References
- Younossi ZM, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology, 2016; 64(1):73–84. DOI: 10.1002/hep.28431
- Labenz C, et al. Impact of NAFLD on the Incidence of Cardiovascular Diseases in a Primary Care Population in Germany. Digestive Diseases and Sciences. 2020; 65(7):2112–2119. DOI: 10.1007/s10620-019-05986-9
- Lozano R, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012; 380(9859):2095–2128. DOI: 10.1016/S0140-6736(12)61728-0
- Ong JP, Pitts A, Younossi ZM. Increased overall mortality and liver-related mortality in non-alcoholic fatty liver disease. Journal of Hepatology. 2008; 49(4):608–612. DOI: 10.1016/j.jhep.2008.06.018
- Ampuero J, Gallego-Durán R, Romero-Gómez M. Association of NAFLD with subclinical atherosclerosis and coronary-artery disease: Meta-analysis. Revista Española de Enfermedades Digestivas. 2015; 107(1):10–16.
- Li XL, et al. Gene polymorphisms associated with non-alcoholic fatty liver disease and coronary artery disease: A concise review. Lipids in Health and Disease. 2016; 15:
53 . DOI: 10.1186/s12944-016-0221-8 - Nseir W, Shalata A, Marmor A, Assy N. Mechanisms linking nonalcoholic fatty liver disease with coronary artery disease. Digestive Diseases and Sciences. 2011; 56(12):3439–3449. DOI: 10.1007/s10620-011-1767-y
- Alberti KG, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009; 120(16):1640–1645. DOI: 10.1161/CIRCULATIONAHA.109.192644
- Than NN, Newsome PN. A concise review of non-alcoholic fatty liver disease. Atherosclerosis. 2015; 239(1):192–202. DOI: 10.1016/j.atherosclerosis.2015.01.001
- Farrell GC, Wong VW, Chitturi S. NAFLD in Asia—as common and important as in the West. Nature Reviews Gastroenterology and Hepatology. 2013; 10(5):307–318. DOI: 10.1038/nrgastro.2013.34
- Wan J, et al. PPARgamma gene C161T substitution alters lipid profile in Chinese patients with coronary artery disease and type 2 diabetes mellitus. Cardiovascular Diabetology. 2010; 9:
13 . DOI: 10.1186/1475-2840-9-13 - Lu H, et al. Polymorphism of human leptin receptor gene is associated with type 2 diabetic patients complicated with non-alcoholic fatty liver disease in China. Journal of Gastroenterology and Hepatology. 2009; 24(2):228–232. DOI: 10.1111/j.1440-1746.2008.05544.x
- Aijälä M, et al. Leptin receptor Arg109 homozygotes display decreased total mortality as well as lower incidence of cardiovascular disease and related death. Gene. 2014; 534(1):88–92. DOI: 10.1016/j.gene.2013.10.003
- Li MR, et al. Apolipoprotein C3 (–455T>C) polymorphism confers susceptibility to nonalcoholic fatty liver disease in the Southern Han Chinese population. World Journal of Gastroenterology. 2014; 20(38):14010–14017. DOI: 10.3748/wjg.v20.i38.14010
- Lin B, et al. Association between apolipoprotein C3 Sst I, T-455C, C-482T and C1100T polymorphisms and risk of coronary heart disease. BMJ Open. 2014; 4(1):
e004156 . DOI: 10.1136/bmjopen-2013-004156 - Brouwers M, Simons N, Stehouwer CDA, Isaacs A. Non-alcoholic fatty liver disease and cardiovascular disease: Assessing the evidence for causality. Diabetologia. 2020; 63(2):253–260. DOI: 10.1007/s00125-019-05024-3
- Ren Z, et al. Relationship between NAFLD and coronary artery disease: A Mendelian randomization study. Hepatology. 2023; 77(1):230–238. DOI: 10.1002/hep.32534
- Au Yeung SL, et al. Evaluating the role of non-alcoholic fatty liver disease in cardiovascular diseases and type 2 diabetes: A Mendelian randomization study in Europeans and East Asians. International Journal of Epidemiology. 2023; 52(3):921–931. DOI: 10.1093/ije/dyac212
- van der Harst P, Verweij N. Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circulation Research. 2018; 122(3):433–443. DOI: 10.1161/CIRCRESAHA.117.312086
- Bulik-Sullivan B, et al. An atlas of genetic correlations across human diseases and traits. Nature Genetics. 2015; 47(11):1236–1241. DOI: 10.1038/ng.3406
- Auton A, et al. A global reference for human genetic variation. Nature. 2015; 526(7571):68–74. DOI: 10.1038/nature15393
- Ray D, Chatterjee N. A powerful method for pleiotropic analysis under composite null hypothesis identifies novel shared loci between type 2 diabetes and prostate cancer. PLoS Genetics. 2020; 16(12):
e1009218 . DOI: 10.1371/journal.pgen.1009218 - de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: Generalized gene-set analysis of GWAS data. PLoS Computational Biology. 2015; 11(4):
e1004219 . DOI: 10.1371/journal.pcbi.1004219 - Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nature Communications. 2017; 8(1):
1826 . DOI: 10.1038/s41467-017-01261-5 - Subramanian A, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America. 2005; 102(43):15545–15550. DOI: 10.1073/pnas.0506580102
- Purcell S, et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics. 2007; 81(3):559–575. DOI: 10.1086/519795
- Burgess S, Thompson SG. Avoiding bias from weak instruments in Mendelian randomization studies. International Journal of Epidemiology. 2011; 40(3):755–764. DOI: 10.1093/ije/dyr036
- Thompson SG, Sharp SJ. Explaining heterogeneity in meta-analysis: A comparison of methods. Statistics in Medicine. 1999; 18(20):2693–2708. DOI: 10.1002/(SICI)1097-0258(19991030)18:20<;2693::AID-SIM235>3.0.CO;2-V
- Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method. European Journal of Epidemiology. 2017; 32(5):377–389. DOI: 10.1007/s10654-017-0255-x
- Yavorska OO, Burgess S. Mendelian Randomization: An R package for performing Mendelian randomization analyses using summarized data. International Journal of Epidemiology. 2017; 46(6):1734–1739. DOI: 10.1093/ije/dyx034
- Brouwers M, et al. Relationship between nonalcoholic fatty liver disease susceptibility genes and coronary artery disease. Hepatology Communications. 2019; 3(4):587–596. DOI: 10.1002/hep4.1319
- Ghodsian N, et al. Electronic health record-based genome-wide meta-analysis provides insights on the genetic architecture of non-alcoholic fatty liver disease. Cell Reports Medicine. 2021; 2(11):
100437 . DOI: 10.1016/j.xcrm.2021.100437 - Selvarajan I, et al. Integrative analysis of liver-specific non-coding regulatory SNPs associated with the risk of coronary artery disease. American Journal of Human Genetics. 2021; 108(3):411–430. DOI: 10.1016/j.ajhg.2021.02.006
- Palmer ND, et al. Allele-specific variation at APOE increases nonalcoholic fatty liver disease and obesity but decreases risk of Alzheimer’s disease and myocardial infarction. Human Molecular Genetics. 2021; 30(15):1443–1456. DOI: 10.1093/hmg/ddab096
- Feng Q, et al. Replication and fine-mapping of genetic predictors of lipid traits in African-Americans. Journal of Human Genetics. 2017; 62(10):895–901. DOI: 10.1038/jhg.2017.55
- Torres GG, et al. Long-lived individuals show a lower burden of variants predisposing to age-related diseases and a higher polygenic longevity score. International Journal of Molecular Sciences. 2022; 23(18). DOI: 10.3390/ijms231810949
- Liu Z, et al. Dissecting causal relationships between nonalcoholic fatty liver disease proxied by chronically elevated alanine transaminase levels and 34 extrahepatic diseases. Metabolism. 2022; 135:
155270 . DOI: 10.1016/j.metabol.2022.155270 - Peng H, et al. Nonalcoholic fatty liver disease and cardiovascular diseases: A Mendelian randomization study. Metabolism. 2022; 133:
155220 . DOI: 10.1016/j.metabol.2022.155220
