Have a personal or library account? Click to login
DENND5B Gene Expression as a Trigger for the Development of Diabetes Mellitus–Peripheral Artery Disease: Insights from a Univariate and Multivariate Mendelian Randomization Study Cover

DENND5B Gene Expression as a Trigger for the Development of Diabetes Mellitus–Peripheral Artery Disease: Insights from a Univariate and Multivariate Mendelian Randomization Study

Open Access
|Dec 2024

References

  1. Hayek SS, MacNamara J, Tahhan AS, Awad M, Yadalam A, Ko Y-A, et al. Circulating progenitor cells identify peripheral arterial disease in patients with coronary artery disease. Circulation Research. 2016; 119(4):564571. DOI: 10.1161/CIRCRESAHA.116.308802
  2. Fowkes FGR, Rudan D, Rudan I, Aboyans V, Denenberg JO, McDermott MM, et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: A systematic review and analysis. Lancet. 2013; 382(9901):13291340. DOI: 10.1016/S0140-6736(13)61249-0
  3. Ouriel K. Peripheral arterial disease. Lancet. 2001; 358(9289):12571264. DOI: 10.1016/S0140-6736(01)06351-6
  4. Brostow DP, Hirsch AT, Collins TC, Kurzer MS. The role of nutrition and body composition in peripheral arterial disease. Nature Reviews Cardiology. 2012; 9(11):634643. DOI: 10.1038/nrcardio.2012.117
  5. Bauersachs, R, Zeymer U, Briere J-B, Marre C, Bowrin K, Huelsebeck M. Burden of coronary artery disease and peripheral artery disease: A literature review. Cardiovascular Therapeutics. 2019; 2019. DOI: 10.1155/2019/8295054
  6. Jude EB, Eleftheriadou I, Tentolouris N. Peripheral arterial disease in diabetes: A review. Diabetic Medicine. 2010; 27(1):414. DOI: 10.1111/j.1464-5491.2009.02866.x
  7. Yang S-L, Zhu L-Y, Han R, Sun L-L, Li J-X, Dou J-T. Pathophysiology of peripheral arterial disease in diabetes mellitus. Journal of Diabetes. 2017; 9(2):133140. DOI: 10.1111/1753-0407.12474
  8. Dokun AO, Chen L, Lanjewar SS, Lye RJ, Annex BH. Glycaemic control improves perfusion recovery and Vegfr2 protein expression in diabetic mice following experimental pad. Cardiovascular Research. 2014; 101(3):364372. DOI: 10.1093/cvr/cvt342
  9. Burgess S, Foley CN, Zuber V. Inferring causal relationships between risk factors and outcomes from genome-wide association study data. Annual Review of Genomics and Human Genetics. 2018; 19:303327. DOI: 10.1146/annurev-genom-083117-021731
  10. Pingault J-B, O’Reilly PF, Schoeler T, Ploubidis GB, Rijsdijk F, Dudbridge F. Using genetic data to strengthen causal inference in observational research. Nature Reviews Genetics. 2018; 19(9):566580. DOI: 10.1038/s41576-018-0020-3
  11. Hoek AG, van Oort S, Elders PJM, Beulens JWJ. Causal association of cardiovascular risk factors and lifestyle behaviors with peripheral artery disease: A Mendelian randomization approach. Journal of the American Heart Association. 2022; 11(16). DOI: 10.1161/JAHA.122.025644
  12. Xiu X, Zhang H, Xue A, Cooper DN, Yan L, Yang Y, et al. Genetic evidence for a causal relationship between type 2 diabetes and peripheral artery disease in both Europeans and East Asians. BMC Medicine. 2022; 20(1). DOI: 10.1186/s12916-022-02476-0
  13. Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration of summary data from Gwas and Eqtl studies predicts complex trait gene targets. Nature Genetics. 2016; 48(5):481487. DOI: 10.1038/ng.3538
  14. Giambartolomei, C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genetics. 2014; 10(5). DOI: 10.1371/journal.pgen.1004383
  15. Vosa U, Claringbould A, Westra H-J, Bonder MJ, Deelen P, Zeng B, et al. Large-scale cis- and trans-Eqtl analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nature Genetics. 2021; 53(9):13001310. DOI: 10.1038/s41588-021-00913-z
  16. Xu S, Li X, Zhang S, Qi C, Zhang Z, Ma R, et al. Oxidative stress gene expression, DNA methylation, and gut microbiota interaction trigger Crohn’s disease: A multi-omics Mendelian randomization study. BMC Medicine. 2023; 21(1). DOI: 10.1186/s12916-023-02878-8
  17. Tsepilov YA, Freidin MB, Shadrina AS, Sharapov SZ, Elgaeva EE, van Zundert J, et al. Analysis of genetically independent phenotypes identifies shared genetic factors associated with chronic musculoskeletal pain conditions. Communications Biology. 2020; 3(1). DOI: 10.1038/s42003-020-1051-9
  18. Bowden J, Smith GD, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genetic Epidemiology. 2016; 40(4):304314. DOI: 10.1002/gepi.21965
  19. Shim H, Chasman DI, Smith JD, Mora S, Ridker PM, Nickerson DA, et al. A multivariate genome-wide association analysis of 10 Ldl subfractions, and their response to statin treatment, in 1868 Caucasians. PLoS One. 2015; 10(4). DOI: 10.1371/journal.pone.0120758
  20. Hemani G, Zhengn J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-base platform supports systematic causal inference across the human phenome. Elife. 2018; 7. DOI: 10.7554/eLife.34408
  21. Wittemans LBL, Lotta LA, Oliver-Williams C, Stewart ID, Surendran P, Karthikeyan S, et al. Assessing the causal association of glycine with risk of cardio-metabolic diseases. Nature Communications. 2019; 10. DOI: 10.1038/s41467-019-08936-1
  22. Chen J, Xu F, Ruan X, Sun J, Zhang Y, Zhang H, et al. Therapeutic targets for inflammatory bowel disease: Proteome-wide Mendelian randomization and colocalization analyses. Ebiomedicine. 2023; 89. DOI: 10.1016/j.ebiom.2023.104494
  23. Astle WJ, Elding H, Jiang T, Allen D, Ruklisa D, Mann AL, et al. The allelic landscape of human blood cell trait variation and links to common complex disease. Cell. 2016; 167(5):14151429. DOI: 10.1016/j.cell.2016.10.042
  24. Patti G, Cavallari I, Andreotti F, Calabro P, Cirillo P, Denas G, et al. Prevention of atherothrombotic events in patients with diabetes mellitus: From antithrombotic therapies to new-generation glucose-lowering drugs. Nature Reviews Cardiology. 2019; 16(2):113130. DOI: 10.1038/s41569-018-0080-2
  25. Barnes JA, Eid MA, Creager MA, Goodney PP. Epidemiology and risk of amputation in patients with diabetes mellitus and peripheral artery disease. Arteriosclerosis Thrombosis and Vascular Biology. 2020; 40(8):18081817. DOI: 10.1161/ATVBAHA.120.314595
  26. Yoshimura S-i, Gerondopoulos A, Linford A, Rigden DJ, Barr FA. Family-wide characterization of the DENN domain Rab GDP-GTP exchange factors. Journal of Cell Biology. 2010; 191(2):367381. DOI: 10.1083/jcb.201008051
  27. Mobilia M, Whitus C, Karakashian A, Lu HS, Daugherty A, Gordon SM. Dennd5b-deficient mice are resistant to Pcsk9-induced hypercholesterolemia and diet-induced hepatic steatosis. Journal of Lipid Research. 2022; 63(12). DOI: 10.1016/j.jlr.2022.100296
  28. Gordon SM, Neufeld EB, Yang Z, Pryor M, Freeman LA, Fan X, et al. Dennd5b regulates intestinal triglyceride absorption and body mass. Scientific Reports. 2019; 9. DOI: 10.1038/s41598-019-40296-0
  29. Ku EJ, Cho K-C, Lim C, Kang JW, Oh JW, Choi YR, et al. Discovery of plasma biomarkers for predicting the severity of coronary artery atherosclerosis by quantitative proteomics. BMJ Open Diabetes Research & Care. 2020; 8(1). DOI: 10.1136/bmjdrc-2019-001152
DOI: https://doi.org/10.5334/gh.1373 | Journal eISSN: 2211-8179
Language: English
Submitted on: Apr 13, 2024
|
Accepted on: Nov 13, 2024
|
Published on: Dec 5, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Qiaoqiao Li, Fuli Cao, Xueping Gao, Yuan Xu, Bo Li, Tianyang Hu, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.