Have a personal or library account? Click to login
Abstracts from the World Congress of Cardiology/Oriental Congress of Cardiology 2024 Cover

Abstracts from the World Congress of Cardiology/Oriental Congress of Cardiology 2024

Open Access
|Nov 2024

Figures & Tables

Table 1

Death rates attributable to atrial fibrillation from 2000 to 2020 in Chile.

YEAR0002040608101214161820
Total*2.02.73.44.14.65.56.26.05.54.85.0
Gender
Male**1.82.32.73.74.04.65.14.84.64.34.3
Female***2.13.14.14.65.46.37.27.16.55.45.6
Age (yrs)
40–59*0.30.50.50.50.60.50.60.50.50.40.5
60–79**9.411.113.8161515.415.813.512.210.19.7
≥80+++60.690.5118.8148.7150194172.3166.6145.8123.8139

[i] Note: 95% CI(X̅): *4.5(3.7–5.3), **3.8(3.2–4.5), ***5.2(4.3–6.2), +0.5(0.4–0.5), ++12.9(11.4–14.4), +++137.3(111.9–162.6).

gh-19-1-1362-g1.png
Figure 1

Kaplan-Meier curves for all-cause mortality in the CCTA and ICA groups.

gh-19-1-1362-g2.jpg
Figure 1

Speckle tracking echocardiogram measuring global longitudinal strain (a, b, c, e) and post systolic shortening (d).

Table 1

Diagnostic accuracy for GLS for predicting significant CAD.

VARIABLESSENSITIVITY (%)SPECIFICITY (%)PLRNLRPPV (%)NPV (%)CUT-OFFAUC (95% CONFIDENCE INTERVAL)P VALUE
GLS 17 segment73.761.11.90.480.052.4–16.850.69(0.53, 0.85)0.02*

[i] GLS- Global longitudinal strain PLR-positive likelihood ratio NLR-negative likelihood ratio PPV- positive predictive value NPV- negative predictive value AUC- Area under curve.

gh-19-1-1362-g3.png
Figure 1

A. ROC curve: Larger Model Algorithms, B. PR curve: Larger Model Algorithms, C. ROC curve: Simpler Model Algorithms, D. PR curve: Simpler Model Algorithms.

Table 1

Cotinine levels, PM 2.5 and PM 10 levels following intervention.

MEDIAN DIFF FROM BASELINE TO POST 1PDIFF FROM BASELINE TO POST 2P
Cotinine among spouse Intervention(158)  66.79(–12.4, 100)  75(–19.96, 100)
Control(120)  66.00(–30.69, 98.68)0.31  66.66(–10.52, 98.18)0.54
Cotinine among children Intervention(35)  41.6(–184.9, 92.43)0.23  100(16.6, 100)0.32
Control(13)  63.49(20.34, 94.66)  81(65, 100)
PM2.5 lntervention(n = 311)  47.21(–14.7, 70).000  68.5(32.08, 85.89).000
Control(n = 319)–21.14(–87.15, –17.7)–41.62(–211.42, –41.62)
PM 10 lntervention(n = 310)  42.56(–20, 66.4).000  67.79(20.16, 85.05).000
Control(n = 297)–10.4(–79.87, 19.93)–13.7(162.94, 49.98)
gh-19-1-1362-g4.png
Figure 1

Age standardized incidence of myocarditis admissions over time.

gh-19-1-1362-g5.png
Figure 2

Frequency of myocarditis according to possible classifications (patient with identifiable class n = 2,083).

gh-19-1-1362-g6.png
Figure 1

The ROC-curves of copeptin and catestatin levels associated with HFpEF: (a) the levels of copeptin associated with HFpEF; (b) the levels of catestatin associated with HFpEF.

gh-19-1-1362-g7.png
Figure 2

The levels of biomarkers depending on NYHA functional classes: (a) copeptin (p = 0.191); (b) catestatin (p < 0.001).

gh-19-1-1362-g8.png
Figure 3

The ROC-curves of catestatin levels associated with adverse outcomes during 12 month follow-up period.

Table 1

Elemental analyses of Daniellia oliveri methanol leaf extract using Atomic Absorption Spectroscopy.

MACRO ELEMENTSCONCENTRATION (ppm)TRACE ELEMENTSCONCENTRATION (ppm)
  Calcium  2.891 ± 0.12Zinc1.311 ± 0.02
  Sodium  2.344 ± 0.03Copper0.057 ± 0.01
  Magnesium  2.866 ± 0.25Chromium0.101 ± 0.03
  Potassium  1.389 ± 0.41Manganese1.203 ± 0.05
Iron0.168 ± 0.00
gh-19-1-1362-g9.png
Figure 1

High-Performance Liquid Chromatography of Daniellia oliveri methanol leaf extract.

gh-19-1-1362-g10.png
Figure 2

Molecular docking of Rhamnetin with.

gh-19-1-1362-g11.png
Figure 3

Molecular docking of Metroprolol with beta- adrenergic receptor beta-adrenergic receptor.

gh-19-1-1362-g12.png
Figure 4

Molecular docking of Atenonol with beta-adrenergic receptor.

gh-19-1-1362-g13.png
Figure 5

Molecular docking of Rhamnetin with Yap.

gh-19-1-1362-g14.png
Figure 6

Molecular docking of Verteporfin with Yap.

gh-19-1-1362-g15.png
Figure 1

Comparison of blood pressure of patients receiving radiofrequency renal denervation (RF RDN).

Table 2

Multivariable Weighted Cox Proportional Hazard Models of Socioeconomic Factors and Covariates on Heart Disease Mortality, 2007–2018 NHANES, Unweighted N = 26,025.

VARIABLEMODEL 1 INDEPENDENT CONTRIBUTION OF EACH FACTOR ON CARDIOVASCULAR MORTALITYMODEL 2 ADJUSTMENTS TO MODEL 1 WITH DEMOGRAPHICS, STANDARD MODIFIABLE CARDIOVASCULAR RISK FACTORS*, HEALTH CONDITIONS, BIOMARKERS AND MEDICATION USE**
HR95% CIP-VALUEHR95% CIP-VALUE
Educational Attainment
    College Graduate andRef.Ref.
    Above
    <High School1.561.05, 2.320.0291.280.83, 1.950.257
    High School Graduate1.561.13, 2.160.0081.420.99, 2.030.054
    Some College1.330.90, 1.940.1481.220.83, 1.790.306
    Missing1.560.17, 13.990.6891.130.12, 10.990.913
Income-to-Poverty Ratio
    5.00+Ref.Ref.
    <1.002.371.22, 4.600.0112.371.16, 4.850.018
    1.00–1.991.430.81, 2.550.2171.470.79, 2.730.222
    2.00–2.991.270.76, 2.130.3481.220.71, 2.120.464
    3.00–3.990.990.60, 1.650.9700.980.59, 1.640.942
    4.00–4.991.520.88, 2.610.1321.480.85, 2.590.163
    Missing0.640.27, 1.480–2900.640.26, 1.530.307
Annual Family Income
    $45,000+Ref.Ref.
    <$45,0001.010.60, 1.700.9591.050.61, 1.810.865
    Missing1.060.37, 3.030.9151.210.40, 3.630.730

[i] HR = Hazard Ratio;

CI = Confidence Interval.

Participant age is the time scale in all survival models.

*Diabetes, hypertension, high cholesterol, smoking.

**Anti-hypertensive, statin use.

Table 3

Explained Variance in Cardiovascular Disease Mortality.

DOMAIN% VARIANCE EXPLAINED (95% CI)
Socioeconomic (SES) Factors
    Educational Attainment2.27 (0.74, 4.58)
    Income-to-Poverty Ratio1.04 (0.08, 2.63)
    Low Income Status3.48 (-0.10, 1.53)
    Education, Income-to-Poverty Ratio, Low-Income Status2.41 (0.86, 5.09)
Covariates Alone
    Age Alone28.52 (23.46, 33.76)
    Sex and Race Alone5.10 (2.59, 8.63)
    Standard Modifiable Cardiovascular Risk Factors (SMURFs)Alone*7.31 (4.40, 11.72)
    Health Behaviors Alone**4.68 (2.75, 8.26)
    Health Conditions Alone***5.0 (2.41, 8.95)
    Biomarkers Alone8.06 (5.07, 12.95)
    Medication Use0.90 (0.41, 2.86)
Multivariable Models
    SES + Sex/Race8.82 (5.83, 13.30)
    SES + Sex/Race + SMURFs13.75 (10.15, 19.27)
    SES + Sex/Race + SMURFs + Health Behaviors16.21 (12.87, 22.89)
    SES + Sex/Race + SMURFS + Health Behaviors + Health Conditions + Biomarkers19.32 (15.94, 27.20)
    SES + Sex/Race + SMURFS + Health Behaviors + Health Conditions + Biomarkers + Medication Use19.51 (15.93, 27.56)
    SES + Sex/Race + SMURFS + Health Behaviors + Health Conditions + Biomarkers + Medication Use + Age49.67 (44.68, 57.91)

[i] *Hypertension, diabetes, high cholesterol, smoking.

**Hours of sleep, alcohol use, physical activity, diet.

***Depressive symptoms, body mass index.

Systolic blood pressure, total cholesterol, non-HDL-C cholesterol, eGFR, hemoglobin A1c.

Anti-hypertensive, statin use.

gh-19-1-1362-g16.png
Figure 1

40 most common comorbids and comorbidity clusters.

gh-19-1-1362-g17.png
Figure 2

Trend of the top 10 comorbids (January 2011-December 2021).

Table 1

Comorbidity clusters with the highest mortality rates.

COMORBIDITY CLUSTERCCIADMISSIONS (n)GENDER MALE (%): FEMALE (%)MEAN AGE (n ± SD)MEAN LENGTH OF STAY (n ± SD)MORTALITY (n (%))
  1. Diabetes without Complications

  2. Myocardial Infarction

  3. Cereberovascular Disease

344765.55: 34.4566.65 ± 10.825.36 ± 5.5668
(15.21)
  1. Renal Disease

  2. Myocardial Infarction

352370.17: 29.8368.02 ± 13.655.32 ± 4.9969
(13.19)
  1. Malignancy (except Skin Neoplasm)

  2. Mild Liver Disease

  3. Metastatic Solid Tumor

752758.82: 41.1851.53 ± 13.574.58 ± 4.3665
(12.33)
  1. Myocardial Infarction

  2. Congestive Heart Failure

266562.71: 37.2968.49 ± 14.485.17 ± 4.7668
(10.23)
  1. Chronic Pulmonary Disease

  2. Myocardial Infarction

269563.31: 36.6969.54 ± 11.924.66 ± 4.6269
(9.93)

[i] CCI: Charlson Comorbidity Index.

Table 2

Number of total hospitalizations, number of total deaths and mortality rate (%) due to Chronic Rheumatic Heart Disease, according to Brazilian regions, between 2013 and 2022.

REGIONHOSPITALIZATIONSDEATHSMORTALITY RATE (%)
Northern Region418245.74
Northeast Region1,815442.42
Southeast Region1,247362.89
Southern Region321195.92
Central-West Region663192.87
Total4,4641423.18
SNOAGE & SEXMITRAL VALVE THICKNESS mmAORTIC VALVE THICKNESS mmMS MVOA cm2MRASARPHTEF %OTHERS
19 M5.33.33MILD, 2.6MODERATE ECCENTRICNILMODERATENORMAL68PROMINENT TRABECULATION IN LV
213M7.52.3MILD 2.12NILNILMILDMODERATE70THICKENED TRICUSPID VALVE & SUB CHORDAL STRUCTUTRES, RVH, RVD
314M10.34SEVERE 1.5MILDNILMILDMODERATE62THICKENED TRICUSPID VALVE, RVH
418 F5.52.4SEVERE 1.4MILDNILMODERATEMODERATE57CHORDAL FUSION SEEN, THICKENED TRICUSPID VALVE
519M53MODERATE 1.7MILDNILMODERATENORMAL64
6144.82.6MODERATEMILDNILMILDNORMAL66TRICUPSID VALVE THICKENED
gh-19-1-1362-g18.jpg
Figure 1

Photos of patients previously diagnosed with mucopolysaccharidosis with and an echocardiographic assessment.

DOI: https://doi.org/10.5334/gh.1362 | Journal eISSN: 2211-8179
Language: English
Submitted on: Sep 25, 2024
|
Accepted on: Sep 25, 2024
|
Published on: Nov 18, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 The Editorial Team, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.