References
- 1Arbabi, A., Adams, D.R., Fidler, S. and Brudno, M. (2019)
‘Identifying clinical terms in free-text notes using ontology-guided machine learning’ , in L.J. Cowen (ed.) Research in computational molecular biology. Cham: Springer International Publishing, pp. 19–34. Available at: 10.1007/978-3-030-17083-7_2 - 2Aronson, A.R. (2001)
‘Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program’ , in Proceedings of the AMIA Symposium, Washington, DC, 3–7 November. American Medical Informatics Association, pp. 17–21. - 3Cardoso, J., Castro, L.J., Ekaputra, F.J., Jacquemot, M.C., Suchánek, M., Miksa, T. and Borbinha, J. (2022) ‘DCSO: Towards an ontology for machine-actionable data management plans’, Journal of Biomedical Semantics, 13(1), p. 21. Available at: 10.1186/s13326-022-00274-4
- 4Cimiano, P., Handschuh, S. and Staab, S. (2004) ‘Towards the self-annotating web’, The 13th international conference on world wide web. New York, NY, 17–20 May. New York, NY:
Association for Computing Machinery , pp. 462–471. Available at: 10.1145/988672.988735 - 5Cuzzola, J., Jovanović, J. and Bagheri, E. (2017) ‘RysannMD: A biomedical semantic annotator balancing speed and accuracy’, Journal of Biomedical Informatics, 71, pp. 91–109. Available at: 10.1016/j.jbi.2017.05.016
- 6DataCite. (2021) Introduction to machine actionable dmps (madmps). Available at:
https://support.datacite.org/docs/introduction-to-machine-actionable-dmps-madmps . - 7Dill, S., Eiron, N., Gibson, D., Gruhl, D., Guha, R., Jhingran, A., Kanungo, T., Rajagopalan, S., Tomkins, A., Tomlin, J.A. and Zien, J.Y. (2003)
‘SemTag and seeker: Bootstrapping the semantic web via automated semantic annotation’ , The 12th international conference on world wide web. Budapest, Hungary, 20–24 May. New York, NY: Association for Computing Machinery, pp. 178–186. Available at: 10.1145/775152.775178 - 8European Commission. (2022) Horizon europe data management plan template. Available at:
https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021-2027/horizon/temp-form/report/data-management-plan.he.en.docx . - 9Friedman, C., Kra, P., Yu, H., Krauthammer, M. and Rzhetsky, A. (2001) ‘GENIES: A natural-language processing system for the extraction of molecular pathways from journal articles’, Bioinformatics, 17, pp. S74–S82. Available at: 10.1093/bioinformatics/17.suppl_1.S74
- 10Gaizauskas, R., Demetriou, G., Artymiuk, P.J. and Willett, P. (2003) ‘Protein structures and information extraction from biological texts: The PASTA System’, Bioinformatics, 19(1), pp. 135–143. Available at: 10.1093/bioinformatics/19.1.135
- 11Gorrell, G., Song, X. and Roberts, A. (2018) ‘Bio-YODIE: A named entity linking system for biomedical text’, arXiv, arXiv:1811.04860. Available at: 10.48550/arXiv.1811.04860
- 12Haghgoo, M., Nazary, A.N.A. and Monti, A. (2022) ‘SiSEG-auto semantic annotation service to integrate smart energy data’, Energies, 15(4), p.
1428 . Available at: 10.3390/en15041428 - 13Hina, S., Atwell, E. and Johnson, O.A. (2013) ‘SnoMedTagger: A semantic tagger for medical narratives’, International Journal of Computational Linguistics, 4(2), pp. 81–99.
- 14Huang, Y.T., Yeh, H.Y., Cheng, S.W., Tu, C.C., Kuo, C.L. and Soo, V.W. (2006) ‘Automatic extraction of information about the molecular interactions in biological pathways from texts based on ontology and semantic processing’, 2006 IEEE International Conference on Systems, Man, and Cybernetics. Taipei, Taiwan,
8–11 October .Institute of Electrical and Electronics Engineers , pp. 3679–3684. Available at: 10.1109/ICSMC.2006.384701 - 15Jessop, D.M., Adams, S.E., Willighagen, E.L., Hawizy, L. and Murray-Rust, P. (2011) ‘OSCAR4: A flexible architecture for chemical text-mining’, Journal of Cheminformatics, 3(1), p.
41 . Available at: 10.1186/1758-2946-3-41 - 16Jonquet, C., Shah, N.H. and Musen, M.A. (2009) ‘The open biomedical annotator’, Summit on Translational Bioinformatics, 2009, pp. 56–60.
- 17Kitchenham, B.A., Dyba, T. and Jorgensen, M. (2004) ‘Evidence-based software engineering. In: Proceedings’, 26th international conference on software engineering. Edinburgh, UK, 28 May.
Institute of Electrical and Electronics Engineers , pp. 273–281. - 18Kiyavitskaya, N., Zeni, N., Cordy, J.R., Mich, L. and Mylopoulos, J. (2009) ‘Cerno: Light-weight tool support for semantic annotation of textual documents’, Data & Knowledge Engineering, 68(12), pp. 1470–1492. Available at: 10.1016/j.datak.2009.07.012
- 19Kraljevic, Z., Searle, T., Shek, A., Roguski, L., Noor, K., Bean, D., Mascio, A., Zhu, L., Folarin, A.A., Roberts, A., Bendayan, R., Richardson, M.P., Stewart, R., Shah, A.D., Wong, W.K., Ibrahim, Z., Teo, J.T. and Dobson, R.J.B. (2021) ‘Multi-domain clinical natural language processing with MedCAT: the Medical Concept Annotation Toolkit’, arXiv:2010.01165. Available at: 10.48550/arXiv.2010.01165
- 20Laclavık, M., Šeleng, M. and Babık, M. (2006) ‘Ontea: Semi-automatic ontology based text annotation method’, Tools for Acquisition, Organisation and Presenting of Information and Knowledge, pp. 49–63.
- 21Lame, G. (2019) ‘Systematic literature reviews: An introduction’, Proceedings of the Design Society: Inernational Conference on Engineering Design, 1(1), pp. 1633–1642. Available at: 10.1017/dsi.2019.169
- 22Leaman, R. and Lu, Z. (2016) ‘TaggerOne: Joint named entity recognition and normalization with semi-Markov Models’, Bioinformatics, 32(18), pp. 2839–2846. Available at: 10.1093/bioinformatics/btw343
- 23Martínková, J. and Suchánek, M. (2023)
‘Laying foundations for connecting data stewardship domain ontologies’ , in H. Fujita and G. Guizzi (eds.) New Trends in Intelligent Software Methodologies, Tools and Techniques. vol. 371. Amsterdam: IOS, pp. 125–136. Available at: 10.3233/FAIA230229 - 24Martínková, J. and Suchánek, M. (2024) ‘Towards semantic data management plans for efficient review processing and automation’, in Proceedings of the 13th International Conference on Data Science, Technology and Applications DATA. vol. 1: Setúbal, Portugal:
SciTePress , pp. 543–550. Available at: 10.5220/0012837900003756 - 25Martínková, J., Suchánek, M. and Pergl, R. (2024) ‘Developing a reference ontouml conceptual model for data management plans: Enhancing consistency and interoperability’, in Proceedings of the 16th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management. vol. 2. Setúbal, Portugal:
SciTePress , pp. 159–166. Available at: 10.5220/0012940000003838 - 26McKain, M.R., Hartsock, R.H., Wohl, M.M. and Kellogg, E.A. (2017) ‘Verdant: Automated annotation, alignment and phylogenetic analysis of whole chloroplast genomes’, Bioinformatics, 33(1), pp. 130–132. Available at: 10.1093/bioinformatics/btw583
- 27Miksa, T., Walk, P., Neish, P., Oblasser, S., Murray, H., Renner, T., Jacquemot-Perbal, M.C., Cardoso, J., Kvamme, T., Praetzellis, M., Suchánek, M., Hooft, R., Faure, B., Moa, H., Hasan, A. and Jones, S. (2021) ‘Application profile for machine-actionable data management plans’, Data Science Journal, 20(32), pp. 1–17. Available at: 10.5334/dsj-2021-032
- 28Milosevic, N. (2016) ‘Marvin: Semantic annotation using multiple knowledge sources’, arXiv:1602.00515. Available at: 10.48550/arXiv.1602.00515
- 29Müller, H.M., Kenny, E.E. and Sternberg, P.W. (2004) ‘Textpresso: An ontology-based information retrieval and extraction system for biological literature’, PLOS Biology, 2(11), p.
e309 . Available at: 10.1371/journal.pbio.0020309 - 30Nightingale, A. (2009) ‘A guide to systematic literature reviews,’ Surgery, 27(9), pp. 381–384. Available at: 10.1016/j.mpsur.2009.07.005
- 31Nunes, T., Campos, D., Matos, S. and Oliveira, J.L. (2013) ‘BeCAS: Biomedical concept recognition services and visualization’, Bioinformatics, 29(15), pp. 1915–1916. Available at: 10.1093/bioinformatics/btt317
- 32Oro, E. and Ruffolo, M. (2008) ‘XONTO: An ontology-based system for semantic information extraction from PDF documents’, in 2008 20th IEEE International Conference on Tools with Artificial Intelligence.
The Institute for Electrical and Electronics Engineers , pp. 118–125. Available at: 10.1109/ICTAI.2008.48 - 33Pölzler, T. (2023). Data Management Plan: Making Morality Impartial: An Experimental Investigation of the Veil of Ignorance. Available at
https://dmponline.dcc.ac.uk/public_plans . - 34Popov, B., Kiryakov, A., Kirilov, A., Manov, D., Ognyanoff, D. and Goranov, M. (2003)
‘KIM – semantic annotation platform’ , in D. Fensel, K. Sycara, and J. Mylopoulos (eds.) The semantic web – ISWC 2003. Berlin, Heidelberg: Springer, pp. 834–849. Available at: 10.1007/978-3-540-39718-2_53 - 35RDFa Working Group. (2013) RDF in attributes (RDFa). Available at:
https://www.w3.org/2001/sw/wiki/RDFa (Accessed: 17 July 2023). - 36Rebholz-Schuhmann, D., Arregui, M., Gaudan, S., Kirsch, H. and Jimeno, A. (2008) ‘Text processing through web services: Calling Whatizit’, Bioinformatics, 24(2), pp. 296–298. Available at: 10.1093/bioinformatics/btm557
- 37Reeve, L.H. and Han, H. (2007)
‘CONANN: An online biomedical concept annotator’ , in S. Cohen-Boulakia and V. Tannen (eds.) Data integration in the life sciences. Berlin, Heidelberg: Springer, pp. 264–279. Available at: 10.1007/978-3-540-73255-6_21 - 38Rindflesch, T.C., Tanabe, L., Weinstein, J.N. and Hunter, L. (1999) ‘EDGAR: Extraction of Drugs, Genes and Relations from the biomedical literature’, Biocomputing 2000, pp. 517–528. Available at: 10.1142/9789814447331_0049
- 39Rocktäschel, T., Weidlich, M. and Leser, U. (2012) ‘ChemSpot: A hybrid system for chemical named entity recognition’, Bioinformatics, 28(12), pp. 1633–1640. Available at: 10.1093/bioinformatics/bts183
- 40Savova, G.K., Masanz, J.J., Ogren, P.V., Zheng, J., Sohn, S., Kipper-Schuler, K.C. and Chute, C.G. (2010) ‘Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): Architecture, component evaluation and applications’, JAMIA, 17(5), pp. 507–513. Available at: 10.1136/jamia.2009.001560
- 41Settles, B. (2005) ‘ABNER: An open source tool for automatically tagging genes, proteins and other entity names in text’, Bioinformatics, 21(14), pp. 3191–3192. Available at: 10.1093/bioinformatics/bti475
- 42Shakya, A., Wuwongse, V., Takeda, H. and Ohmukai, I. (2007) ‘OntoBlog: Linking ontology and blogs’, Proceedings of the Semantic Authoring, Annotation and Knowledge Markup Workshop, SAAKM, 2007. Whistler, BC, Canada, 28–31 October.
- 43Smale, N., Unsworth, K., Denyer, G. and Barr, D. (2018) ‘The history, advocacy and efficacy of data management plans’, bioRxiv. Available at: 10.1101/443499
- 44Soavi, M., Zeni, N., Mylopoulos, J. and Mich, L. (2020)
‘ContracT – from legal contracts to formal specifications: Preliminary results’ , in J. Grabis and D. Bork (eds.) The practice of enterprise modeling. Cham: Springer, pp. 124–137. Available at: 10.1007/978-3-030-63479-7_9 - 45Tanenblatt, M.A., Coden, A. and Sominsky, I.L. (2010) ‘The ConceptMapper approach to named entity recognition’, in N. Calzolari, K. Choukri, B. Maegaard, J. Mariani, J. Odijk, S. Piperidis, M. Rosner, and D. Tapias (eds.) Proceedings of the seventh international conference on language resources and evaluation, LREC, 2010. Valletta, Malta, May.
European Language Resources Association , pp. 546–51. Available at:https://aclanthology.org/L10-1000/ - 46Tseytlin, E., Mitchell, K., Legowski, E., Corrigan, J., Chavan, G. and Jacobson, R.S. (2016) ‘NOBLE – Flexible concept recognition for large-scale biomedical natural language processing’, BMC Bioinformatics, 17(1), p. 32. Available at: 10.1186/s12859-015-0871-y
- 47Vlachidis, A. and Tudhope, D. (2016) ‘A knowledge-based approach to Information Extraction for semantic interoperability in the archaeology domain’, Journal of the Association for Information Science and Technology, 67(5), pp. 1138–1152. Available at: 10.1002/asi.23485
- 48Webster, J. and Watson, R.T. (2002) ‘Analyzing the past to prepare for the future: Writing a literature review’, MIS Quarterly, 26(2), pp. xiii–xxiii. Available at:
https://www.jstor.org/stable/4132319 . - 49Wohlin, C. (2014) ‘Guidelines for snowballing in systematic literature studies and a replication in software engineering’, in Proceedings of the 18th international conference on evaluation and assessment in software engineering, EASE, 2014. London, England,
13–14 May . New York, NY:Association for Computing Machinery , pp. 1–10. Available at: 10.1145/2601248.2601268
