Have a personal or library account? Click to login
Targeting Inflammation in the Diagnosis, Management, and Prevention of Cardiovascular Diseases Cover

Targeting Inflammation in the Diagnosis, Management, and Prevention of Cardiovascular Diseases

By: Akira Matsumori  
Open Access
|Nov 2022

References

  1. 1World Health Organization. Noncommunicable diseases 2021 [Accessed September 2021]. https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases.
  2. 2Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature. 2017; 542(7640): 177185. DOI: 10.1038/nature21363
  3. 3Ambrose JA, Barua RS. The pathophysiology of cigarette smoking and cardiovascular disease: an update. J Am Coll Cardiol. 2004; 43(10): 17311737. DOI: 10.1016/j.jacc.2003.12.047
  4. 4Arnson Y, Shoenfeld Y, Amital H. Effects of tobacco smoke on immunity, inflammation and autoimmunity. J Autoimmun. 2010; 34(3): J258J265. DOI: 10.1016/j.jaut.2009.12.003
  5. 5Bays HE, Taub PR, Epstein E, et al. Ten things to know about ten cardiovascular disease risk factors. Am J Prev Cardiol. 2021; 5: 100149. DOI: 10.1016/j.ajpc.2021.100149
  6. 6Calle M, Andersen C. Assessment of dietary patterns represents a potential, yet variable, measure of inflammatory status: a review and update. Disease Markers. 2019; 2019: 113. DOI: 10.1155/2019/3102870
  7. 7Estruch R, Sacanella E, Lamuela-Raventós RM. Ideal dietary patterns and foods to prevent cardiovascular disease: beware of their anti-inflammatory potential. J Am Coll Cardiol. 2020; 76(19): 21942196. DOI: 10.1016/j.jacc.2020.09.575
  8. 8Li J, Lee DH, Hu J, et al. Dietary inflammatory potential and risk of cardiovascular disease among men and women in the U.S. J Am Coll Cardiol. 2020; 76(19): 21812193. DOI: 10.1016/j.jacc.2020.09.535
  9. 9Bäck M, Yurdagul A, Tabas I, et al. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol. 2019; 16(7): 389406. DOI: 10.1038/s41569-019-0169-2
  10. 10Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis. Annu Rev Immunol. 2009; 27: 165197. DOI: 10.1146/annurev.immunol.021908.132620
  11. 11de Vries MR, Quax PH. Plaque angiogenesis and its relation to inflammation and atherosclerotic plaque destabilization. Curr Opin Lipidol. 2016; 27(5): 499506. DOI: 10.1097/MOL.0000000000000339
  12. 12Golia E, Limongelli G, Natale F, et al. Inflammation and cardiovascular disease: from pathogenesis to therapeutic target. Curr Atheroscler Rep. 2014; 16(9): 435. DOI: 10.1007/s11883-014-0435-z
  13. 13Amirfakhryan H. Vaccination against atherosclerosis: an overview. Hellenic J Cardiol. 2020; 61(2): 7891. DOI: 10.1016/j.hjc.2019.07.003
  14. 14Ridker PM, MacFadyen JG, Thuren T, et al. Residual inflammatory risk associated with interleukin-18 and interleukin-6 after successful interleukin-1β inhibition with canakinumab: further rationale for the development of targeted anti-cytokine therapies for the treatment of atherothrombosis. Eur Heart J. 2020; 41(23): 21532163. DOI: 10.1093/eurheartj/ehz542
  15. 15Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J M. 2017; 377(12): 11191131. DOI: 10.1056/NEJMoa1707914
  16. 16Kofler T, Kurmann R, Lehnick D, et al. Colchicine in patients with coronary artery disease: a systematic review and metaanalysis of randomized trials. J Am Heart Assoc. 2021; 10(16): e021198. DOI: 10.1161/JAHA.121.021198
  17. 17Alfaddagh A, Martin SS, Leucker TM, et al. Inflammation and cardiovascular disease: from mechanisms to therapeutics. Am J Prev Cardiol. 2020; 4: 100130. DOI: 10.1016/j.ajpc.2020.100130
  18. 18Libby P, Loscalzo J, Ridker PM, et al. Inflammation, immunity, and infection in atherothrombosis: JACC review topic of the week. J Am Coll Cardiol. 2018; 72: 20712081. DOI: 10.1016/j.jacc.2018.08.1043
  19. 19Carrillo-Salinas FJ, Ngwenyama N, Anastasiou M, et al. Heart inflammation: immune cell roles and roads to the heart. Am J Pathol. 2019; 189(8): 14821494. DOI: 10.1016/j.ajpath.2019.04.009
  20. 20Shioi T, Matsumori A, Kihara Y, et al. Increased expression of interleukin-1 beta and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in the hypertrophied and failing heart with pressure overload. Circ Res. 1997; 81(5): 664671. DOI: 10.1161/01.RES.81.5.664
  21. 21Shang L, Yue W, Wang D, et al. Systolic overload-induced pulmonary inflammation, fibrosis, oxidative stress and heart failure progression through interleukin-1β. J Mol Cell Cardiol. 2020; 146: 8494. DOI: 10.1016/j.yjmcc.2020.07.008
  22. 22Okada M, Matsumori A, Ono K, et al. Cyclic stretch upregulates production of interleukin-8 and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in human endothelial cells. Arterioscler Thromb Vasc Biol. 1998; 18(6): 894901. DOI: 10.1161/01.ATV.18.6.894
  23. 23Matsumori A. Anti-inflammatory therapy for heart failure. Curr Opin Pharmacol. 2004; 4(2): 171176. DOI: 10.1016/j.coph.2003.11.003
  24. 24Bajaj NS, Gupta K, Gharpure N, et al. Effect of immunomodulation on cardiac remodelling and outcomes in heart failure: a quantitative synthesis of the literature. ESC Heart Fail. 2020; 7(3): 13191330. DOI: 10.1002/ehf2.12681
  25. 25Fleet JC, Clinton SK, Salomon RN, et al. Atherogenic diets enhance endotoxin-stimulated interleukin-1 and tumor necrosis factor gene expression in rabbit aortae. J Nutr. 1992; 122(2): 294305. DOI: 10.1093/jn/122.2.294
  26. 26Francis Stuart SD, De Jesus NM, Lindsey ML, et al. The crossroads of inflammation, fibrosis, and arrhythmia following myocardial infarction. J Mol Cell Cardiol. 2016; 91: 114122. DOI: 10.1016/j.yjmcc.2015.12.024
  27. 27Ono K, Matsumori A, Shioi T, et al. Cytokine gene expression after myocardial infarction in rat hearts: possible implication in left ventricular remodeling. Circulation. 1998; 98(2): 149156. DOI: 10.1161/01.CIR.98.2.149
  28. 28Matsumori A. Cardiomyopathies and heart failure: biomolecular, infectious and immune mechanisms. In: Matsumori A (ed.), Cardiomyopathies and heart failure: Biomolecular, infectious and immune mechanisms. Developments in Cardiovascular Medicine 248. New York: Springer US; 2003. 116. DOI: 10.1007/978-1-4419-9264-2_1
  29. 29Haykal M, Matsumori A, Saleh A, et al. Diagnosis and treatment of HCV heart diseases. Expert Rev Cardiovasc Ther. 2021; 19(6): 493499. DOI: 10.1080/14779072.2021.1917383
  30. 30Komiyama M, Hasegawa K, Matsumori A. Dilated cardiomyopathy risk in patients with coronavirus disease 2019: how to identify and characterise it early? Eur Cardiol. 2020; 15: e49. DOI: 10.15420/ecr.2020.17
  31. 31Saleh A, Matsumori A, Abdelrazek S, et al. Myocardial involvement in coronavirus disease 19. Herz. 2020; 45(8): 719725. DOI: 10.1007/s00059-020-05001-2
  32. 32Matsumori A, Mason JW. The new FLC biomarker for a novel treatment of myocarditis, COVID-19 disease and other inflammatory disorders. Int Cardiovasc Forum J. In press.
  33. 33Nishimura H, Okazaki T, Tanaka Y, et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science. 2001; 291(5502): 319322. DOI: 10.1126/science.291.5502.319
  34. 34Okazaki T, Tanaka Y, Nishio R, et al. Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat Med. 2003; 9(12): 14771483. DOI: 10.1038/nm955
  35. 35Aksoylar HI, Boussiotis VA. PD-1(+) T(reg) cells: a foe in cancer immunotherapy? Nat Immunol. 2020; 21(11): 13111312. DOI: 10.1038/s41590-020-0801-7
  36. 36Kumagai S, Togashi Y, Kamada T, et al. The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies. Nat Immunol. 2020; 21(11): 13461358. DOI: 10.1038/s41590-020-0769-3
  37. 37Johnson DB, Balko JM, Compton ML, et al. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J M. 2016; 375(18): 17491755. DOI: 10.1056/NEJMoa1609214
  38. 38Bozkurt B, Kamat I, Hotez PJ. Myocarditis with COVID-19 mRNA vaccines. Circulation. 2021; 144(6): 471484. DOI: 10.1056/NEJMoa1609214
  39. 39National Center for Immunization and Respiratory Diseases. Clinical considerations: myocarditis and pericarditis after receipt of mRNA COVID-19 vaccines among adolescents and young adults 2021. [Accessed September 2021]. https://www.cdc.gov/vaccines/covid-19/clinical-considerations/myocarditis.html.
  40. 40Matsumori A, Yamada T, Suzuki H, et al. Increased circulating cytokines in patients with myocarditis and cardiomyopathy. Br Heart J. 1994; 72(6): 561566. DOI: 10.1136/hrt.72.6.561
  41. 41Hara M, Ono K, Hwang MW, et al. Evidence for a role of mast cells in the evolution to congestive heart failure. J Exp Med. 2002; 195(3): 375381. DOI: 10.1084/jem.20002036
  42. 42Kitaura-Inenaga K, Hara M, Higuchi K, et al. Gene expression of cardiac mast cell chymase and tryptase in a murine model of heart failure caused by viral myocarditis. Circ J. 2003; 67(10): 881884. DOI: 10.1007/978-1-4939-8549-4_5
  43. 43Germolec DR, Shipkowski KA, Frawley RP, et al. Markers of inflammation. Methods Mol Biol. 2018; 1803: 5779. DOI: 10.1007/978-1-4939-8549-4_5
  44. 44Spooner PM, Zipes DP. Sudden death predictors. Circulation. 2002; 105(22): 25742576. DOI: 10.1161/01.CIR.0000017821.98250.25
  45. 45Albert CM, Ma J, Rifai N, et al. Prospective study of C-reactive protein, homocysteine, and plasma lipid levels as predictors of sudden cardiac death. Circulation. 2002; 105(22): 25952599. DOI: 10.1161/01.CIR.0000017493.03108.1C
  46. 46Bhatt DL, Topol EJ. Need to test the arterial inflammation hypothesis. Circulation. 2002; 106(1): 136140. DOI: 10.1161/01.CIR.0000021112.29409.A2
  47. 47Sato Y, Takatsu Y, Kataoka K, et al. Serial circulating concentrations of C-reactive protein, interleukin (Il)-4, and Il-6 in patients with acute left heart decompensation. Clin Cardiol. 1999; 22(12): 811813. DOI: 10.1002/clc.4960221211
  48. 48Hampson J, Turner ARS. Polyclonal free light chains: promising new biomarkers in inflammatory disease. Curr Biomark Find. 2014; 4: 139149. DOI: 10.2147/CBF.S57681
  49. 49Dispenzieri A, Katzmann JA, Kyle RA, et al. Use of nonclonal serum immunoglobulin free light chains to predict overall survival in the general population. Mayo Clin Proc. 2012; 87(6): 517523. DOI: 10.1016/j.mayocp.2012.03.009
  50. 50Gulli F, Napodano C, Marino M, et al. Serum immunoglobulin free light chain levels in systemic autoimmune rheumatic diseases. Clin Exp Immunol. 2020; 199(2): 163171. DOI: 10.1111/cei.13385
  51. 51Terrier B, Sène D, Saadoun D, et al. Serum-free light chain assessment in hepatitis C virus-related lymphoproliferative disorders. Ann Rheum Dis. 2009; 68(1): 8993. DOI: 10.1136/ard.2007.086488
  52. 52Basile U, Gragnani L, Piluso A, et al. Assessment of free light chains in HCV-positive patients with mixed cryoglobulinaemia vasculitis undergoing rituximab treatment. Liver Int. 2015; 35(9): 21002107. DOI: 10.1111/liv.12829
  53. 53Matsumori A, Shimada M, Jie X, et al. Effects of free immunoglobulin light chains on viral myocarditis. Circ Res. 2010; 106(9): 15331540. DOI: 10.1161/CIRCRESAHA.110.218438
  54. 54Matsumori A, Shimada T, Nakatani E, et al. Immunoglobulin free light chains as an inflammatory biomarker of heart failure with myocarditis. Clin Immunol. 2020; 217: 108455. DOI: 10.1016/j.clim.2020.108455
  55. 55Matsumori A, Shimada T, Shimada M, et al. Immunoglobulin free light chains as inflammatory biomarkers of atrial fibrillation. Circ Arrhythm Electrophysiol. 2020; 13(11): e009017. DOI: 10.1161/CIRCEP.120.009017
  56. 56Donath MY. Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat Rev Drug Discov. 2014; 13(6): 465476. DOI: 10.1038/nrd4275
  57. 57Matsumori A, Shimada T, Shimada M, et al. Immunoglobulin free light chains: an inflammatory biomarker of diabetes. Inflamm Res. 2020; 69(8): 715718. DOI: 10.1007/s00011-020-01357-7
  58. 58Hemler EC, Hu FB. Plant-based diets for personal, population, and planetary health. Adv Nutr. 2019; 10(Suppl_4): S275S283. DOI: 10.1007/s00011-020-01357-7
  59. 59U.S. News & World Report. Best diets overall. U.S. New & World Report Rankings 2021 [Accessed September 2021]. https://health.usnews.com/best-diet/best-diets-overall.
  60. 60Libby P, Ridker PM, Hansson GK. Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol. 2009; 54(23): 21292138. DOI: 10.1016/j.jacc.2009.09.009
  61. 61Cofán M, Rajaram S, Sala-Vila A, et al. Effects of 2-year walnut-supplemented diet on inflammatory biomarkers. J Am Coll Cardiol. 2020; 76(19): 22822284. DOI: 10.1016/j.jacc.2020.07.071
  62. 62Zhu F, Du B, Xu B. Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: a review. Crit Rev Food Sci Nutr. 2018; 58(8): 12601270. DOI: 10.1080/10408398.2016.1251390
  63. 63Wu D, Lewis ED, Pae M, et al. Nutritional modulation of immune function: analysis of evidence, mechanisms, and clinical relevance. Front Immunol. 2018; 9: 3160. DOI: 10.3389/fimmu.2018.03160
  64. 64Fraga CG, Croft KD, Kennedy DO, et al. The effects of polyphenols and other bioactives on human health. Food Funct. 2019; 10(2): 514528. DOI: 10.1039/C8FO01997E
  65. 65Espín JC, García-Conesa MT, Tomás-Barberán FA. Nutraceuticals: facts and fiction. Phytochem. 2007; 68(22–24): 29863008. DOI: 10.1016/j.phytochem.2007.09.014
  66. 66Cunningham E. What has happened to the ORAC database? J Acad Nutr Diet. 2013; 113(5): 740. DOI: 10.1016/j.jand.2013.03.007
  67. 67Rohdewald PJ. Update on the clinical pharmacology of Pycnogenol®. Med Res Arch. 2015; 2015–07–11(3). DOI: 10.18103/mra.v0i3.183
  68. 68Maimoona A, Naeem I, Saddiqe Z, et al. A review on biological, nutraceutical and clinical aspects of French maritime pine bark extract. J Ethnopharmacol. 2011; 133(2): 261277. DOI: 10.1016/j.jep.2010.10.041
  69. 69Uhlenhut K, Högger P. Facilitated cellular uptake and suppression of inducible nitric oxide synthase by a metabolite of maritime pine bark extract (Pycnogenol). Free Radic Biol Med. 2012; 53(2): 305313. DOI: 10.1016/j.freeradbiomed.2012.04.013
  70. 70Matsumori A, Higuchi H, Shimada M. French maritime pine bark extract inhibits viral replication and prevents development of viral myocarditis. J Card Fail. 2007; 13(9): 785791. DOI: 10.1016/j.cardfail.2007.06.721
  71. 71Ezzikouri S, Nishimura T, Kohara M, et al. Inhibitory effects of Pycnogenol® on hepatitis C virus replication. Antiviral Res. 2015; 113: 93102. DOI: 10.1016/j.antiviral.2014.10.017
  72. 72Matsumori A. Viral myocarditis from animal model to human diseases. In: Berhardt LV (ed.) Advances in medicine and biology. Hauppauge, NY: Nova Science Publishers. 2022; 194: 4174.
  73. 73Matsumori A. Cardiovascular diseases as major extrsahepatic manifestations of hepatitis C virus infection: leukocytes, not hepatocytes, are the targets of hepatitis C virus infection. Interv Cardiol. 2022; 14(2): 477485. DOI: 10.37532/1755-.5310.2022.14(2).472
DOI: https://doi.org/10.5334/gh.1156 | Journal eISSN: 2211-8179
Language: English
Submitted on: Jan 12, 2022
Accepted on: Sep 1, 2022
Published on: Nov 2, 2022
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Akira Matsumori, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.