Have a personal or library account? Click to login
Focused Chest Pain Assessment for Early Detection of Acute Coronary Syndrome: Development of a Cardiovascular Digital Health Intervention Cover

Focused Chest Pain Assessment for Early Detection of Acute Coronary Syndrome: Development of a Cardiovascular Digital Health Intervention

Open Access
|Apr 2023

References

  1. 1Park J, Choi KH, Lee JM, Kim HK, Hwang D, Rhee T, et al. Prognostic implications of door-to-balloon time and onset-to-door time on mortality in patients with ST-segment–elevation myocardial infarction treated with primary percutaneous coronary intervention. Journal of the American Heart Association. 2019 May 7; 8(9): e012188. DOI: 10.1161/JAHA.119.012188
  2. 2Zhang MB, Guo C, Li M, Lv YH, Fan YD, Wang ZL. Comparison of early and delayed invasive strategies in short-medium term among patients with non-ST segment elevation acute coronary syndrome: A systematic review and meta-analysis. PLoS One. 2019 Aug 12; 14(8): e0220847. DOI: 10.1371/journal.pone.0220847
  3. 3Perkins-Porras L, Whitehead DL, Strike PC, Steptoe A. Pre-hospital delay in patients with acute coronary syndrome: Factors associated with patient decision time and home-to-hospital delay. Eur J Cardiovasc Nurs. 2009 Mar; 8(1): 2633. DOI: 10.1016/j.ejcnurse.2008.05.001
  4. 4Darawad MW, Alfasfos N, Saleh Z, Saleh AM, Hamdan-Mansour A. Predictors of delay in seeking treatment by Jordanian patients with acute coronary syndrome. International Emergency Nursing. 2016 May; 26: 205. DOI: 10.1016/j.ienj.2015.09.003
  5. 5Ghazawy ER, Seedhom AE, Mahfouz EM. Predictors of delay in seeking health care among myocardial infarction patients, Minia District, Egypt. Advances in Preventive Medicine. 2015 Dec 8; 2015: e342361. DOI: 10.1155/2015/342361
  6. 6Rafi A, Sayeed Z, Sultana P, Aik S, Hossain G. Pre-hospital delay in patients with myocardial infarction: An observational study in a tertiary care hospital of northern Bangladesh. BMC Health Services Research. 2020 Jul 9; 20(1): 633. DOI: 10.1186/s12913-020-05505-x
  7. 7Mahajan S, Valero-Elizondo J, Khera R, Desai NR, Blankstein R, Blaha MJ, et al. Variation and disparities in awareness of myocardial infarction symptoms among adults in the United States. JAMA Netw Open. 2019 Dec 18; 2(12): e1917885. DOI: 10.1001/jamanetworkopen.2019.17885
  8. 8Kaul P, Armstrong PW, Sookram S, Leung BK, Brass N, Welsh RC. Temporal trends in patient and treatment delay among men and women presenting with ST-elevation myocardial infarction. Am Heart J. 2011 Jan; 161(1): 917. DOI: 10.1016/j.ahj.2010.09.016
  9. 9Diercks DB, Owen KP, Kontos MC, Blomkalns A, Chen AY, Miller C, et al. Gender differences in time to presentation for myocardial infarction before and after a national women’s cardiovascular awareness campaign: A temporal analysis from the Can Rapid Risk Stratification of Unstable Angina Patients Suppress ADverse Outcomes with Early Implementation (CRUSADE) and the National Cardiovascular Data Registry Acute Coronary Treatment and Intervention Outcomes Network-Get with the Guidelines (NCDR ACTION Registry-GWTG). Am Heart J. 2010 Jul; 160(1): 8087.e3. DOI: 10.1016/j.ahj.2010.04.017
  10. 10Al-Zaiti S, Besomi L, Bouzid Z, Faramand Z, Frisch S, Martin-Gill C, et al. Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram. Nat Commun. 2020 Aug 7; 11(1): 3966. DOI: 10.1038/s41467-020-17804-2
  11. 11Widmer RJ, Collins NM, Collins CS, West CP, Lerman LO, Lerman A. Digital health interventions for the prevention of cardiovascular disease: A systematic review and meta-analysis. Mayo Clin Proc. 2015 Apr; 90(4): 469–80. DOI: 10.1016/j.mayocp.2014.12.026
  12. 12Devani RN, Kirubakaran A, Molokhia M. Digital health RCT interventions for cardiovascular disease risk reduction: A systematic review and meta-analysis. Health Technol [Internet]. 2022 Mar 25 [cited 2022 Jun 25]; Available from: 10.1007/s12553-022-00651-0
  13. 13Akinosun AS, Polson R, Skeete YD, Kock JHD, Carragher L, Leslie S, et al. Digital technology interventions for risk factor modification in patients with cardiovascular disease: Systematic review and meta-analysis. JMIR mHealth and uHealth. 2021 Mar 3; 9(3): e21061. DOI: 10.2196/21061
  14. 14Mirbabaie M, Stieglitz S, Frick NRJ. Artificial intelligence in disease diagnostics: A critical review and classification on the current state of research guiding future direction. Health Technol. 2021 Jul 1; 11(4): 693731. DOI: 10.1007/s12553-021-00555-5
  15. 15Than MP, Pickering JW, Sandoval Y, Shah ASV, Tsanas A, Apple FS, et al. Machine learning to predict the likelihood of acute myocardial infarction. Circulation. 2019 Sep 10; 140(11): 899909. DOI: 10.1161/CIRCULATIONAHA.119.041980
  16. 16Noh YK, Park JY, Choi BG, Kim KE, Rha SW. A machine learning-based approach for the prediction of acute coronary syndrome requiring revascularization. J Med Syst. 2019 Jun 28; 43(8): 253. DOI: 10.1007/s10916-019-1359-5
  17. 17Bulgiba AM, Razaz M. How well can signs and symptoms predict AMI in the Malaysian population? International Journal of Cardiology. 2005 Jun 22; 102(1): 8793. DOI: 10.1016/j.ijcard.2004.04.002
  18. 18Wouters LTCM, Zwart DLM, Erkelens DCA, Groot ED, Smeden M van, Hoes AW, et al. Gender-stratified analyses of symptoms associated with acute coronary syndrome in telephone triage: A cross-sectional study. BMJ Open. 2021 Jun 1; 11(6): e042406. DOI: 10.1136/bmjopen-2020-042406
  19. 19Reuter PG, Pradeau C, Huo Yung Kai S, Lhermusier T, Bourdé A, Tentillier E, et al. Predicting acute coronary syndrome in males and females with chest pain who call an emergency medical communication centre. Scand J Trauma Resusc Emerg Med. 2019 Dec; 27(1): 92. DOI: 10.1186/s13049-019-0670-y
  20. 20Bösner S, Haasenritter J, Becker A, Karatolios K, Vaucher P, Gencer B, et al. Ruling out coronary artery disease in primary care: Development and validation of a simple prediction rule. CMAJ. 2010 Sep 7; 182(12): 1295300. DOI: 10.1503/cmaj.100212
  21. 21Meer MG van der, Backus BE, Graaf Y van der, Cramer MJ, Appelman Y, Doevendans PA, et al. The diagnostic value of clinical symptoms in women and men presenting with chest pain at the emergency department, a prospective cohort study. PLOS ONE. 2015 Jan 15; 10(1): e0116431. DOI: 10.1371/journal.pone.0116431
  22. 22DeVon HA, Rosenfeld A, Steffen AD, Daya M. Sensitivity, specificity, and sex differences in symptoms reported on the 13-item acute coronary syndrome checklist. Journal of the American Heart Association. 2014 Apr 2; 3(2): e000586. DOI: 10.1161/JAHA.113.000586
  23. 23Aerts M, Minalu G, Bösner S, Buntinx F, Burnand B, Haasenritter J, et al. Pooled individual patient data from five countries were used to derive a clinical prediction rule for coronary artery disease in primary care. Journal of Clinical Epidemiology. 2017 Jan; 81: 1208. DOI: 10.1016/j.jclinepi.2016.09.011
  24. 24Gulati M, Levy PD, Mukherjee D, Amsterdam E, Bhatt DL, Birtcher KK, et al. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2021 Nov 30; 144(22): e368454. DOI: 10.1161/CIR.0000000000001029
  25. 25Fenech G, Vallée A, Cherfan M, Kab S, Goldberg M, Zins M, et al. Poor awareness of hypertension in France: The CONSTANCES population-based study. American Journal of Hypertension. 2020 May 21; 33(6): 54351. DOI: 10.1093/ajh/hpaa018
  26. 26Nguyen CM, Santoso CMA, Vu DTH, Szőllősi G, Bata R, Zsuga J, et al. Awareness related to cardiometabolic diseases: A cross-sectional study in southern Vietnam. International Journal of Environmental Research and Public Health. 2021 Jan; 18(19): 10209. DOI: 10.3390/ijerph181910209
  27. 27Li X, Zhang Y, Wang M, Lv X, Su D, Li Z, et al. The prevalence and awareness of cardiometabolic risk factors in southern Chinese population with coronary artery disease. The Scientific World Journal. 2013 Oct 10; 2013: e416192. DOI: 10.1155/2013/416192
  28. 28Asgar Pour H, Norouzzadeh R, Heidari MR. Gender differences in symptom predictors associated with acute coronary syndrome: A prospective observational study. International Emergency Nursing. 2016 Mar; 25: 138. DOI: 10.1016/j.ienj.2015.06.008
  29. 29Cardeillac M, Lefebvre F, Baicry F, Le Borgne P, Gil-Jardiné C, Cipolat L, et al. Symptoms of infarction in women: Is there a real difference compared to men? A systematic review of the literature with meta-analysis. JCM. 2022 Feb 27; 11(5): 1319. DOI: 10.3390/jcm11051319
  30. 30Mirzaei, S, Steffen, A, Vuckovic, K, Ryan, C, Bronas, U, Zegre-Hemsey, J, et al. The quality of symptoms in women and men presenting to the emergency department with suspected acute coronary syndrome. J Emerg Nurs. 2019 Jul; 45(4): 35765.
  31. 31Banco D, Chang J, Talmor N, Wadhera P, Mukhopadhyay A, Lu X, et al. Sex and race differences in the evaluation and treatment of young adults presenting to the emergency department with chest pain. Journal of the American Heart Association. 2022 May 17; 11(10): e024199. DOI: 10.1161/JAHA.121.024199
  32. 32National Institute for Health and Care Excellence (NICE). Recent-onset chest pain of suspected cardiac origin: Assessment and diagnosis. NICE Clinical Guidelines, No.95. 2016 Nov 30: 130.
  33. 33Chang AM, Fischman DL, Hollander JE. Evaluation of chest pain and acute coronary syndromes. Cardiology Clinics. 2018 Feb; 36(1): 112. DOI: 10.1016/j.ccl.2017.08.001
  34. 34Malik MA, Alam Khan S, Safdar S, Taseer IUH. Chest pain as a presenting complaint in patients with acute myocardial infarction (AMI). Pak J Med Sci. 2013 Apr; 29(2): 5658. DOI: 10.12669/pjms.292.2921
  35. 35Cho DH, Choi J, Kim MN, Kim HL, Kim YH, Na JO, et al. Gender differences in the presentation of chest pain in obstructive coronary artery disease: Results from the Korean Women’s Chest Pain Registry. Korean J Intern Med. 2020 May 1; 35(3): 58292. DOI: 10.3904/kjim.2018.320
  36. 36Bösner S, Bönisch K, Haasenritter J, Schlegel P, Hüllermeier E, Donner-Banzhoff N. Chest pain in primary care: Is the localization of pain diagnostically helpful in the critical evaluation of patients? – A cross-sectional study. BMC Family Practice. 2013 Oct 18; 14(1): 154. DOI: 10.1186/1471-2296-14-154
  37. 37Lichtman JH, Leifheit EC, Safdar B, Bao H, Krumholz HM, Lorenze NP, et al. Sex differences in the presentation and perception of symptoms among young patients with myocardial infarction. Circulation. 2018 Feb 20; 137(8): 78190. DOI: 10.1161/CIRCULATIONAHA.117.031650
  38. 38DeVon HA, Mirzaei S, Zègre-Hemsey J. Typical and atypical symptoms of acute coronary syndrome: Time to retire the terms? JAHA [Internet]. 2020 Apr 9 [cited 2021 Apr 13]; 9(7). Available from: https://www.ahajournals.org/doi/10.1161/JAHA.119.015539. DOI: 10.1161/JAHA.119.015539
  39. 39Hollander JE, Than M, Mueller C. State-of-the-art evaluation of emergency department patients presenting with potential acute coronary syndromes. Circulation. 2016 Aug 16; 134(7): 54764. DOI: 10.1161/CIRCULATIONAHA.116.021886
  40. 40Panju AA, Hemmelgarn BR, Guyatt GH, Simel DL. Is this patient having a myocardial infarction? JAMA. 1998 Oct 14; 280(14): 125663. DOI: 10.1001/jama.280.14.1256
  41. 41Lee TH, Rouan GW, Weisberg MC, Brand DA, Acampora D, Stasiulewicz C, et al. Clinical characteristics and natural history of patients with acute myocardial infarction sent home from the emergency room. American Journal of Cardiology. 1987 Aug 1; 60(4): 21924. DOI: 10.1016/0002-9149(87)90217-7
  42. 42Stepinska J, Lettino M, Ahrens I, Bueno H, Garcia-Castrillo L, Khoury A, et al. Diagnosis and risk stratification of chest pain patients in the emergency department: Focus on acute coronary syndromes. A position paper of the Acute Cardiovascular Care Association. European Heart Journal: Acute Cardiovascular Care. 2020 Feb 1; 9(1): 7689. DOI: 10.1177/2048872619885346
  43. 43West J, Daly S. Predictors of acute myocardial infarction. AFP. 2017 Sep 1; 96(5): 328328.
  44. 44Ltd BPG. Review: Important bedside predictors are patient’s description of chest pain for CAD and electrocardiography for MI. BMJ Evidence-Based Medicine. 2005 Apr 1; 10(2): 5454. DOI: 10.1136/ebm.10.2.54
  45. 45Ayerbe L, González E, Gallo V, Coleman CL, Wragg A, Robson J. Clinical assessment of patients with chest pain; A systematic review of predictive tools. BMC Cardiovascular Disorders. 2016 Jan 20; 16(1): 18. DOI: 10.1186/s12872-016-0196-4
  46. 46Bonow RO, Braunwald, E, Libby P, Mann DL, Tomaselli GF, Zipes, DP. Braunwald’s heart disease: A textbook of cardiovascular medicine. Elsevier Inc. 2019: 11134.
  47. 47Barstow C, Rice MS, McDivitt JD. Acute coronary syndrome: Diagnostic evaluation. AFP. 2017 Feb 1; 95(3): 1707.
  48. 48Hadid LAA, Al Barmawi M, Al Hmaimat NAA, Shoqirat N. Factors associated with prehospital delay among men and women newly experiencing acute coronary syndrome: A qualitative inquiry. Cardiol Res Pract. 2020 May 11; 2020: 3916361. DOI: 10.1155/2020/3916361
  49. 49Stehli J, Dinh D, Dagan M, Duffy SJ, Brennan A, Smith K, et al. Sex differences in prehospital delays in patients with ST-segment–elevation myocardial infarction undergoing percutaneous coronary intervention. Journal of the American Heart Association. 2021 Jul 6; 10(13): e019938. DOI: 10.1161/JAHA.120.019938
  50. 50Wang H, Zu Q, Chen J, Yang Z, Ahmed MA. Application of artificial intelligence in acute coronary syndrome: A brief literature review. Adv Ther. 2021 Oct; 38(10): 507886. DOI: 10.1007/s12325-021-01908-2
  51. 51Iannattone PA, Zhao X, VanHouten J, Garg A, Huynh T. Artificial intelligence for diagnosis of acute coronary syndromes: A meta-analysis of machine learning approaches. Canadian Journal of Cardiology. 2020 Apr 1; 36(4): 57783. DOI: 10.1016/j.cjca.2019.09.013
DOI: https://doi.org/10.5334/gh.1194 | Journal eISSN: 2211-8179
Language: English
Submitted on: Aug 11, 2022
Accepted on: Mar 6, 2022
Published on: Apr 20, 2023
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Mifetika Lukitasari, Sony Apriliyawan, Halidah Manistamara, Yurike Olivia Sella, Mohammad Saifur Rohman, Jitendra Jonnagaddala, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.