Have a personal or library account? Click to login
Shared Genetic Links Between Nonalcoholic Fatty Liver Disease and Coronary Artery Disease Cover

Shared Genetic Links Between Nonalcoholic Fatty Liver Disease and Coronary Artery Disease

Open Access
|Nov 2024

References

  1. Younossi ZM, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology, 2016; 64(1):7384. DOI: 10.1002/hep.28431
  2. Labenz C, et al. Impact of NAFLD on the Incidence of Cardiovascular Diseases in a Primary Care Population in Germany. Digestive Diseases and Sciences. 2020; 65(7):21122119. DOI: 10.1007/s10620-019-05986-9
  3. Lozano R, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012; 380(9859):20952128. DOI: 10.1016/S0140-6736(12)61728-0
  4. Ong JP, Pitts A, Younossi ZM. Increased overall mortality and liver-related mortality in non-alcoholic fatty liver disease. Journal of Hepatology. 2008; 49(4):608612. DOI: 10.1016/j.jhep.2008.06.018
  5. Ampuero J, Gallego-Durán R, Romero-Gómez M. Association of NAFLD with subclinical atherosclerosis and coronary-artery disease: Meta-analysis. Revista Española de Enfermedades Digestivas. 2015; 107(1):1016.
  6. Li XL, et al. Gene polymorphisms associated with non-alcoholic fatty liver disease and coronary artery disease: A concise review. Lipids in Health and Disease. 2016; 15:53. DOI: 10.1186/s12944-016-0221-8
  7. Nseir W, Shalata A, Marmor A, Assy N. Mechanisms linking nonalcoholic fatty liver disease with coronary artery disease. Digestive Diseases and Sciences. 2011; 56(12):34393449. DOI: 10.1007/s10620-011-1767-y
  8. Alberti KG, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009; 120(16):16401645. DOI: 10.1161/CIRCULATIONAHA.109.192644
  9. Than NN, Newsome PN. A concise review of non-alcoholic fatty liver disease. Atherosclerosis. 2015; 239(1):192202. DOI: 10.1016/j.atherosclerosis.2015.01.001
  10. Farrell GC, Wong VW, Chitturi S. NAFLD in Asia—as common and important as in the West. Nature Reviews Gastroenterology and Hepatology. 2013; 10(5):307318. DOI: 10.1038/nrgastro.2013.34
  11. Wan J, et al. PPARgamma gene C161T substitution alters lipid profile in Chinese patients with coronary artery disease and type 2 diabetes mellitus. Cardiovascular Diabetology. 2010; 9:13. DOI: 10.1186/1475-2840-9-13
  12. Lu H, et al. Polymorphism of human leptin receptor gene is associated with type 2 diabetic patients complicated with non-alcoholic fatty liver disease in China. Journal of Gastroenterology and Hepatology. 2009; 24(2):228232. DOI: 10.1111/j.1440-1746.2008.05544.x
  13. Aijälä M, et al. Leptin receptor Arg109 homozygotes display decreased total mortality as well as lower incidence of cardiovascular disease and related death. Gene. 2014; 534(1):8892. DOI: 10.1016/j.gene.2013.10.003
  14. Li MR, et al. Apolipoprotein C3 (–455T>C) polymorphism confers susceptibility to nonalcoholic fatty liver disease in the Southern Han Chinese population. World Journal of Gastroenterology. 2014; 20(38):1401014017. DOI: 10.3748/wjg.v20.i38.14010
  15. Lin B, et al. Association between apolipoprotein C3 Sst I, T-455C, C-482T and C1100T polymorphisms and risk of coronary heart disease. BMJ Open. 2014; 4(1):e004156. DOI: 10.1136/bmjopen-2013-004156
  16. Brouwers M, Simons N, Stehouwer CDA, Isaacs A. Non-alcoholic fatty liver disease and cardiovascular disease: Assessing the evidence for causality. Diabetologia. 2020; 63(2):253260. DOI: 10.1007/s00125-019-05024-3
  17. Ren Z, et al. Relationship between NAFLD and coronary artery disease: A Mendelian randomization study. Hepatology. 2023; 77(1):230238. DOI: 10.1002/hep.32534
  18. Au Yeung SL, et al. Evaluating the role of non-alcoholic fatty liver disease in cardiovascular diseases and type 2 diabetes: A Mendelian randomization study in Europeans and East Asians. International Journal of Epidemiology. 2023; 52(3):921931. DOI: 10.1093/ije/dyac212
  19. van der Harst P, Verweij N. Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circulation Research. 2018; 122(3):433443. DOI: 10.1161/CIRCRESAHA.117.312086
  20. Bulik-Sullivan B, et al. An atlas of genetic correlations across human diseases and traits. Nature Genetics. 2015; 47(11):12361241. DOI: 10.1038/ng.3406
  21. Auton A, et al. A global reference for human genetic variation. Nature. 2015; 526(7571):6874. DOI: 10.1038/nature15393
  22. Ray D, Chatterjee N. A powerful method for pleiotropic analysis under composite null hypothesis identifies novel shared loci between type 2 diabetes and prostate cancer. PLoS Genetics. 2020; 16(12):e1009218. DOI: 10.1371/journal.pgen.1009218
  23. de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: Generalized gene-set analysis of GWAS data. PLoS Computational Biology. 2015; 11(4):e1004219. DOI: 10.1371/journal.pcbi.1004219
  24. Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nature Communications. 2017; 8(1):1826. DOI: 10.1038/s41467-017-01261-5
  25. Subramanian A, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America. 2005; 102(43):1554515550. DOI: 10.1073/pnas.0506580102
  26. Purcell S, et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics. 2007; 81(3):559575. DOI: 10.1086/519795
  27. Burgess S, Thompson SG. Avoiding bias from weak instruments in Mendelian randomization studies. International Journal of Epidemiology. 2011; 40(3):755764. DOI: 10.1093/ije/dyr036
  28. Thompson SG, Sharp SJ. Explaining heterogeneity in meta-analysis: A comparison of methods. Statistics in Medicine. 1999; 18(20):26932708. DOI: 10.1002/(SICI)1097-0258(19991030)18:20<;2693::AID-SIM235>3.0.CO;2-V
  29. Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method. European Journal of Epidemiology. 2017; 32(5):377389. DOI: 10.1007/s10654-017-0255-x
  30. Yavorska OO, Burgess S. Mendelian Randomization: An R package for performing Mendelian randomization analyses using summarized data. International Journal of Epidemiology. 2017; 46(6):17341739. DOI: 10.1093/ije/dyx034
  31. Brouwers M, et al. Relationship between nonalcoholic fatty liver disease susceptibility genes and coronary artery disease. Hepatology Communications. 2019; 3(4):587596. DOI: 10.1002/hep4.1319
  32. Ghodsian N, et al. Electronic health record-based genome-wide meta-analysis provides insights on the genetic architecture of non-alcoholic fatty liver disease. Cell Reports Medicine. 2021; 2(11):100437. DOI: 10.1016/j.xcrm.2021.100437
  33. Selvarajan I, et al. Integrative analysis of liver-specific non-coding regulatory SNPs associated with the risk of coronary artery disease. American Journal of Human Genetics. 2021; 108(3):411430. DOI: 10.1016/j.ajhg.2021.02.006
  34. Palmer ND, et al. Allele-specific variation at APOE increases nonalcoholic fatty liver disease and obesity but decreases risk of Alzheimer’s disease and myocardial infarction. Human Molecular Genetics. 2021; 30(15):14431456. DOI: 10.1093/hmg/ddab096
  35. Feng Q, et al. Replication and fine-mapping of genetic predictors of lipid traits in African-Americans. Journal of Human Genetics. 2017; 62(10):895901. DOI: 10.1038/jhg.2017.55
  36. Torres GG, et al. Long-lived individuals show a lower burden of variants predisposing to age-related diseases and a higher polygenic longevity score. International Journal of Molecular Sciences. 2022; 23(18). DOI: 10.3390/ijms231810949
  37. Liu Z, et al. Dissecting causal relationships between nonalcoholic fatty liver disease proxied by chronically elevated alanine transaminase levels and 34 extrahepatic diseases. Metabolism. 2022; 135:155270. DOI: 10.1016/j.metabol.2022.155270
  38. Peng H, et al. Nonalcoholic fatty liver disease and cardiovascular diseases: A Mendelian randomization study. Metabolism. 2022; 133:155220. DOI: 10.1016/j.metabol.2022.155220
DOI: https://doi.org/10.5334/gh.1374 | Journal eISSN: 2211-8179
Language: English
Submitted on: Jun 13, 2024
|
Accepted on: Nov 13, 2024
|
Published on: Nov 26, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Hua Di, Shouhao Wang, Chengan Xu, Qiaoqiao Yin, Keyang Xu, Wei Zheng, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.