2019;30(1):143–156.e5. DOI: 10.1016/j.cmet.2019.04.002
- Cui G, Qin X, Wu L, et al. Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation. Journal of Clinical Investigation. 2011;121(2):658–670. DOI: 10.1172/JCI42974
- Hu X, Wang Y, Hao L-Y, et al. Sterol metabolism controls TH17 differentiation by generating endogenous RORγ agonists. Nature Chemical Biology. 2015;11(2):141–147. DOI: 10.1038/nchembio.1714
- Perucha E, Melchiotti R, Bibby JA, et al. The cholesterol biosynthesis pathway regulates IL-10 expression in human Th1 cells. Nature Communications. 2019;10(1). DOI: 10.1038/s41467-019-08332-9
- Ali AJ, Makings J, Ley K. Regulatory T Cell stability and plasticity in atherosclerosis. Cells. 2020;9(12). DOI: 10.3390/cells9122665
- Herold M, Breuer J, Hucke S, et al. Liver X receptor activation promotes differentiation of regulatory T cells. PLOS ONE. 2017;12(9):
e0184985 . DOI: 10.1371/journal.pone.0184985 - Cheng HY, Gaddis DE, Wu R, et al. Loss of ABCG1 influences regulatory T cell differentiation and atherosclerosis. Journal of Clinical Investigation. 2016;126(9):3236–3246. DOI: 10.1172/JCI83136
- Smet M, Van Hoecke L, De Beuckelaer A, et al. Cholesterol-sensing liver X receptors stimulate Th2-driven allergic eosinophilic asthma in mice. Immun Inflamm Dis. 2016;4(3):350–61. DOI: 10.1002/iid3.118
- Dunn SE, Youssef S, Goldstein MJ, et al. Isoprenoids determine Th1/Th2 fate in pathogenic T cells, providing a mechanism of modulation of autoimmunity by atorvastatin. The Journal of Experimental Medicine. 2006;203(2). DOI: 10.1084/jem.20051129
- Surls J, Nazarov-Stoica C, Kehl M, Olsen C, Casares S, Brumeanu TD. Increased membrane cholesterol in lymphocytes diverts T-cells toward an inflammatory response. PLoS One. 2012;7(6):
e38733 . DOI: 10.1371/journal.pone.0038733 - Bazioti V, La Rose AM, Maassen S, et al. T cell cholesterol efflux suppresses apoptosis and senescence and increases atherosclerosis in middle aged mice. Nat Commun. 2022;13(1):
3799 . DOI: 10.1038/s41467-022-31135-4 - Mailer RKW, Gistera A, Polyzos KA, Ketelhuth DFJ, Hansson GK. Hypercholesterolemia Induces Differentiation of Regulatory T Cells in the Liver. Circ Res. May 26 2017;120(11):1740–1753. DOI: 10.1161/CIRCRESAHA.116.310054
- Zhou X, Paulsson G, Stemme S, Hansson GK. Hypercholesterolemia is associated with a T helper (Th) 1/Th2 switch of the autoimmune response in atherosclerotic apo E-knockout mice. J Clin Invest. 1998;101(8):1717–25. DOI: 10.1172/JCI1216
- Gaddis DE, Padgett LE, Wu R, et al. Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nat Commun. 2018;9(1):
1095 . DOI: 10.1038/s41467-018-03493-5 - Lai YC, Woollard KJ, McClelland RL, et al. The association of plasma lipids with white blood cell counts: Results from the Multi-Ethnic Study of Atherosclerosis. Journal of Clinical Lipidology. 2019/09/01;13(5). DOI: 10.1016/j.jacl.2019.07.003
- Tucker B, Sawant S, McDonald H, et al. The association of serum lipid and lipoprotein levels with total and differential leukocyte counts: Results of a cross-sectional and longitudinal analysis of the UK Biobank. Atherosclerosis. 2021;319:1–9. DOI: 10.1016/j.atherosclerosis.2020.12.016
- Groenen AG, Bazioti V, van Zeventer IA, et al. Large HDL particles negatively associate with leukocyte counts independent of cholesterol efflux capacity: A cross sectional study in the population-based LifeLines DEEP cohort. Atherosclerosis. 2022;343:20–27. DOI: 10.1016/j.atherosclerosis.2022.01.008
- Harslof M, Pedersen KM, Nordestgaard BG, Afzal S. Low High-Density Lipoprotein Cholesterol and High White Blood Cell Counts: A Mendelian Randomization Study. Arterioscler Thromb Vasc Biol. 2021;41(2):976–987. DOI: 10.1161/ATVBAHA.120.314983
- Andersen CJ, Vance TM. Gender dictates the relationship between serum lipids and leukocyte counts in the National Health and Nutrition Examination Survey 1999–2004. J Clin Med. 2019;8(3):
365 . DOI: 10.3390/jcm8030365 - Schmitz T, Freuer D, Linseisen J, Meisinger C. Associations between serum cholesterol and immunophenotypical characteristics of circulatory B cells and Tregs. J Lipid Res. 2023;64(7):
100399 . DOI: 10.1016/j.jlr.2023.100399 - Bild DE, Bluemke DA, Burke GL, et al. Multi-ethnic study of atherosclerosis: Objectives and design. Am J Epidemiol. 2002;156(9):871–81. DOI: 10.1093/aje/kwf113
- Sinha A, Sitlani CM, Doyle MF, et al. Association of immune cell subsets with incident heart failure in two population-based cohorts. ESC Heart Fail. 2022;9(6):4177–4188. DOI: 10.1002/ehf2.14140
- Olson NC, Sitlani CM, Doyle MF, et al. Innate and adaptive immune cell subsets as risk factors for coronary heart disease in two population-based cohorts. Atherosclerosis. 2020;300:47–53. DOI: 10.1016/j.atherosclerosis.2020.03.011
- Olson NC, Doyle MF, Sitlani CM, et al. Associations of innate and adaptive immune cell subsets with incident Type 2 Diabetes risk: The MESA Study. J Clin Endocrinol Metab. 2020;105(3):e848–57. DOI: 10.1210/clinem/dgaa036
- Tracy RP, Doyle MF, Olson NC, et al. T-helper type 1 bias in healthy people is associated with cytomegalovirus serology and atherosclerosis: the Multi-Ethnic Study of Atherosclerosis. J Am Heart Assoc. 2013;2(3):
e000117 . DOI: 10.1161/JAHA.113.000117 - Zeb I, Jorgensen NW, Blumenthal RS, et al. Association of inflammatory markers and lipoprotein particle subclasses with progression of coronary artery calcium: The multi-ethnic study of atherosclerosis. Atherosclerosis. 2021;339:27–34. DOI: 10.1016/j.atherosclerosis.2021.11.003
- Huffman KM, Parker DC, Bhapkar M, et al. Calorie restriction improves lipid-related emerging cardiometabolic risk factors in healthy adults without obesity: Distinct influences of BMI and sex from CALERIE a multicentre, phase 2, randomised controlled trial. EClinicalMedicine. 2022;43:
101261 . DOI: 10.1016/j.eclinm.2021.101261 - Davis JR, Fresard L, Knowles DA, et al. An Efficient Multiple-Testing Adjustment for eQTL Studies that Accounts for Linkage Disequilibrium between Variants. Am J Hum Genet. Jan 7 2016;98(1):216–24. DOI: 10.1016/j.ajhg.2015.11.021
- Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science. 1996;271(5248):518–20. DOI: 10.1126/science.271.5248.518
- Kozarsky KF, Donahee MH, Rigotti A, Iqbal SN, Edelman ER, Krieger M. Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels. Nature. 1997;387(6631):414–7. DOI: 10.1038/387414a0
- Feng H, Guo L, Wang D, et al. Deficiency of scavenger receptor BI leads to impaired lymphocyte homeostasis and autoimmune disorders in mice. Arterioscler Thromb Vasc Biol. 2011;31(11):2543–51. DOI: 10.1161/ATVBAHA.111.234716
- Kraus VB, Ma S, Tourani R, et al. Causal analysis identifies small HDL particles and physical activity as key determinants of longevity of older adults. EBioMedicine. 2022;85:
104292 . DOI: 10.1016/j.ebiom.2022.104292 - Conners KM, Shearer JJ, Joo J, et al. The Metabolic Vulnerability Index: A novel marker for mortality prediction in heart failure. JACC Heart Fail. 2024;12(2):290–300. DOI: 10.1016/j.jchf.2023.06.013
- Otvos JD, Shalaurova I, May HT, et al. Multimarkers of metabolic malnutrition and inflammation and their association with mortality risk in cardiac catheterisation patients: a prospective, longitudinal, observational, cohort study. Lancet Healthy Longev. 2023;4(2):e72–e82. DOI: 10.1016/S2666-7568(23)00001-6
- Park KH, Shin DG, Kim JR, Cho KH. Senescence-related truncation and multimerization of apolipoprotein A-I in high-density lipoprotein with an elevated level of advanced glycated end products and cholesteryl ester transfer activity. J Gerontol A Biol Sci Med Sci. 2010;65(6):600–10. DOI: 10.1093/gerona/glq034
- Park KH, Kim JY, Choi I, Kim JR, Won KC, Cho KH. Fructated apolipoprotein A-I exacerbates cellular senescence in human umbilical vein endothelial cells accompanied by impaired insulin secretion activity and embryo toxicity. Biochem Cell Biol. 2016;94(4):337–45. DOI: 10.1139/bcb-2015-0165
- Park KH, Cho KH. High-density lipoprotein (HDL) from elderly and reconstituted HDL containing glycated apolipoproteins A-I share proatherosclerotic and prosenescent properties with increased cholesterol influx. J Gerontol A Biol Sci Med Sci. 2011;66(5):511–20. DOI: 10.1093/gerona/glr016
- Xiang Q, Tian F, Xu J, Du X, Zhang S, Liu L. New insight into dyslipidemia-induced cellular senescence in atherosclerosis. Biol Rev Camb Philos Soc. 2022;97(5):1844–1867. DOI: 10.1111/brv.12866
- Newton AH, Benedict SH. Low density lipoprotein promotes human naive T cell differentiation to Th1 cells. Hum Immunol. 2014;75(7):621–8. DOI: 10.1016/j.humimm.2014.04.017
- Hermansson A, Ketelhuth DF, Strodthoff D, et al. Inhibition of T cell response to native low-density lipoprotein reduces atherosclerosis. J Exp Med. 2010;207(5):1081–93. DOI: 10.1084/jem.20092243
- Stemme S, Faber B, Holm J, Wiklund O, Witztum JL, Hansson GK. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc Natl Acad Sci U S A. 1995;92(9):3893–7. DOI: 10.1073/pnas.92.9.3893
- Kimura T, Kobiyama K, Winkels H, et al. Regulatory CD4(+) T Cells recognize major histocompatibility complex class II molecule-restricted peptide epitopes of apolipoprotein B. Circulation. 2018;138(11):1130–1143. DOI: 10.1161/CIRCULATIONAHA.117.031420
- Rajman I, Eacho PI, Chowienczyk PJ, Ritter JM. LDL particle size: an important drug target? Br J Clin Pharmacol. 1999;48(2):125–33. DOI: 10.1046/j.1365-2125.1999.00991.x
- Freigang S, Horkko S, Miller E, Witztum JL, Palinski W. Immunization of LDL receptor-deficient mice with homologous malondialdehyde-modified and native LDL reduces progression of atherosclerosis by mechanisms other than induction of high titers of antibodies to oxidative neoepitopes. Arterioscler Thromb Vasc Biol. 1998;18(12):1972–82. DOI: 10.1161/01.ATV.18.12.1972
- DeConne TM, Buckley DJ, Trott DW, Martens CR. The role of T cells in vascular aging, hypertension, and atherosclerosis. Am J Physiol Heart Circ Physiol. 2024;327(6):H1345–H1360. DOI: 10.1152/ajpheart.00570.2024
- Hinkley H, Counts DA, VonCanon E, Lacy M. T Cells in atherosclerosis: Key players in the pathogenesis of vascular disease. Cells. 2023;12(17). DOI: 10.3390/cells12172152
- Saigusa R, Winkels H, Ley K. T cell subsets and functions in atherosclerosis. Nat Rev Cardiol. 2020;17(7):387–401. DOI: 10.1038/s41569-020-0352-5
- Olson NC, Doyle MF, Jenny NS, et al. Decreased naive and increased memory CD4(+) T cells are associated with subclinical atherosclerosis: the multi-ethnic study of atherosclerosis. PLoS One. 2013;8(8):
e71498 . DOI: 10.1371/journal.pone.0071498 - Patel RD, Buzkova P, Huber S, et al. Associations of immune cell subsets with coronary artery calcium incidence and progression in the multi-ethnic study of atherosclerosis. J Am Heart Assoc. 2025;14(19):
e042502 . DOI: 10.1161/JAHA.125.042502 - Chapman MJ, Ginsberg HN, Amarenco P, et al. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur Heart J. 2011;32(11):1345–61. DOI: 10.1093/eurheartj/ehr112
- Bednarska-Makaruk M, Ługowska A. Rare monogenic disorders of cholesterol metabolism. Cholesterol. 2022:553–607. DOI: 10.1016/B978-0-323-85857-1.00024-9
- Sampedro MC, Motran C, Gruppi A, Kivatinitz SC. VLDL modulates the cytokine secretion profile to a proinflammatory pattern. Biochem Biophys Res Commun. 2001;285(2):393–9. DOI: 10.1006/bbrc.2001.5202
- Rhoads JP, Major AS. How oxidized low-density lipoprotein activates inflammatory responses. Crit Rev Immunol. 2018;38(4):333–342. DOI: 10.1615/CritRevImmunol.2018026483
- Ju SH, Lim JY, Song M, et al. Distinct effects of rosuvastatin and rosuvastatin/ezetimibe on senescence markers of CD8+ T cells in patients with type 2 diabetes mellitus: a randomized controlled trial. Front Endocrinol (Lausanne). 2024;15:
1336357 . DOI: 10.3389/fendo.2024.1336357 - Srichatrapimuk S, Wongsa A, Sungkanuparph S, Kiertiburanakul S, Tassaneetrithep B, Phuphuakrat A. Effects of pitavastatin on atherosclerotic-associated inflammatory biomarkers in people living with HIV with dyslipidemia and receiving ritonavir-boosted atazanavir: a randomized, double-blind, crossover study. AIDS Res Ther. 2023;20(1):
13 . DOI: 10.1186/s12981-023-00506-2 - Ma X, Liu S, Li T, Yuan H. Intensive statin treatment ameliorate the Th17/Treg functional imbalance in patients with non-ST elevation acute coronary syndrome underwent percutaneous coronary intervention. Clin Cardiol. 2020;43(4):379–385. DOI: 10.1002/clc.23326
- Yang G, Qiu Y. Effects of amlodipine combined with atorvastatin on Th17/Treg imbalance and vascular microcirculation in hypertensive patients with atherosclerosis: A double-blind, single-center randomized controlled trial. Medicine (Baltimore). 2023;102(6):
e32384 . DOI: 10.1097/MD.0000000000032384
